初中数学分式方程应用含答案

合集下载

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

八年级数学上册 分式方程及其应用(习题及答案)(人教版)

八年级数学上册 分式方程及其应用(习题及答案)(人教版)

分式方程及其应用(习题)例题示范例1:解分式方程:11322x x x-=---. 【过程书写】 1(1)3(2)1136242x x x x x x =----=-+-+==解: 检验:把x =2代入原方程,不成立∴x =2是原分式方程的增根∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度.【思路分析】列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =- 解得,x =40经检验:x =40是原方程的解,且符合题意答:慢车的速度是40km/h .巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .xa b x b a +=-11 C .b x a a x 1-=+ D .1=-+++-nx m x m x n x2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=-4. 若方程61(1)(1)1m x x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--;(2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--;(4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A ,B 两车间共同完成一半的生产任务后,A 车间因出现故障而停产,剩下的全部由B 车间单独完成,结果前后共用了20天完成全部生产任务.则A ,B 两车间每天分别能加工多少件该款夏装? 【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 巩固练习1. C2. D3. B4. 35.x=36.(1)x=2(2)43 x(3)无解(4)无解7.A车间每天能加工384件该款夏装B车间每天能加工320件该款夏装8.商厦共盈利90 260元。

八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。

(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

初中数学分式方程的应用基础训练2(附答案详解)

初中数学分式方程的应用基础训练2(附答案详解)
9.(用方程解决问题)新冠疫情期间,N95口罩每只的进价比一次性医用口罩每只进价多10元,某药店分别花20000元和60000元购进一次性医用口罩和N95口罩,购进的一次性医用口罩的数量是N95口罩数量的2倍.
(1)求N95口罩进价每只多少元?
(2)国家规定:N95口罩销售价不得高于30元/只.根据市场调研:N95口罩每天的销量y(只)与销售单价x(元/只)之间的函数关系式为y=-10x+500,该药店决定对一次性医用口罩按进价销售,但又想销售口罩每天获利2400元,该药店需将N95口罩的销售价格定为每只多少元?
26.商合杭高铁是国内高速铁路网“八纵八横”主通道的重要组成部分,预计于2020年6月建成通车,建成之后相比普通列车,芜湖到合肥的时间将缩短1个小时,已知芜湖与合肥相距约 ,普通列车速度为 ,则商合杭高铁设计时速为多少?
27.一艘轮船在静水中的最大航速为35千米/时,当江水匀速流动时,这艘轮船以最大航速沿江顺流航行120千米所用时间,与以最大航速沿江逆流航行90千米所用时间相同,求江水的流速.
23.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
24.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.

八年级数学上册分式方程例题专项练习(含答案)

八年级数学上册分式方程例题专项练习(含答案)

八年级数学上册分式方程例题专项练习(含答案)1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则解,得x=80经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则解,得x=450经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则解,得x=5经检验:x =5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则解,得x=5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?解:⑴设4月份销售价为每件x元,则解,得x=50经检验:x=50是原方程的解。

⑵4月份销售件数:2000÷50=40(件)每件进价:(2000-800)÷40=30(元)5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元)答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。

新初中数学方程与不等式之分式方程解析含答案

新初中数学方程与不等式之分式方程解析含答案

新初中数学方程与不等式之分式方程解析含答案一、选择题1.方程22111x xx x-=-+的解是()A.x=12B.x=15C.x=14D.x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x=15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数, ∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .【答案】B【解析】 甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5B .-5C .3D .-3 【答案】A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.6.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 【答案】A【解析】【详解】方程两边同时乘以x -1得,1-m -(x -1)+2=0,解得x =4-m .∵x 为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x =- D .90606x x=+ 【答案】A【解析】 解:设甲每小时做x 个零件,则乙每小时做(x ﹣6)个零件,由题意得:90606x x =-.故选A .9.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.10.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.11.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =456x +B .30x =456x -C .306x -=45xD .306x +=45x 【答案】A【解析】【分析】 设甲每小时做x 个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】 设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得30x =456x +. 故选A .【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.12.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .13.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 【答案】D【解析】【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解.【详解】方程两边同乘以3x (x+5)得,x+5=6x ,解得x=1,经检验,x=1是原分式方程的解.故选D.【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.14.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有x 人,则可列方程为( )A .18018032x x +=- B .18018032x x -=- C .18018032x x +=- D .18018032x x -=- 【答案】D【解析】【分析】 设参加游览的同学共x 人,则原有的几名同学每人分担的车费为:1802x -元,出发时每名同学分担的车费为:180x元,根据每个同学比原来少摊了3元钱车费即可得到等量关系. 【详解】设参加游览的同学共x 人,根据题意得: 1801802x x-=-3. 故选:D .【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x=20 B .102x -10x =20 C .10x -102x =13 D .102x -10x =13【答案】C【解析】【分析】 根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10x -102x =13, 故选:C .【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.16.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .17.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3B .m≤3且m≠2C .m <3D .m <3且m≠2 【答案】D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围.【详解】 21m x -+=1, 解得:x=m ﹣3,∵关于x 的分式方程21m x -+=1的解是负数, ∴m ﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.18.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ).A .3B .CD .【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.19.解分式方程21211x x =--时,去分母化为一元一次方程,正确的是( ) A .x +1=2(x ﹣1) B .x ﹣1=2(x +1) C .x ﹣1=2 D .x +1=2【答案】D【解析】【分析】先确定分式方程的最简公分母,然后左右两边同乘即可确定答案;【详解】解:由题意可得最简公分母为(x+1)(x-1)去分母得:x +1=2,故答案为D .【点睛】本题考查了分式方程的解法,解答的关键在于最简公分母的确定.20.若关于x 的分式方程233x m x x -=--有增根,则m 的值是( ) A .1- B .1 C .2 D .3【答案】B【解析】【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可.【详解】去分母得:x-2=m,∴x=2+m∵分式方程233x mx x-=--有增根,∴x-3=0,∴x= 3,∴2+m=3,所以m=1,故选:B.【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程应用一.选择题(共30小题)1.方程=的解为()A.x=﹣4B.x=4C.x=1D.x=﹣12.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+83.八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20B.﹣=20C.﹣=D.﹣=4.若关于x的方程=0的解为正数,则m的取值范围是()A.m<2B.m<2且m≠0C.m>2D.m>2且m≠4 5.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=6.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=37.若关于x的一元一次不等式组有解,且关于y的分式方程3﹣=有正数解,则符合条件的所有整数a的和为()A.1B.2C.3D.58.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=9.已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0B.k>﹣8且k≠﹣2C.k>﹣8且k≠2D.k<4且k≠﹣2 10.若解关于x的分式方程=1时出现了增根,则m的值为()A.﹣4B.﹣2C.4D.211.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.612.若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10B.m≤﹣10C.m≥﹣10且m≠﹣6D.m>﹣10且m≠﹣613.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x万个口罩,则由题意可列出方程()A.=B.=C.=D.=14.已知关于x的分式方程﹣1=无解,则m的值是()A.﹣2或﹣3B.0或3C.﹣3或3D.﹣3或015.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12B.k≥﹣12C.k>﹣12D.k<﹣1216.我省某市即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=2017.现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=18.方程=的解为()A.x=﹣1B.x=5C.x=7D.x=919.已知x=2是分式方程+=1的解,那么实数k的值为()A.3B.4C.5D.620.分式方程﹣1=0的解为()A.x=1B.x=2C.x=3D.x=421.在应对新冠肺炎疫情过程中,5G为山西疫情防控,复工复产,停课不停学提供了便利条件.已知5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输1000兆数据,5G网络比4G网络快9秒.若设4G网络的峰值速率为每秒传输x兆数据.则根据题意所列方程正确的是()A.﹣=9B.﹣=922.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=4023.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣5624.关于x的分式方程﹣=1有增根,则m的值()A.m=2B.m=1C.m=3D.m=﹣325.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.026.关于x的分式方程=的解为()A.﹣2B.2C.﹣3D.327.小慧与小秀去距学校10千米的博物馆参观,小慧骑自行车先走,过了30分钟后,小秀乘汽车出发,结果她们同时到达,已知汽车的速度是骑车速度的4倍.设骑车的速度为x 千米/小时,则所列方程正确的是()A.﹣=30B.﹣=30C.﹣=D.﹣=28.施工队铺设2000米的下水管道,每天比原计划少施工40米,结果延期3天完成任务,设原计划每天施工x米,所列方程正确的是()A.﹣=3B.﹣=329.现代科技的发展已经进入到了5G时代,温州地区将在2021年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G 网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程()A.﹣=360B.﹣=360C.﹣=360D.﹣=36030.若数a使关于x的分式方程=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6二.解答题(共20小题)31.解下列分式方程:(1)(2)32.解下列方程:(1)=;(2)+3=.33.解方程:(1)=;(2)+2=.34.解分式方程:+2=.35.(1)化简﹣;(2)解方程﹣=0.36.解方程:(1)=;(2)﹣3=.37.甲乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同.(1)求甲每天加工服装多少件?(2)甲乙两人新接了200件服装加工订单,受供货时间限制,二人都提高了工作效率,设甲提高后每天能加工m件,乙提高后每天加工的件数是甲的k倍(1.5≤k≤2),这样两人工作10天恰好能完成任务,求m的最大值.38.在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.39.今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.40.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg 所用时间相等,求这两种机器人每小时分别搬运多少原料.41.某公司经销甲种产品,受国际经济形势的影响,价格不断下降.预计今年的售价比去年同期每件降价1000元,如果售出相同数量的产品,去年销售额为10万元,今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入,公司决定再经销另一种类似产品乙,已知产品甲每件进价为3500元;产品乙每件进价为3000元,售价3600元,公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件,分别列出具体方案,并说明那种方案获利更高.42.防疫期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?43.在脱贫攻坚的关键一年里,重庆市某地根据当地的高山气候,该村的村支书决定带领村民把村中余下的荒地种上甲、乙两种水果树.已知每棵甲种树苗比每棵乙种树苗贵6元,用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格;(2)该村计划用3610元购买100棵甲、乙两种树苗,最多能买多少棵甲种树苗?44.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前3个月完成这一工程.求原计划完成这一工程的时间是多少个月?45.新冠肺炎疫情期间,成都江安河社区有甲、乙两个医疗用品公司,免费为医院加工同种型号的防护服.甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.求甲、乙两厂每天各加工多少套防护服?46.为迎接线下开学,某学校决定对原有的排水系统进行改造,如果甲组先做5天后,剩下的工程由乙组单独承担,还需7.5天才能完工,为了早日完成工程,甲乙两组合作施工,6天完成了任务;甲乙两组单独完成此项工程各需要多少天?47.某乡在推进村村通公路某项目建设中,计划修建公路15千米.已知甲队单独完成修建公路所需的时间是乙队的1.5倍,甲队每天比乙队少修0.5千米.(1)求甲、乙两队单独完成修建公路各需多少天?(2)已知甲队每天的工作费用是4000元,乙队每天的工作费用是5000元,若该工程由甲乙两队合作完成,且工程的总费用不超过52000元,求乙队至少要工作多少天?48.一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.49.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再由两队合作7天完成全部工程,已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?50.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?分式方程应用参考答案与试题解析一.选择题(共30小题)1.方程=的解为()A.x=﹣4B.x=4C.x=1D.x=﹣1解:方程的两边同乘(x﹣3)(x﹣2)得,x﹣2=2(x﹣3),解这个方程得,x=4,经检验,x=4是原方程的解.故选:B.2.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.3.八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20B.﹣=20C.﹣=D.﹣=解:设骑车学生的速度为xkm/h,则乘车学生的速度为2xkm/h,依题意,得:﹣=.故选:C.4.若关于x的方程=0的解为正数,则m的取值范围是()A.m<2B.m<2且m≠0C.m>2D.m>2且m≠4解:∵解方程,去分母得:mx﹣2(x+1)=0,整理得:(m﹣2)x=2,∵方程有解,∴,∵分式方程的解为正数,∴,解得:m>2,而x≠﹣1且x≠0,则,,解得:m≠0,综上:m的取值范围是:m>2.故选:C.5.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:=.故选:D.6.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=3解:依题意,得:3(x﹣1)=.故选:A.7.若关于x的一元一次不等式组有解,且关于y的分式方程3﹣=有正数解,则符合条件的所有整数a的和为()A.1B.2C.3D.5解:解不等式组,得,∵不等式组有解,∴a>﹣2,解分式方程3﹣=,得y=,∵y=为正数解,且y≠2,∴﹣2<a<3∴a=0,1,2,∴符合条件的所有整数a的和是3,故选:C.8.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.9.已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0B.k>﹣8且k≠﹣2C.k>﹣8且k≠2D.k<4且k≠﹣2解:分式方程﹣4=,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=,由分式方程的解为正数,得到>0,且≠2,解得:k>﹣8且k≠﹣2.故选:B.10.若解关于x的分式方程=1时出现了增根,则m的值为()A.﹣4B.﹣2C.4D.2解:方程两边都乘以x﹣2,得:2x+m=x﹣2,∵分式方程有增根,∴分式方程的增根为x=2,将x=2代入2x+m=x﹣2,得:4+m=0,解得m=﹣4,故选:A.11.已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.12.若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10B.m≤﹣10C.m≥﹣10且m≠﹣6D.m>﹣10且m≠﹣6解:去分母得:3x=﹣m+5(x﹣2),解得:x=,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.13.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x万个口罩,则由题意可列出方程()A.=B.=C.=D.=解:设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,依题意,得:=.故选:B.14.已知关于x的分式方程﹣1=无解,则m的值是()A.﹣2或﹣3B.0或3C.﹣3或3D.﹣3或0解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m+2)x=﹣3,解得,①当m+2=0,即m=﹣2时整数方程无解,即分式方程无解,②∵关于x的分式方程﹣1=无解,∴或,即m+2=0或3(m+2)=﹣3,解得m=﹣2或﹣3.∴m的值是﹣2或﹣3.故选:A.15.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12B.k≥﹣12C.k>﹣12D.k<﹣12解:方程﹣4=两边同时乘以(x﹣3)得:x﹣4(x﹣3)=﹣k,∴x﹣4x+12=﹣k,∴﹣3x=﹣k﹣12,∴x=+4,∵解为非正数,∴+4≤0,∴k≤﹣12.故选:A.16.我省某市即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20解:设原计划每天铺设钢轨x米,则实际每天铺设钢轨(x+20)米,依题意,得:﹣=15.故选:A.17.现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=解:设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,依题意,得:=.故选:A.18.方程=的解为()A.x=﹣1B.x=5C.x=7D.x=9解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x﹣5,解得x=9,经检验,x=9是原方程的解.故选:D.19.已知x=2是分式方程+=1的解,那么实数k的值为()A.3B.4C.5D.6解:把x=2代入分式方程得:﹣1=1,解得:k=4.故选:B.20.分式方程﹣1=0的解为()A.x=1B.x=2C.x=3D.x=4解:分式方程﹣1=0,去分母得:3﹣(x﹣1)=0,去括号得:3﹣x+1=0,解得:x=4,经检验x=4是分式方程的解.故选:D.21.在应对新冠肺炎疫情过程中,5G为山西疫情防控,复工复产,停课不停学提供了便利条件.已知5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输1000兆数据,5G网络比4G网络快9秒.若设4G网络的峰值速率为每秒传输x兆数据.则根据题意所列方程正确的是()A.﹣=9B.﹣=9C.﹣=9D.﹣=9解:设4G网络的峰值速率为每秒传输x兆数据,根据题意得:﹣=9.故选:A.22.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.23.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7B.﹣14C.28D.﹣56解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y﹣2=a,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.24.关于x的分式方程﹣=1有增根,则m的值()A.m=2B.m=1C.m=3D.m=﹣3解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.25.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.26.关于x的分式方程=的解为()A.﹣2B.2C.﹣3D.3解:=,方程两边同乘x(x﹣3)得:5x=2(x﹣3),解这个方程得:x=﹣2,经检验,x=﹣2是原方程的解.故选:A.27.小慧与小秀去距学校10千米的博物馆参观,小慧骑自行车先走,过了30分钟后,小秀乘汽车出发,结果她们同时到达,已知汽车的速度是骑车速度的4倍.设骑车的速度为x 千米/小时,则所列方程正确的是()A.﹣=30B.﹣=30C.﹣=D.﹣=解:设骑车的速度为x千米/小时,则汽车的速度是4x千米/小时,由题意可得,﹣=,故选:C.28.施工队铺设2000米的下水管道,每天比原计划少施工40米,结果延期3天完成任务,设原计划每天施工x米,所列方程正确的是()A.﹣=3B.﹣=3C.﹣=3D.﹣=3解:设原计划每天施工x米,则实际每天施工(x﹣40)米,依题意,得:﹣=3.故选:B.29.现代科技的发展已经进入到了5G时代,温州地区将在2021年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G 网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程()A.﹣=360B.﹣=360C.﹣=360D.﹣=360解:设4G网络的峰值速率为每秒传输x千兆数据,则5G网络的峰值速率为每秒传输10x千兆数据,依题意,得:﹣=360.故选:B.30.若数a使关于x的分式方程=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6解:分式方程整理得:﹣=4,去分母得:2﹣a=4x﹣4,解得:x=,由分式方程的解为正数,得到>0,且≠1,解得:a<6且a≠2.故选:A.二.解答题(共20小题)31.解下列分式方程:(1)(2)解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.32.解下列方程:(1)=;(2)+3=.解:(1)两边都乘以2(x+4),得:2(3﹣x)=x+4,解得x=,检验:当x=时,2(x+4)=≠0,所以分式方程的解为x=;(2)两边都乘以x﹣2,得:1+3(x﹣2)=x﹣1,解得x=2,检验:当x=2时,x﹣2=0,∴x=2是分式方程的增根,故分式方程无解.33.解方程:(1)=;(2)+2=.解:(1)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=6,解得x=3,检验:x=3时,(x+1)(x﹣1)=8≠0,∴分式方程的解为x=3;(2)两边都乘以x﹣4,得:﹣3+2(x﹣4)=1﹣x,解得x=4,检验:当x=4时,x﹣4=0,∴x=4是分式方程的增根,∴原分式方程无解.34.解分式方程:+2=.解:去分母得,3+2(x﹣1)=x,解得,x=﹣1,经检验,x=﹣1是原方程的解.所以,原方程的解为:x=﹣1.35.(1)化简﹣;(2)解方程﹣=0.解:(1)原式=﹣==;(2)﹣=0,去分母得:(x+2)﹣4=0,解得:x=2,检验:当x=2时,(x+2)(x﹣2)=0,则x=2是增根,原方程无解.36.解方程:(1)=;(2)﹣3=.解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.37.甲乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同.(1)求甲每天加工服装多少件?(2)甲乙两人新接了200件服装加工订单,受供货时间限制,二人都提高了工作效率,设甲提高后每天能加工m件,乙提高后每天加工的件数是甲的k倍(1.5≤k≤2),这样两人工作10天恰好能完成任务,求m的最大值.解:(1)设甲每天加工服装x件,则乙每天加工服装(x+1)件,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:甲每天加工服装5件.(2)依题意,得:10m+10km=200,∴m=.∵20>0,1+k>0,∴m随k值的增大而减小,∴当k=1.5时,m取得最大值,最大值==8.答:m的最大值为8.38.在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:﹣=5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.39.今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.解:设第一批购进的消毒液的单价为x元,则第二批购进的消毒液的单价为(x﹣2)元,依题意,得:=,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.40.为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg 所用时间相等,求这两种机器人每小时分别搬运多少原料.解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,依题意,得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+20=120.答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.41.某公司经销甲种产品,受国际经济形势的影响,价格不断下降.预计今年的售价比去年同期每件降价1000元,如果售出相同数量的产品,去年销售额为10万元,今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入,公司决定再经销另一种类似产品乙,已知产品甲每件进价为3500元;产品乙每件进价为3000元,售价3600元,公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件,分别列出具体方案,并说明那种方案获利更高.解:(1)设今年这种产品每件售价是x元,则去年同期这种产品每件售价是(x+1000)元.依题意可得:=,解得x=4000,经检验x=4000是原方程的解.答:今年这种产品每件售价是4000元.(2)设购进甲产品a件,则购进乙产品(15﹣a)件,依题意可得:,解得,8≤a≤10,∵a是整数,∴a=8,9,10,所以共有3种进货方案:方案①:购进甲产品8件,购进乙产品7件;方案②:购进甲产品9件,购进乙产品6件;方案③:购进甲产品10件,购进乙产品5件.方案①利润:(4000﹣3500)×8+(3600﹣3000)×7=8200(元);方案②利润:(4000﹣3500)×9+(3600﹣3000)×6=8100(元);方案①利润:(4000﹣3500)×10+(3600﹣3000)×5=8000(元);∵8200>8100>8000,∴方案①的利润更高.42.防疫期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?解:设甲工厂每小时做x个KN95口罩,则乙工厂每小时做(3500﹣x)个KN95口罩,由题意得:,解得:x=2000,经检验:x=2000是原分式方程的解,则3500﹣2000=1500(个).答:甲工厂每小时做2000个KN95口罩,则乙工厂每小时做1500个KN95口罩.43.在脱贫攻坚的关键一年里,重庆市某地根据当地的高山气候,该村的村支书决定带领村民把村中余下的荒地种上甲、乙两种水果树.已知每棵甲种树苗比每棵乙种树苗贵6元,用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格;(2)该村计划用3610元购买100棵甲、乙两种树苗,最多能买多少棵甲种树苗?解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x﹣6)元,。

相关文档
最新文档