人教版数学九上九年级上册 第21章一元二次方程 单元试题及答案
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)

人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
人教版数学九年级上册第21章一元二次方程单元训练题含答案

人教版数学九年级上册第21章一元二次方程单元训练题含答案一、选择题1.一元二次方程x2-2(3x-2)+(x+1)=0的普通方式是( )A.x2-5x+5=0 B.x2+5x-5=0C.x2+5x+5=0 D.x2+5=02.关于x的方程(m-3)xm2-2m-1-mx+6=0是一元二次方程,那么它的一次项系数是( )A.-1 B.1C.3 D.3或-13.关于x的方程ax2+bx+c=0,有以下说法:①假定a≠0,那么方程必是一元二次方程;②假定a=0,那么方程必是一元一次方程,那么上述说法( ) A.①②均正确B.①②均错误C.①正确,②错误D.①错误,②正确4.以下说法中,正确的有( )①假定x2=9,那么x是9的平方根;②x=3不是方程x2=3的根;③x2-12=0的根是x=±23;④x2-4x+4=(x-2)2.A.1个B.2个C.3个D.4个5.关于x的一元二次方程x2+ax-1=0的根的状况是( )A .没有实数根B .只要一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.关于恣意实数a 、b ,定义f(a ,b)=a 2+5a -b ,如f(2,3)=22+5×2-3,假定f(x,2)=4,那么实数x 的值是( ) A .1或-6 B .-1或6 C .-5或1D .5或17. 假定关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,那么a( ) A .等于2 B .等于-2 C .等于0 D .不等于2 8. 用配方法解方程3x 2-6x +1=0,配方后失掉的方程是( ) A .(x -3)2=13 B .3(x -1)2=13C .(3x -1)2=1 D .(x -1)2=239. 假定方程3x 2-4x -4=0的两个实数根区分为x 1,x 2,那么x 1+x 2=( ) A .-4 B .3 C .-43 D.4310. 某商品的原价为289元,经过延续两次降价后售价为256元,设平均每次降价的百分率为x ,那么下面所列方程中正确的选项是( ) A .289(1-x)2=256 B .256(1-x)2=289C.289(1-2x)=256 D.256(1-2x)=289二、填空题11.把一元二次方程x2-6x+4=0化成(x+n)2=m的方式时,m=,n =.12.x=1是一元二次方程x2+ax+b=0的一个根,那么代数式a2+b2+2ab的值是.13.关于x2-x-6=0与2x+m =1x-3有一个解相反,那么m=.14.关于x的一元二次方程kx2-2x+1=0有实数根,那么k的取值范围是.15.当x=-1 时,代数式8-2x2-4x有值,其值为.三、解答题16.用恰当的方法解以下方程:(1)x2-10x+25=7;(2)3x(x-1)=2-2x;(3)3x2-10x+6=0.17.解方程2x2-23x=22,有一位同窗解答如下:解:∵a=2,b=-23,c=22,∴b2-4ac=(-23)2-4×2×22=12-82·2=-4<0.故原方程无实数根.请剖析以上解答有无错误,如有错误,指出错误的中央,并写出正确解答进程.18. 某一个一元二次方程被墨水染成为:■x2+■x+6=0,小明、小亮回想说:请依据上述对话,求出方程的另一个解.19.阅读题例,解答下题:例:解方程:x2-|x|-2=0.解:(1)当x≥0,x2-x-2=0,解得x1=-1(不合题意,舍去),x2=2;(2)当x<0,x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2.综上所述,原方程的解是x=2或x=-2.依照上例解法,解方程x2+2|x+2|-4=0.20.关于x的方程x2-(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)假定等腰△ABC的一边长为a=6,另两边长b、c恰恰是这个方程的两个根,求此三角形的周长.参考答案;一、1---10 AACCD ADDD二、11. 5 -312. 113. -814. k≤1且k≠015. 最大 10三、16. 解:(1)x 2-10x +25=7,(x -5)2=7,x -5=±7,x 1=5+7,x 2=5-7;(2)方程变形得:3x(x -1)+2(x -1)=0,因式分解得:(x -1)(3x +2)=0,可得x -1=0,3x +2=0,解得:x 1=1,x 2=-23;(3)∵a =3,b =-10,c =6,∴b 2-4ac =(-10)2-4×3×6=100-72=28>0,∴x =10±276,∴x =5+73或x =5-73.17. 解:错在c 的符号上c =-22, ∵a =2,b =-23,c =-22,∴Δ=b 2-4ac =(-23)2-4×2×(-22)=12+16=28>0, ∴x =23±282×2=23±272×2=3±72=6±142.即x 1=6+142,x 2=6-142. 18. 解:设二次项系数为a ,那么一次项系数为a 2,∴方程为ax 2 +a 2 x +6=0,∵方程的一个根为x =3,那么有9a +3a 2 +6=0,即a 2 +3a +2=0,配方得(a +32)2=14,解得a 1 =-1,a 2 =-2,又由于二次项系数小于-1,∴a =-2.∴当a =-2时,方程为-2x 2 +4x +6=0,化简得:x 2-2x -3=0,配方得(x -1)2=4,解得x 1 =-1,x 2 =3.∴方程的另一个解为-1.19. 解:x +2≥0,x≥-2时,方程变形得:x 2+2(x +2)-4=0⇒x 2+2x =0⇒x(x +2)=0⇒x 1=0,x 2=-2.当x <-2时,x 2-2(x +2)-4=0⇒x 2-2x -8=0.(x +2)(x -4)=0⇒x 1=-2(舍去),x 2=4(舍去),综上所述:原方程的解是x 1=0或x 2=-2.20. 解:(1)∵b 2-4ac =[-(3k +1)]2-4(2k 2+2k)=9k 2+6k +1-8k 2-8k =k 2-2k +1=(k -1)2,∵(k -1)2≥0,∴b 2-4ac≥0,即无论k 取任何实数值,方程总有实数根;(2) ①当等腰三角形的底边长为a 时,∴方程有两个相等的实数根,∴(k -1)2=0,∴k =1,方程变形为:x 2-4x +4=0,解得x 1=x 2=2,由于2+2<6,故此三角形不存在; ②当等腰三角形的腰长为a 时,即方程的一个实数根为6,∴将x =6代入方程得,k 2-8k +15=0,∵Δ=4,∴k =8±42,∴k 1=5,k 2=3,当k =5时,方程变形为x 2-16x +60=0,∵Δ=16,∴x =16±162,∴x 1=10,x 2=6,∴三角形的三边为6,6,10,∴此三角形的周长为22;当k =3时,方程变形为:x 2-10x +24=0,∵Δ=4,∴x =10±42,∴x 1=4,x 2=6,∴三角形的三边为6,6,4,∴此三角形的周长为16.综上,三角形的周长为22或16.。
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。
人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)

二、填空题
13.请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程______________.
14.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
15.某药品经两次降价后,从原来每箱 元降为每箱 元,则平均每次的降价率为________.
(1)求证:对于任意实数k,方程总有两个不相等的实数根;
(2)若方程的一个根是2,求k的值及方程的另一个根.
22.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和 万件,现假定该公司每月投递的快件总件数的增长率相同.
求该公司投递快件总件数的月平均增长率;
【详解】
把x=1代入把x=1代入x2+px+1=0,得
1+p+1=0,
∴p=-2.
故选D.
【点睛】
本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
3.C
【解析】
【分析】
先计算△=b2-4ac的值,再根据计算结果判断方程根的情况即可.
【详解】
∵△=b2-4ac=1-8=-7<0,
∴一元二次方程2x2-x+1=0没有实数根.x2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
D、是一元二次方程,故此选项正确;
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

go 18.设 x1,x2 是方程 x2-4x+m=0 的两个根,且 x1+x2-x1x2=1,
re 则 x1+x2= ,m=
.
a 19.关于 x 的一元二次方程 x2-2x+m-1=0 有两个相等的实数根,
ing 则 m 的值为
.
e 20.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,
解得 x1=3,x2=9. 10.解:∵2☆a 的值小于 0,∴22a+a=5a<0,解得 a<0.在方程 2x2-bx+a=0 中,b2-4ac=(-b)2-8a≥-8a>0,∴方程 2x2-bx+a=0 有两个不相等的实数根. 11.A 12.B
3 13. C【解析】根据题意,将 x=-2 代入方程 x2+2ax-a2= 0, 得 4-3a-a2=0,即 a2+3a-4=0, 左边因式分解,得(a-1)(a+4) =0, ∴a=1 或-4.故选 C. 14.B 15. B【解析】∵(a-c)2=a2+c2-2ac>a2+c2, ∴ac<0.在方程 ax2+bx+c=0 中,b2-4ac≥-4ac>0, ∴方程 ax2+bx+c=0 有两个不相等的实数根.故选B.
ll th 的取值范围是( )
A 3 d A.m≥-4
B.m≥0
t a time an C.m≥1
D.m≥2
3 13.若 x=-2 是关于 x 的一元二次方程x2+2ax-a2=0 的一个根,则
a 的值为( )
A.-1 或 4 B.-1 或-4
C.1 或-4
D.1 或 4
14.若关于 x 的一元二次方程的两根为 x1=1,x2=2,则这个方程是( )
ome 18. 3【解析】∵x1,x2 是方程 x2-4x+m=0 的两个根, r s ∴x1+x2=4,x1x2=m.代入 x1+x2-x1x2=1,得 4-m=1,∴m=3.
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九上九上 第21章一元二次方程 单元试题及答案一、单选题1、下列方程中,是关于x 的一元二次方程的是( ) A. ax 2+bx+c =0(a ,b ,c 为常数) B. x 2-x-2=0 C.211x x-2=0D. x 2+2x =x 2-12、一元二次方程x 2-2x =1的二次项系数、一次项系数、常数项分别是( ) A. 1,2,-1 B. 1,-2,1C. -1,-2,1D. 1,-2,-13、如果关于x 的一元二次方程(m-3)x 2+3x+m 2-9=0有一个解是0,那么m 的值是( )A. 3B. -3C. ±3D. 0或-34、关于x 的方程a(x+m)2+b =0的解是x 1=-2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a(x+m+1)2+b =0的解是( )A. x 1=-3,x 2=0B. x 1=0,x 2=3C. x 1=-4,x 2=-1D. x 1=1,x 2=45、一元二次方程y 2-4y-3=0配方后可化为( ) A. (y-2)2=7 B. (y+2)2=7C. (y-2)2=3D. (y+2)2=36、一元二次方程x 2+x-1=0的根是( )A. x =1-B. x =C. x =-1+D. x =试卷第2页,总16页7、方程x 2=4x 的根是( ) A. x =4 B. x =0C. x 1=0,x 2=4D. x 1=0,x 2=-48、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A. 7B. -1C. 7或-1D. -5或39、已知x 、y 都是实数,且(x 2+y 2)(x 2+y 2+2)-3=0,那么x 2+y 2的值是( )A. -3B. 1C. -3或1D. -1或310、一元二次方程x 2+ax+a-1=0的根的情况是( ) A. 有两个相等的实数根 B. 有两个不相等的实数根C. 有实数根D. 没有实数根11、已知关于x 的方程(k-2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是( )A. k >43且k≠2 B. k≥43且k≠2 C. k >34D. k≥3412、已知一元二次方程x 2-4x-5=0的两根x 1、x 2,则x 12-4x 1+x 1x 2=( )A. 0B. 1C. 2D. -113、已知多项式x 2+2y 2-4x+4y+10,其中x ,y 为任意实数,那么当x ,y 分别取何值时,多项式的值达到最小值,最小值为( )A. 2B.C. 4D. 1014、某厂今年3月的产值为40万元,5月上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率为x ,则列出的方程是( )A. 40(1+x)=72B. 40(1+x)+40(1+x)2=72C. 40(1+x)×2=72D. 40(1+x)2=7215、一个长80cm,宽70cm的矩形铁皮,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为3000cm2的无盖长方体盒子,求小正方形边长xcm 时,可根据下列方程()A. (80-x)(70-x)=3000B. (80-2x)(70-2x)=3000C. 80×70-4x2=3000D. 80×70-4x2-(80+70)x=300016、微信红包是沟通人们之间感情的一种方式,已知小明在2016年“元旦节”收到微信红包为300元,2018年为675元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为()A. 300(1+2x)=675B. 300(1+x2)=675C. 300(1+x)2=675D. 300+x2=675二、填空题17、已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=______.18、已知m、n是方程x2+2x﹣2019=0的两个根,则代数式m2+3m+n的值为______.19、三角形的一边是10,另两边是一元二次方程的x2-14x+48=0的两个根,则这个三角形是______三角形.20、一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3596,每件工艺品需降价______元.试卷第4页,总16页21、若方程x 2-4|x|+5=m 有4个互不相等的实数根,则m 应满足______. 三、解答题22、我们知道:x 2-6x =(x 2-6x+9)-9=(x-3)2-9;-x 2+10=-(x 2-10x+25)+25=-(x-5)2+25,这一种方法称为配方法,利用配方法请解以下各题:(1)按上面材料提示的方法填空:a 2-4a =_____=_____.-a 2+12a =_____=_____. (2)探究:当a 取不同的实数时在得到的代数式a 2-4a 的值中是否存在最小值?请说明理由.(3)应用:如图.已知线段AB =6,M 是AB 上的一个动点,设AM =x ,以AM 为一边作正方形AMND ,再以MB 、MN 为一组邻边作长方形MBCN .问:当点M 在AB 上运动时,长方形MBCN 的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.23、因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?24、阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.(1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2=_____,x 3=_____;(2)拓展:用“转化”思想求方程 的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C. 求AP 的长.25、已知关于x 的一元二次方程x 2+mx+m-2=0.(1)求证:无论m 取任何实数,此方程总有两个不相等的实数根;(2)设x 2+mx+m-2=0的两个实数根为x 1,x 2,若y =x 12+x 22+4x 1x 2,求出y 与m的函数试卷第6页,总16页关系式;(3)在(2)的条件下,若-1≤m≤2时,求y 的取值范围.答案:1、答案:B分析:根据一元二次方程的定义逐一进行分析即可求得答案.解答:A.若a=0,则该方程不是一元二次方程,故A选项错误,B.符合一元二次方程的定义,故B选项正确,C.属于分式方程,不符合一元二次方程的定义,故C选项错误,D.整理后方程为:2x+1=0,不符合一元二次方程的定义,故D选项错误,选B.2、答案:D分析:根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分别叫二次项系数,一次项系数,常数项可得答案.解答:一元二次方程整理成一般形式为:x2-2x-1=0,二次项系数、一次项系数、常数项分别是1、-2、-1.选D.3、答案:B分析:将x=0代入关于x的一元二次方程(m-3)x2+3x+m2-9=0,列出关于m的方程,再根据二次项系数m-3≠0,继而求得m的值即可.解答:把x=0代入方程(m-3)x2+3x+m2-9=0中,得m2-9=0,解得m=-3或3,当m=3时,原方程二次项系数m-3=0,舍去,选B.4、答案:A分析:把后面一个方程中的x+1看作整体,相当于前面一个方程中的x进行求解即可.解答:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),试卷第8页,总16页∴方程a(x+m+1)2+b =0变形为a[(x+1)+m]2+b=0,即此方程中x+1=-2或x+1=1,所以x 1=-3,x 2=0, 选A. 5、答案:A分析:先表示得到 ,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 .解答:解: , , . 选A. 6、D分析:先计算判别式的值,然后根据判别式的意义可判断方程根的情况. 解答:解: △ , 方程有两个不相等的两个实数根,即. 选D.7、答案:C分析:根据一元二次方程的解法进行求解即可. 解答:x²=4x ∴x²-4x=0 x(x-4)=0, 解得x 1=0,x 2=4。
故答案选C.8、答案:A分析:将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.解答:∵(x2-x)2-4(x2-x)-12=0,∴(x2-x+2)(x2-x-6)=0,∴x2-x+2=0或x2-x-6=0,∴x2-x=-2或x2-x=6;当x2-x=-2时,x2-x+2=0,∵b2-4ac=1-4×1×2=-7<0,∴此方程无实数解;当x2-x=6时,x2-x+1=7,选A.9、答案:B分析:本题考查了代数式求值。
解答:∵(x2+y2)(x2+y2+2)-3=0,∴(x2+y2)2+2(x2+y2)-3=0,解得:x2+y2=-3或x2+y2=1∵x2+y2>0∴x2+y2=1选B.10、答案:C分析:先求出其判别式,然后根据判别式的正负情况即可作出判断.试卷第10页,总16页解答:∵△=a 2-4×1×(a-1)=a 2-4a+4=(a-2)2≥0, ∴一元二次方程x 2+ax+a-1=0有实数根,选C. 11、答案:D分析:分类讨论:当k-2=0,解k=2,原方程为一元一次方程,有一个实数根;当k-2≠0,即k≠2,当△=(2k+1)2-4(k-2)2≥0方程有实数根,然后综合两种情况得到k 的取值范围.解答:当k-2=0,即k =2时,原方程为5x+1=0,解得:x =-15, ∴k =2符合题意;当k-2≠0,即k≠2时,△=(2k+1)2-4×1×(k-2)2=20k-15≥0, 解得:k≥34且k≠2, 综上所述:k≥34, 选D. 12、答案:A分析:根据根与系数的关系得到x 1x 2=-5,根据方程根的定义可得x 12-4x 1=5,然后利用整体代入的方法计算即可.解答:∵x 1,x 2是一元二次方程x 2-4x-5=0的根,∴x 12-4x 1=5,x 1x 2=-5,∴x 12-4x 1+x 1x 2=5-5=0,选A. 13、答案:C分析:此题主要考查了完全平方公式的因式分解,解题关键是先对式子拆分后分组分解因式,构成完全平方公式,然后再根据非负数的性质可求最小值.解答:根据完全平方公式进行因式分解为:x2+2y2-4x+4y+10= x2-4x+4+2y2+4y+2+4= x2-4x+4+2(y2+2y+1)+4=(x-2)2+2(y+1)2+4;然后根据非负数的性质可知(x-2)2+2(y+1)2+4≥4,因此最小值为4.选C.14、答案:D分析:可先表示出4月份的产值,那么4月份的产量×(1+增长率)=5月份的产值,把相应数值代入即可.解答:4月份的产量为40×(1+x),5月份的产量在4月份产量的基础上增长x,为40×(1+x)×(1+x),则列出的方程是40(1+x)2=72.选D.15、答案:B分析:根据题意可知裁剪后的底面的长为(80-2x)cm,宽为(70-2x)cm,根据底面积为3000cm2,即可得到相应的方程.解答:由题意可得,(80-2x)(70-2x)=3000,选B.16、答案:C分析:根据题意得2017年收到的微信红包为300(1+x)元,2018年收到的微信红包为300(1+x)(1+x)元,进而可列出方程.解答:这两年小明收到的微信红包的年平均增长率为x,由题意得:300(1+x)2=675,选C.二、填空题17、答案:-1分析:本题考查了一元二次方程的定义。