16—17八年级第二学期数学期末复习

合集下载

第16--17章-人教版八年级数学下册期末复习单元检测附答案

第16--17章-人教版八年级数学下册期末复习单元检测附答案

第十六章《二次根式》单元检测题一、选择题(每小题3分,共30分) 1、如果-3x+5 是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-5 2、等式x 2-1 =x+1 ·x -1 成立的条件是( ) A 、x>1 B 、x<-1 C 、x ≥1 D 、x ≤-1 3.估算31-2的值 ( ) A .在1和2之间 B .在2和3之间 C .在3和4之间 D .在4和5之间=-a 的取值范围是 ( )A .a ≤0B .a ≥-3C .0<a <3D .-3≤a ≤05.若a<0,则|a 2 -a|的值是 ( ) A .0 B .2a C .2a 或-2a D .-2a 6.下列式子运算正确的是 ( ) A .123=-B .248=C .331= D .4321321=-++ 7.下列二次根式中,属于最简二次根式的是( )AB C D8.已知a =,2b =则a 与b 的关系是( ) A .a b =B .1ab =C .=-a bD .1ab =-9.比较大小:43与52的结果是( )A.前者大 B.一样大 C.后者大 D.无法确定10.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2 B.()2+ cm2 C.1210 cm2 D.2410 cm24330二、填空题(每小题3分,共30分)11.若二次根式34x+有意义,则x的取值范围是________.12.若ab<0,化简2a b的结果是____.13.一个三角形的三边长分别为8cm12cm18cm,,,则它的周长是___________cm.14.对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.15.计算(4﹣)的结果等于.16.化简:(+)(﹣)=.17.定义运算“@”的运算法则为:x@y=,则(2@6)@8=.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.19.已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为.20.若(++1)(+﹣1)=63,则+=.三、解答题(共60分)21.(8分)已知y=x-2+2-x+5,求x+2y2的值.22. (8分)观察下列各式及其验证过程2=.验证:2=×====;3=.验证:3====.按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证.23. (8分)计算:(1)-4+÷;(2)(1-)(1+)+(1+)2.24. (8分)若实数a、b、c在数轴上的对应点如图所示,试化简:-+|b+c|+|a-c|.25.(8分)先化简,再求值:⎝⎛⎭⎪⎫x +2+3x +4x -2÷x 2+6x +9x -2,其中x =2 3.26.(10分)阅读理解:对于任意正实数a ,b ,∵(a -b )2≥0,∴a -2ab +b ≥0,∴a +b ≥2ab ,只有当a =b 时,等号成立.∴在a +b ≥2ab 中,只有当a =b 时,a +b 有最小值2ab .根据上述内容,解答下列问题:(1)若a +b =9,求ab 的取值范围(a ,b 均为正实数). (2)若m >0,当m 为何值时,m +1m有最小值?最小值是多少?27.(10分)先阅读下面的材料,再解答下列问题.∵(a +b )(a -b )=a -b , ∴a -b =(a +b )(a -b ). 特别地,(14+13)(14-13)=1, ∴114-13=14+13.当然,也可以利用14-13=1,得1=14-13, ∴114-13=14-1314-13=142-13214-13=14+1314-1314-13=14+13.这种变形叫做将分母有理化. 利用上述思路方法计算下列各式:(1)12+1+13+2+14+3+…+12 021+ 2 020×( 2 021+1);(2)34-13-613-7-23+7.参考答案一、选择题1.C 2.C 3.C 4.D 5.D 6.D 7.C 8.C 9.C 10.D 二、填空题11.43x ≥-12.a b - 13.5223+ 14.25515.【解答】解:原式=4﹣.故答案为4﹣.16.【解答】解:=()2﹣()2=5﹣6=﹣1.故答案为:﹣1. 17. 6. 18. . 19. 320. 8. 三、解答题21.已知y =x -2+2-x +5,求x +2y 2的值. 解:由题意,得⎩⎨⎧x -2≥0,2-x≥0,∴x =2.∴y =5.∴x+2y2=2+2×52=52=213.22.【答案】解4=;理由:4====.【解析】观察上面各式,可发现规律如下规律:n=,按照规律计算即可23.【答案】解(1)原式=3-2+=3-2+2=3;(2)原式=1-5+1+2+5=2+2.【解析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.24.【答案】解根据题意,得a<b<0<c,且|c|<|b|<|a|,∴a+b<0,b+c<0,a-c<0,则原式=|a|-|a+b|+|b+c|+|a-c|=-a+a+b-b-c-a+c=-a. 【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.25.xx+34-2 326.(1)ab≤92(2)当m=1时,m+1m有最小值,最小值是2.27.(1)2 020 (2)1第十七章《勾股定理》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.已知一直角三角形的木板,三条边长的平方和为1800cm2,则斜边长为()A.80ccm B.120cm C.90cm D.30cm2.下列各组数据中,是勾股数的为()A.1,2,3B.8,15,17 C.1.5,2,2.5 D.34 ,,1 553.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、44.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于(). A.2 cm B.4 cm C.3 cm D.5 cm5.如图,将一根长25cm的细木棒放入长、宽、高分别为86103cm cm cm、、的长方体盒子中,则细木棒露在外面的最短长度是()cmA.20B.15C.10D.54题图 5题图 6题图6.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A 距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m7.若△ABC的三边长分别为a、b、c且满足(a+b)(a2+b2﹣c2)=0,则△ABC 是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形8.如图为某楼梯,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,则地毯的长度至少需要( )A .5米B .7米C .8米D .12米9.如图是一块长、宽、高分别是6 cm ,4 cm ,3 cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需爬行的最短路程是( ) A .(3+213 ) cm B .97 cmC .85 cmD .109 cm10.如图,铁路MN 和公路PQ 在点O 处交会,∠QON =30°.公路PQ 上A 处距离O 点240 m .如果火车行驶时,周围200 m 以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向以72 km/h 的速度行驶时,A 处受噪音影响的时间为( ) A .12 s B.16 s C .20 s D.24 s二、填空题(每空3分,共30分)11.11.若3,4,a 和5,b ,13是两组勾股数,则a +b 的值是________. 12.在平面直角坐标系xOy 中,点()()0,,,12,A a B b b -()23,0,012,C a a b -<<<若OB 平分AOC ∠,且AB BC =,则+a b 的值为__________.13.如图,已知∠ADC=90°,AD=8m ,CD=6m,BC=24m ,AB=26m ,则图中阴影部分的面积为_________;13题图15题图16题图14.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.15.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2, 10cm2,14cm2,则正方形D的面积是 cm2.16.如图,在55⨯的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共个.∆的周长为_______________.17.在△ABC中,AB=15,AC=13,高AD=12,则ABC18.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′= _______.19.如图,正方形的边长均为1,可以计算出,图(1)中正方形的对角线长为2;图(2)中长方形的对角线长为5;图(3)中长方形对角线的长为10,那么第n个长方形的对角线的长为_____.20.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题(满分60分).21. (5分)在数轴上作出表示10-及13的点.22.(6分) 如图,在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边.(1)已知c =25,a:b =4: 3,求a 、b ; (2)已知a =6,∠A =60°,求b 、c . 23.(6分) 如图,在△ABC 中,CD ⊥AB 于D ,AB =AC =13,BD =1.求:(1)CD 的长;(2)BC 的长.24.7分) 如图,已知CD =6,AB =4,∠ABC =∠D =90°,BD =DC ,求AC 的长.25.(8分) 如图,在四边形ABCD 中,AB =AD =2,BC =3,CD =1,∠A =90°,求∠ADC 的度数.26.(8分) 如图,在△ABC 中,AD ⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC 的周长.BACab c27.(10分) 如图,已知某学校A与直线公路BD的距离AB为3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A 及车站D的距离相等,那么该超市与车站D的距离是多少米?28.(10分) 若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状.《勾股定理》章节测试题答案一.选择题1.D 2.B . 3.D 4.C . 5.A . 6.B . 7. D 8.B9.C 10.B二.填空题11.1712.911或13.96m 2.14.17,144,14515. 1716. 4.17.32或4218.1.519.20.96.三.解答题.21.略.(表示对每个数2分)22.(1)a=20,b=15.(2)2=b ,22=c . (每小题4分)23.解:(1)∵AB =13,BD =1,∴AD =13-1=12.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5.(2)在Rt △BCD 中,BC =BD 2+CD 2=12+52=26.24. 解:在Rt △BDC ,Rt △ABC 中,BC 2=BD 2+DC 2,AC 2=AB 2+BC 2,则AC 2=AB 2+BD 2+DC 2,又因为BD =DC ,则AC 2=AB 2+2CD 2=42+2×62=88,∴AC =222 ,即AC 的长为22225.解:连接BD.在Rt△BAD中,因为AB=AD=2,所以∠ADB=45°,BD2=AD2+AB2=22+22=8.在△BCD中,因为BD2+CD2=8+1=9=BC2,所以△BCD是直角三角形,且∠BDC=90°.所以∠ADC=∠ADB+∠BDC=45°+90°=135°.26. 解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AB=BD=1,AB= 2 .在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD= 3 ,BC=BD+CD=1+ 3 ,∴AB+AC+BC= 2 + 3 +3.27. 解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米28. 解:∵a2+b2+c2+50=6a+8b+10c,∴a2+b2+c2-6a-8b-10c+50=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴根据勾股定理的逆定理可判定△ABC是直角三角形.。

(完整版)八年级下数学16、17、19、20章知识点期末复习与小结全面

(完整版)八年级下数学16、17、19、20章知识点期末复习与小结全面

第十六章 二次根式一、二次根式的意义及性质:题组1:(二次根式的识别:式子a (0a ≥),叫做二次根式)1.下列各式中,是二次根式的有_________________________。

(填序号) ①7; ②9; ③2a ; ④22x +; ⑤3-; ⑥()25-;⑦221x --; ⑧221n +; ⑨21x +; ⑩39; 题组2:(二次根式有意义的条件a (0a ≥))1.当a 是怎样的实数时,下列各式在实数范围内有意义? (1)32x -______;(2)21x -______;(3)42x-_________;(4)23x +_______;(5)a -______。

(6);(745++x x2.已知225y x x =--,则2x y -的值是_______________。

题组3:0a ) 1.若|2|30x y +-=3x y-的值是_________;题组4:(二次根式的性质:2(0)a a a =≥,2||a a )1.计算:23=_____;(232=_______;(20.2=______;223=_______;2.在实数范围内因式分解:(1)22x -=_______________;(2)49x -=________________。

320.3;223⎛⎫- ⎪⎝⎭210-()23.14π-=___________。

4.若()21221x x --,则x 的取值范围是____________。

题组5:(最简二次根式和同类二次根式)1.在根式①22b a + ②5x③xy x -2 ④ abc 27中,最简二次根式是( )A .①②B .③④C .①③D .①④ 2.下列二次根式中,可以合并的是 ( ) A .23a a a 和B .232a a 和C .aa a a 132和 D .2423a a 和 二、二次根式的运算:题组6:a b ab ⇔(0a ≥,0b ≥)a abb ⇔0a ≥,0b >)) 1. 12;2423315=______38a b ; 21820758151354273-.1240.568-4、1486274+÷ 5.(3513224a a a -(23322332-7.先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .第十七章 勾股定理一、知识点1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

2016-2017学年广西柳州市八年级(下)期末数学试卷

2016-2017学年广西柳州市八年级(下)期末数学试卷

2016-2017学年广西柳州市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题的四个选项中,只有一个项是符合题意的,每小题选对得3分,选错,不选或多均得零分,请把选择题的答案填入下面的表格中)1.(3分)若有意义,则x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.(3分)一次函数y=2x﹣1中,当x=2时,y的值为()A.1 B.3 C.4 D.53.(3分)下列运算正确的是()A.+=2 B.=+C.2×=2 D.﹣=14.(3分)长方形的周长为30cm,其中一边长为x cm(其中0<x<15),面积为ycm2,则这样的长方形中y与x的关系可以写成()A.y=x2 B.y=(15﹣x)2C.y=2(15﹣x)D.y=x(15﹣x)5.(3分)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,126.(3分)一个三角形的三边长分别是3、4、5,则它的面积等于()A.6 B.12 C.15 D.207.(3分)正比例函数的图象经过点(﹣1,2),则这个图象必须经过点()A.(﹣2,1)B.(2,﹣1)C.(1,﹣2)D.(1,2)8.(3分)已知一次函数的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k<0,b<0 C.k>0,b<0 D.k<0,b>09.(3分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.810.(3分)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A.2 B.4 C.2 D.6二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)若一个三角形的三边满足c2﹣a2=b2,则这个三角形是.12.(3分)一次函数y=﹣2x+4的图象与x轴交点坐标是.13.(3分)如图所示,菱形ABCD的周长为24,∠ABC=60°,则AC=.14.(3分)直线y=3x向下平移2个单位后得到的直线解析式为.15.(3分)如果是整数,则正整数n的最小值是.16.(3分)如图,正方形ABCD的面积为49,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE得和最小,则这个最小值为.三、解答题(本大题共7小题,满分52分,解答时应写出必要的文字说明,演算步骤或推理过程)17.(6分)计算:﹣+18.(6分)如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.19.(6分)如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC的长.(2)求证:△ABC是直角三角形.20.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.21.(8分)“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,调查小组随机抽查了其中100户家庭某个月的平均用水量(单位:顿)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完成(2)求这100个样本数据的平均数.22.(8分)如图,将矩形ABCD沿AE折叠,使得点B恰好落在对角线AC上的点F处,若AB=6cm,BC=8cm,求EC的长.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点B的坐标为(24,8),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿OA向A运动,当点E达到点A时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)连接AD,记△ADE得面积为S,求S与t的函数关系式,写出t的取值范围;(2)当t为何值时,四边形ABDE是矩形;(3)在(2)的条件下,当四边形ABDE是矩形,在x轴上找一点P,使得△ADP 为等腰三角形,直接写出所有满足要求的P点的坐标.2016-2017学年广西柳州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题的四个选项中,只有一个项是符合题意的,每小题选对得3分,选错,不选或多均得零分,请把选择题的答案填入下面的表格中)1.(3分)若有意义,则x的取值范围是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:B.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)一次函数y=2x﹣1中,当x=2时,y的值为()A.1 B.3 C.4 D.5【分析】将x=2代入函数解析式即可得出答案.【解答】解:将x=2代入得:y=2×2﹣1=3.故选:B.【点评】本题考一次函数图象上点的坐标特征,图象上的点的坐标适合解析式.3.(3分)下列运算正确的是()A.+=2 B.=+C.2×=2 D.﹣=1【分析】利用二次根式的加减法对A、D进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==5,所以B选项错误;C、原式=2,所以C选项正确;D、与﹣不能合并,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)长方形的周长为30cm,其中一边长为x cm(其中0<x<15),面积为ycm2,则这样的长方形中y与x的关系可以写成()A.y=x2 B.y=(15﹣x)2C.y=2(15﹣x)D.y=x(15﹣x)【分析】直接表示出长方形的另一边长,进而利用长方形面积求法得出答案.【解答】解:∵长方形的周长为30cm,其中一边长为x cm(其中0<x<15),∴另一边长为:(15﹣x)cm,则y=x(15﹣x).故选:D.【点评】此题主要考查了函数关系式,正确表示出长方形边长是解题关键.5.(3分)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选:C.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.6.(3分)一个三角形的三边长分别是3、4、5,则它的面积等于()A.6 B.12 C.15 D.20【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.7.(3分)正比例函数的图象经过点(﹣1,2),则这个图象必须经过点()A.(﹣2,1)B.(2,﹣1)C.(1,﹣2)D.(1,2)【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选:C.【点评】本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.8.(3分)已知一次函数的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k<0,b<0 C.k>0,b<0 D.k<0,b>0【分析】根据一次函数的性质即可解决问题.【解答】解:由图象可知:k<0,b<0,故选:B.【点评】本题考查一次函数与系数的关系,解题的关键是熟练掌握基本知识,记住k<0,图象从左到右下降,k>0图象从左到右上升,b>0交y轴于正半轴,b=0经过原点,b<0经过y轴的负半轴.9.(3分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4 B.6 C.7 D.8【分析】由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD=4,AD∥BC,AD=BC,∴∠DEC=∠BCE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=4,∵AE=3,∴AD=BC=3+4=7,故选:C.【点评】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.10.(3分)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A.2 B.4 C.2 D.6【分析】如图,利用正方形的性质得∠CAD=∠BDA=45°,则可判断△APE和△PDF为等腰直角三角形,则利用等腰直角三角形的性质得PE=AP,PF=PD,PE+PF=(AP+PD).【解答】解:如图,∵四边形ABCD为正方形,∴∠CAD=∠BDA=45°,∵PE⊥AC于点E,PF⊥BD于点F,∴△APE和△PDF为等腰直角三角形,∴PE=AP,PF=PD,∴PE+PF=(AP+PD)=×4=2.故选:A.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)若一个三角形的三边满足c2﹣a2=b2,则这个三角形是直角三角形.【分析】对原式变形,利用勾股定理的逆定理,从而确定三角形的形状.【解答】解:∵c2﹣a2=b2,∴a2+b2=c2,∴此三角形是直角三角形.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.(3分)一次函数y=﹣2x+4的图象与x轴交点坐标是(2,0).【分析】由于x轴上点的纵坐标为0,由此利用函数解析式即可求出横坐标的值.【解答】解:令y=0,则y=﹣2x+4=0,解得:x=2,故图象与x轴交点坐标是(2,0).【点评】此题比较简单,解答此题的关键是利用两坐标轴上点的坐标特点解决问题.13.(3分)如图所示,菱形ABCD的周长为24,∠ABC=60°,则AC=6.【分析】由菱形的四边相等可求得AB的长,结合条件可证得△ABC为等边三角形,则可求得AC的长.【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=AD==6,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=6,故答案为:6.【点评】本题主要考查菱形的性质,利用菱形的四边相等证得△ABC为等边三角形是解题的关键.14.(3分)直线y=3x向下平移2个单位后得到的直线解析式为y=3x﹣2.【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式即可.【解答】解:直线y=3x沿y轴向下平移2个单位,则平移后直线解析式为:y=3x﹣2,故答案为:y=3x﹣2【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.15.(3分)如果是整数,则正整数n的最小值是3.【分析】因为是整数,且==2,则3n是完全平方数,满足条件的最小正整数n为3.【解答】解:∵==2,且是整数;∴2是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.16.(3分)如图,正方形ABCD的面积为49,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE得和最小,则这个最小值为7.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为49,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为49,∴AB=7.又∵△ABE是等边三角形,∴BE=AB=7.∴所求最小值为7.故答案为:7【点评】此题主要考查了轴对称﹣﹣最短路线问题,难点主要是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P的位置即可.要灵活运用对称性解决此类问题.三、解答题(本大题共7小题,满分52分,解答时应写出必要的文字说明,演算步骤或推理过程)17.(6分)计算:﹣+【分析】首先把二次根式进行化简,然后再合并即可.【解答】解:原式=3﹣2+=2.【点评】此题主要考查了二次根式的加减法,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.18.(6分)如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.【分析】根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD ∥BC,AB∥CD,根据平行四边形的判定推出即可.【解答】证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.【点评】本题考查了平行线的判定和平行四边形的判定的应用,主要考查学生的推理能力.19.(6分)如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC的长.(2)求证:△ABC是直角三角形.【分析】(1)直接根据勾股定理求出CD的长;(2)根据勾股定理的逆定理即可得出结论.【解答】解:(1)∵CD⊥AB∴∠CDB=∠CDA=90°,在Rt△CDB中,∵BC=15,DB=9,∴根据勾股定理,得CD==12,(2)证明:在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25∴AC2+BC2=202+152=625=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,求出AB是解本题的关键.20.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b (k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).则.解得,即一次函数解析式为y=﹣x+40.(2)当x=30时,每日的销售量为y=﹣30+40=10(件)每日所获销售利润为(30﹣10)×10=200(元)【点评】本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.21.(8分)“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,调查小组随机抽查了其中100户家庭某个月的平均用水量(单位:顿)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完成(2)求这100个样本数据的平均数.【分析】(1)求出月平均用水11吨的用户数,即可解决问题;(2)根据平均数的定义计算即可;【解答】解:(1)由题意平均用水11吨的用户有:100﹣20﹣10﹣20﹣10=40(户),所以条形图如图所示:(2)这100个样本数据的平均数==11.6(吨)【点评】本题考查条形统计图、加权平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)如图,将矩形ABCD沿AE折叠,使得点B恰好落在对角线AC上的点F处,若AB=6cm,BC=8cm,求EC的长.【分析】在Rt△ABC中由勾股定理可求得AC=10,设BE=x,则EC=8﹣x.由翻折的性质可知BE=EF=x,AF=AB=6,于是可求得FC=4,最后在Rt△EFC中,由勾股定理列方程求解即可.【解答】解;在Rt△ABC中由勾股定理得:AC==10.设BE=x,则EC=8﹣x.由翻折的性质可知:∠B=∠EFA=90°,BE=EF=x,AF=AB=6.FC=AC﹣AF=4.在Rt△EFC中,由勾股定理得:EC2=EF2+FC2,即(8﹣x)2=x2+42.解得:x=3,即BE=3.∴EC=8﹣3=5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点B的坐标为(24,8),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿OA向A运动,当点E达到点A时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.(1)连接AD,记△ADE得面积为S,求S与t的函数关系式,写出t的取值范围;(2)当t为何值时,四边形ABDE是矩形;(3)在(2)的条件下,当四边形ABDE是矩形,在x轴上找一点P,使得△ADP 为等腰三角形,直接写出所有满足要求的P点的坐标.【分析】(1)根据三角形面积公式计算即可;(2)当BD=AE时,四边形ABDE是矩形,由此构建方程即可解决问题;(3)分三种情形:①当AD=AP时,②当DA=DP时,③当PD=PA时,分别求解即可;【解答】解:(1)如图1中,S=×(24﹣3t)×8=﹣12t+96(0≤t≤8).(2)∵OA∥BD,∴当BD=AE时,四边形BDEA是平行四边形,∵∠OAB=90°,∴四边形ABDE是矩形,∴t=24﹣3t,t=6s,∴当t=6s时,四边形ABDE是矩形.(3)分三种情形讨论:由(2)可知D(18,8),A(24,0),∴AD==10,①当AD=AP时,可得P1(14,0),P2(34,0),②当DA=DP时,可得P3(12,0),③当PD=PA时,设PD=PA=x,在Rt△DP4E中,x2=82+(x﹣6)2,解得x=,∴P4(,0),综上所述,满足条件的点P坐标为(14,0)或(34,0)或(12,0)或(,0);【点评】本题考查四边形的综合题、矩形的判定和性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.。

新人教版八年级下册数学期末总复习

新人教版八年级下册数学期末总复习

数学·人教版(RJ)
第十六章 过关测试 ►考点四 二次根式的运算
15bc ; a
例 4 计算下列各题: 3 5ab 5 2ac (1) · · -2 c 3 b 10
(2)(1- 3+ 2)(1+ 3- 2).
[解析] 两个以上的二次根式相乘与两个二次根式相乘 的方法一样,把它们的系数、被开方数分别相乘,根指 数不变.
图 17-3
数学·人教版(RJ)
第十七章 过关测试
(2)请你利用第(1)题的解答思想方法, 解答下面问题: 已 知:如图 17-3②,△ABC 中,∠CAB=90°,AB=AC,E,F 为 BC 上的点且∠EAF=45°,求证:EF2=BE2+FC2.
解:证明:如图 17-4,由于 AB =AC,∠BAC= 90°,所以可 以将△ACF 绕点 A 旋转 90°,到△ABD 的位置,即过点 B 作 BD⊥BC,截取 BD=FC,连接 DE ,则△ ADB ≌△AFC. 又易证பைடு நூலகம்ADE ≌△AFE ,所以 DE =EF .在 Rt △DBE 中,由勾 股定理,得 DE 2=DB 2+BE 2,所以 EF 2=BE 2+FC2.
( a) 与 a2的联系:仅当 a≥0 时,有( a) = a2.
2
2
2
2
数学·人教版(RJ)
第十六章 过关测试 ►考点三
例3
二次根式的化简
设 2=a, 3=b, 用含 a, b 的式子表示 0.54,
则下列表示正确的是( C ) A.0.03ab B.3ab C.0.1ab3 D.0.1a3b
[解析] C
数学·人教版(RJ)
第十六章 过关测试
3 5 解:(1)原式=(- × × 2) 10 3

16-17第二学期期末八年级数学试题

16-17第二学期期末八年级数学试题
2016~2017学年度第二学期期末考试
八年级数学
亲爱的同学,你好!本学期即将结束,今天是展示你才华的时候了,只要你仔细审题、 认真答题,把平常的水平发挥出来,你就会有出色的表现!可要注意喽,本次分试卷及答 题卡两部分,收卷时只收答题卡,试卷由学生自己保留.不使用计算器.
一、选一选,比比谁细心(本大题共 15小题,每小题 2分,共 30分,在每小题给出的四 个选项中,只有一项是符合题目要求的,把这个正确的选项的序号涂在答题卡的相应位置 上).
PE+PF的最小值等于

cm.
(第 20题图)
三、解答题:(本大题共 6小题,共 60分,解答应写出文字说明,说理过程或演算步骤) 21.(本题满分 12分,每小题 3分)
(1)
(2)
八年级数学试题 第 4页(共 6页)
(3)( ﹣1)( +1)
(4)
22.(本题满分 8分)
如图,直线
与直线
在同一平
(第 15题图)
二、填一填,看看谁仔细(本大题共 5小题,每小题 2分,共 10分,把最简答案填在答 题卡的相应位置).
16.甲、乙、丙、丁四人进行射击测试,每人 10次射击的平均成绩恰好都是 9环,方差
八年级数学试题 第 3页(共 6页)
分别是

人中成绩最稳定的是



,在本次射击测试中,甲乙丙丁四
他的数据,则这组数据的众数是(

A.22
B.23
C.25
D.28
11.在同一直角坐标系中,对于函数:①y=﹣x﹣1 ②y=x+1
④y=﹣2(x+1)的图象,下列说法正确的是(

③y=﹣x+1

人教版八年级下数学期末复习资料

人教版八年级下数学期末复习资料

人教版八年级下数学期末复习资料数学其实也不难学,只要上课认真听讲,找到一套适合自己的学习方法数学也可以变得很简单,当然,考试前不能忘了复习。

下面是店铺分享给大家的人教版八年级下数学期末复习资料的资料,希望大家喜欢!人教版八年级下数学期末复习资料一第十七章反比例函数形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。

反比例函数的图像属于双曲线(hyperbola)。

当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

人教版八年级下数学期末复习资料二第十八章勾股定理勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

经过证明被确认正确的命题叫做定理(theorem)。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)人教版八年级下数学期末复习资料三第十九章四边形有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定:1.两组对边分别相等的四边形是平行四边形;2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

八年级数学下册期末备考知识点复习资料

八年级数学下册期末备考知识点复习资料

八年级数学下册期末备考知识点复习资料八年级数学下册期末备考知识点复习资料第一章一次函数1函数的定义,函数的定义域、值域、表达式,函数的图像2一次函数和正比例函数,包括他们的表达式、增减性、图像3从函数的观点看方程、方程组和不等式第二章数据的描述1了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2会用各种统计图表示出一些实际的问题第三章全等三角形1全等三角形的性质:全等三角形的对应边、对应角相等2全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.第四章轴对称1轴对称图形和关于直线对称的两个图形2轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的.垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等.(等角对等边)5等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.在三角形中,大角对大边,大边对大角.第五章整式1整式定义、同类项及其合并2整式的加减3整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4乘法公式(1)平方差公式(2)完全平方公式5整式的除法(1)同底数幂的除法(2)整式的除法6因式分解(1)提共因式法(2)公式法(3)十字相乘法。

八年级数学(下)知识点点第十六-十七章

八年级数学(下)知识点点第十六-十七章

八年级数学(下)知识点人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。

第十六章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分子,B 叫做分式的分母。

2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a ±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16—17学年度第二学期数学数学期末复习1一.选择题(共12小题,每题4分,共48分。

)1.若函数y=,则自变量x 的取值范围是( ) A .x > B . x ≥﹣ C . x ≥ D .x ≥﹣且x ≠0 2.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( )A. m=±2B. m=2 C. m=-2 D. m ≠±23.下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 4.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y (元)与支数x 之间的关系式为( ) A .y=10xB . y =25xC . y =xD . y =x 5.已知直线y=kx+b ,若k+b <0,kb >0,那么该直线不经过( )A .第一象限B . 第二象限C . 第三象限D . 第四象限6.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差D . 丁7.下列性质中,平行四边形具有而一般四边形不具有的是( )A .不稳定性B .对角线互相平分C .外角和等于360°D .内角和等于360°8.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m ,公园到医院的距离为400m ,若公园到超市的距离为500m ,则公园在医院的( )A .北偏东75°的方向上B .北偏东65°的方向上C .北偏东55°的方向上D . 无法确定9.矩形具有而菱形不一定具有的性质是( )A .对边分别相等B .对角分别相等C .对角线互相平分D .对角线相等10.下列图象中,不可能是关于x 的一次函数y=mx ﹣(m ﹣3)的图象的是( )A .B .C .D .11.直线y=kx+k (k 为正整数)与坐标轴所构成的直角三角形的面积为S k ,当k 分别为1,2,3,…,199,200时,则S 1+S 2+S 3+…+S 199+S 200=( )A .10000 B . 10050 C .10100 D .1015012.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,PC .若∠ABC=∠BEF=60°,则=( ) A . B . C .D .二.填空题(共6小题,每题4分,共24分)13.已知方程032=+-mx x 的两个相等实根,那么=m .14.如图是一组数据的折线统计图,这组数据的方差是 .14题 16题17题 18题15.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是 .16.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH 的长是 .17.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .18.如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,…,a n ,则a 101= .三.解答题(共8小题,19-20每题7分,21-24每题10分,25-26每题12分)19.计算:0432=-+x x (用配方法)42)2)(1(+=++x x x20.已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE=CF ,DF ∥BE .求证:四边形ABCD 为平行四边形.21.如图,在一棵树CD 的10m 高处的B 点有两只猴子,它们都要到A 处池塘边喝水,其中一只猴子沿树爬下走到离树20m 处的池塘A 处,另一只猴子爬到树顶D 后直线跃入池塘的A 处.如果两只猴子所经过的路程相等,试问这棵树多高?22.自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.(1)请计算这些数据的平均数与极差;(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算),该交警大队能查到多少起酒后驾车事件?(精确到1起)(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.23.如图,已知△ABD ,△BCE ,△ACF 都是等边三角形.(1)求证:四边形ADEF是平行的四边形;(2)△ABC满足什么条件时,四边形ADEF是菱形?说明理由.24.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为km;图中点C的实际意义为:;慢车的速度为,快车的速度为;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?25.在平面直角坐标系中,点A、B分别在x轴、y 轴上,线段OA、OB的长(OA<OB)是关于x的方程x2﹣(2m+6)x+2m2=0的两个实数根,C是线段AB的中点,OC=3,D在线段OC上,OD=2CD.(1)求OA、OB的长;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.16—17学年度第二学期数学数学期末复习2一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.(3分)下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1,C.4,5,6 D.1,,2 2.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.3.(3分)用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=234.(3分)如图,▱ABCD的对角线AC与BD相交于点O,E为CD边中点,BC=6cm,则OE的长为()A.2cm B.3cm C.cm D.2cm5.(3分)下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形6.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8 D.87.(3分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y28.(3分)如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>09.(3分)青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.如果设水稻每公顷产量的年平均增长率为x,由题意,所列方程正确的是()A.8450 (1+x)2=7200 B.7200(1+x)2=8450C.7200(1+2x)=8450 D.7200(1﹣x)2=845010.(3分)如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.14.(3分)如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为.(14)(16) (17) (18)15.(3分)汽车油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶的路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.则y与x的函数关系式为,自变量x的取值范围是,汽车行驶200km时,油箱中所剩的汽油为.16.(3分)如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于,AE的长等于.17.(3分)如图,在△ABC中,∠ACB=90°,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于.18.(3分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是.三、解答题(共7小题,满分66分)19.(8分)(Ⅰ)解方程:x2﹣6x=3;(Ⅱ)若关于x的一元二次方程3x2+4x+k=0有两个不相等的实数根,求k的取值.20.(10分)在△ABC中,∠ACB=90°,D是BC的中点,AC=2,AD=4.(Ⅰ)如图①,求CD,AB的长;(Ⅱ)如图②,过点C作CE∥AD,过点D作DE⊥BC,DE与CE相交于点E,求点D到CE的距离.21.(10分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.23.(10分)如图,有一块矩形铁片,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖的方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角切去的正方形的边长应为多少?24.(10分)如图,在平面直角坐标系xOy中,一次函数的图象经过点4 (1,﹣3 ),B (2,0)(Ⅰ)求这个一次函数的解析式;(Ⅱ)若以O、A、B、C为顶点的四边形是平行四边形.①请直接写出所有符合条件的C点坐标;②如果以O、A、B、C为顶点的四边形为菱形,请直接写出点C的坐标.25.(10分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(Ⅰ)求这条直线的解析式;(Ⅱ)直线AD与(Ⅰ)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线AD上的一点(不与点D重合),且点M的横坐标为m,求△DBM的面积S与m之间的关系式.16—17学年度第二学期数学数学期末复习3一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列运算中正确的是()A.B.C.D.2.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD3.(3分)若三角形的三边长分别为,,2,则此三角形的面积为()A.B.C.D.4.(3分)甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁5.(3分)下列图象分别给出了x与y的对应关系,其中y是x的函数的是()A. B.C.D.6.(3分)与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣27.(3分)某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=488.(3分)若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.1819.(3分)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<210.(3分)甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在函数中,自变量x的取值范围是.12.(3分)若关于x 的方程x 2﹣x ﹣a 2+5=0的一个根是2,则它的另一个根为 .13.(3分)已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为.14.(3分)在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC= .15.(3分)如图,在平行四边形ABCD 中,AB=2,BC=4,AC 的垂直平分线交AD 于点E ,则△CDE 的周长为 .(15) (16)16.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限内,对角线BD 与x 轴平行,直线y=x +3与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移m (m >0)个单位,当点D 落在△EOF 的内部时(不包括三角形的边),则m 的取值范围是 .三、解答题:本大题共6个小题,共52分17.(8分)小明本学期的数学测验成绩如表所示:(1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.18.(8分)已知一次函数y=kx +b (k 为常数,k ≠0)的图象经过点A (2,2),B (0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.19.(8分)用适当的方法解下列方程.(1)x2+3x=5(x+3)(2)2x2﹣6x+1=020.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.21.(10分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.22.(10分)某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?16—17学年度第二学期数学数学期末复习4一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列函数中,y是x的正比例函数的是()A.y=kx B.y=2x﹣1 C.y=x D.y=2x22.(3分)在某学校“经典古诗文”诵读比赛中,有21名同学参加某项比赛,预赛成绩各不相同,要取前10名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.平均数B.中位数C.众数D.方差3.(3分)函数y=2x﹣6的图象与x轴的交点坐标为()A.(0,﹣6)B.(﹣6,0)C.(3,0)D.(0,3)4.(3分)在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是()A.6.5 B.8.5 C.13 D.5.(3分)关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m2﹣4=0的一个根是0,则m的值是()A.2 B.﹣2 C.2或﹣2 D.6.(3分)如图,四边形ABCD是平行四边形,点E是AB延长线上一点,若∠EBC=50°,则∠D的度数为()A.150°B.130°C.100°D.50°7.(3分)如图,在正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.B.3C.4 D.38.(3分)已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.9.(3分)A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x1﹣x2)(y1﹣y2),则()A.t<0 B.t=0 C.t>0 D.t≤010.(3分)如图,在△ABC中,∠ACB=90°,CB=CA,∠ABC的角平分线交AC于点D,DE⊥AB,垂足为E,则CD:AD的值为()A.1:2 B.2:3 C.1:D.1:11.(3分)如图,直线y=kx+b经过点A(0,3),B(1,2),则关于x的不等式0≤kx+b<2x的解集为()A.1<x≤3 B.1≤x<3 C.x>1 D.无法确定12.(3分)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.12二、填空题(共6小题,每小题3分,满分18分)(13) (18)13.(3分)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.14.(3分)2015年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.则当天这四位运动员中“110米跨栏”的训练成绩最稳定运动员的是.15.(3分)将直线y=2x向下平移5个单位后,得到的直线解析式为.16.(3分)关于x的方程mx2﹣4x+1=0有实数根,则m的取值范围是.17.(3分)某校去年对实验器材的投资为2万元,预计今、明两年的投资总额为12万元,求该校这两年在器材投资商的平均增长率是多少?若设该校这两年在实验器材投资上的平均增长率是x,根据题意可列出的方程为.18.(3分)如图,点E是正方形ABCD对角线AC上一点,EC=BC,过点E作FE⊥BE,交CD于点F(Ⅰ)∠BEC的度数等于.(Ⅱ)若正方形的边长为a,则CF的长等于.三、解答题(共6小题,满分46分)19.(8分)解方程(Ⅰ)2x2﹣4x﹣1=0 (Ⅱ)(x+1)(x+3)=2x+6.20.(8分)学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表.五项素质考评得分表(单位:分):根据统计表中的信息解答下列问题:五项素质考评平均成绩统计图(1)请你补全五项成绩考评分析表中的数据:五项成绩考评分析表:(2)参照上表中的数据,你推荐哪个班为区级先进班集体?并说明理由.(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为区级先进班集体?21.(6分)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.22.(8分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB 的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.23.(8分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱?24.(8分)矩形ABCD在如图所示的直角坐标系中,点A的坐标为(0,3),BC=2AB、直线l经过点B,交AD边于点P1,此时直线l的函数表达式是y=2x+1.(1)求BC、AP1的长;(2)沿y轴负方向平移直线l,分别交AD、BC边于点P、E.①当四边形BEPP1,是菱形时,求平移的距离;②设AP=m,当直线l把矩形ABCD分成两部分的面积之比为3:5时,求m的值.。

相关文档
最新文档