初2016级七下数学竞赛选拔试题

合集下载

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。

答案:±612. 一个数的立方是27,这个数是____。

答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。

答案:1214. 一个数的绝对值是7,这个数是____。

答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。

答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。

中学16—17学年下学期七年级学科竞赛数学试题(2)(附答案)

中学16—17学年下学期七年级学科竞赛数学试题(2)(附答案)

初一数学竞赛试题一.选择题(共12小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.3.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个4.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个5.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠36.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+287.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个8.观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.19.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.2111.已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.512.下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个二.填空题(共6小题)13.如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是时分.14.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.16.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.17.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.三.解答题(共6小题)19.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.20.解方程组.21.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.22.先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.23.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.24.“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.参考答案与试题解析一.选择题(共12小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.【分析】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.【解答】解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.3.(2013春•太原月考)将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【分析】由平行线的性质与互余的关系,即可求得:∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;又由等量代换,求得∠1+∠3=90°.【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选A.【点评】此题考查了平行线的性质.注意掌握:两直线平行,同位角相等与两直线平行,同旁内角互补以及两直线平行,内错角相等定理的应用.4.(2008•西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.5.(2013秋•嘉峪关校级期末)已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠3【分析】根据1°=60′把∠1=17°18′化成度数再进行解答即可.【解答】解:∵1°=60′,∴18′=()°=0.3°,∴∠1=17°18′=17.3°,∴B正确.故选B.【点评】此题比较简单,解答此题的关键是熟知1°=60′.6.(2014秋•青岛期末)古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+28【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:本题中的总体是指这批日光灯管的全体的使用寿命,样本容量是30,所以①④不正确.个体是指每只日光灯管的使用寿命,样本是指从中抽取的30只日光灯管的使用寿命,所以②和③正确.故选B【点评】本题考查的是确定总体、个体、样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.(2012•湛江模拟)观察下列各式:31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…用你发现的规律判断32004的末位数字是()A.3 B.9 C.7 D.1【分析】根据给出的规律,3n的个位数字4个循环一次,用2005去除以4,看余数是几,再确定个位数字.【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…,∴34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32004=3501×4的个位数字与与34的个位数字相同,应为1.故选D.【点评】本题考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2007•佛山)如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.【点评】主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.10.(2011•自贡)李强同学用棱长为l的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A.37 B.33 C.24 D.21【分析】此题可根据表面积的计算分层计算得出红色部分的面积再相加.【解答】解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5;第二层露出的表面积为:1×1×6×4﹣1×1×13=11;第,三层露出的表面积为:1×1×6×9﹣1×1×37=17.所以红色部分的面积为:5+11+17=33.故选B.【点评】此题考查的知识点是几何体的表面积,关键是在计算表面积时减去不露的或重叠的面积.11.(2016秋•乌拉特前旗期末)已知2x6y2和﹣是同类项,那么2m+n的值是()A.2 B.4 C.6 D.5【分析】依据同类项的蒂尼可知3m=6,n=2,从而得到m=2,然后代入计算即可.【解答】解:∵2x6y2和﹣是同类项,∴3m=6,n=2.∴m=2.将m=2,n=2代入得:原式=2×2+2=6.故选:C.【点评】本题主要考查的是同类项的定义,由同类项的定义得到3m=6,n=2是解题的关键.12.(2013秋•滨海县校级期中)下列去括号错误的共有()①a+b+c=ab+c;②a﹣(b+c﹣d)=a﹣b﹣c+d;③a+2(b﹣c)=a+2b﹣c ④a2﹣[(﹣a+b)]=a2﹣a+b.A.1个B.2个C.3个D.4个【分析】根据去括号法则,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号,对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:①a+b+c=a+b+c,故本选项错误;②a﹣(b+c﹣d)=a﹣b﹣c+d,故本选项正确;③a+2(b﹣c)=a+2b﹣2c,故本选项错误;④a2﹣[(﹣a+b)]=a2+a﹣b,故本选项错误.综上,①③④错误,共3个.故选C.【点评】本题考查了去括号与添括号的知识,注意去括号法则的熟练掌握.二.填空题(共6小题)13.(2008•资阳)如图,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置,根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是9时12分.【分析】方法一:结合图形,利用钟表表盘的特征解答.注意要先确定12点或6点的整点位置,才能解答.方法二:根据时针一小时走5个小格,分针一小时走60小格,可知时针绕1格,分针绕了12格,分针逆时针数12小格即为12点的位置,然后读出时间即可.【解答】解:方法一:本题没有确定12点或6点的整点位置,需要先确定,才能解题,由图知:时针转动了1小格,又每一小格所对角的度数为6°,即时针转动了6°,由分针每转动1°,时针转动()°,知,分针转动了6°÷=72°,又由每一大格所对角的度数为30°,故分针转了两大格,两小格,从而确定12点位置,由此知时针所指的位置在9时过一小格,故可知所显示的时刻是9时,分针转动了72°÷6°=12小格,每小格一分,故分针显示为12分.∴该钟面所显示的时刻是9时12分;方法二:由图可知,时针过1个大格线,走过×60=12分钟,所以,分针逆时针数12小格即为12点的位置,所以,该钟面所显示的时刻是9时12分.【点评】本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动()°,逆过来同理.14.(2011•铜仁地区)观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.15.(2016秋•郾城区期末)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.16.(2011•曲靖)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.【点评】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.17.(2015•滨州)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【分析】可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.【点评】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.(1)把求等式中常数的问题可转化为解三元一次方程组为以后待定系数法求二次函数解析式奠定基础.(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中优越性.18.(2016春•耒阳市校级期末)若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3.【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.【点评】本题主要考查了二元一次方程组的定义,利用它的定义即可求出代数式的解.三.解答题(共6小题)19.(2017春•杭州月考)已知关于x,y的方程组和的解相同,求(2a ﹣b)2的值.【分析】将两方程组中的第一个方程联立求出x与y的值,将第二个方程联立,把x与y 的值代入求出a与b的值,进而求出所求式子的值.【解答】解:由题意得:,解得:,代入,解得:,则(2a﹣b)2=[2×﹣(﹣)]2=4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.也考查了解二元一次方程组以及代数式求值.20.(2017•津市市校级模拟)解方程组.【分析】根据代入消元法,可得答案.【解答】解:方程组化简,得,把②代入①,得﹣2x+3(﹣8+2x)=4,解得x=7,把x=7代入②,得y=﹣8+2×7=6,方程组的解是.【点评】本题考查了解方程组,利用代入消元法是解题关键.21.(2012•凤阳县校级模拟)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.22.(2014秋•金昌期中)先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入2A﹣B中去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=﹣x2+5x+4﹣5x+4﹣2x2=﹣3x2+8,当x=﹣2时,原式=﹣12+8=﹣4;(2)∵A=x2+5x,B=3x2+2x﹣6,∴2A﹣B=2x2+10x﹣3x2﹣2x+6=﹣x2+8x+6,当x=﹣3时,原式=﹣9﹣24+6=﹣27.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2014春•东昌府区期中)(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.【分析】(1)根据邻补角的和等于180°求出∠1的度数,然后求出∠3,再根据对顶角相等解答;(2)利用角平分线及比例式求出角的关系,利用平角是180°,求出∠BOE=∠DOE=30°,OF平分∠COE得到∠EOF=75°,求出∠BOF=45°,根据邻补角的和等于180°求出∠AOF【解答】解:(1)如图,∵∠2=155°,∴∠1=180°﹣∠2=180°﹣155°=25°,∴∠3=2∠1=2×25°=50°,∵∠3=∠4,(对顶角相等)∴∠4=50°,(2)∵∠AOD:∠BOE=4:1,∴∠AOD=4∠BOE,∵OE平分∠BOD,∴∠D0E=∠EOB,∴∠AOD+∠DOE+∠BOE=180°,∴6∠BOE=180°,∴∠BOE=∠DOE=30°,∴∠COE=180°﹣30°=150°,∵OF平分∠COE,∴∠EOF=75°,∴∠BOF=∠EOF﹣∠BOE=75°﹣30°=45°,∠AOF=180°﹣45°=135°.【点评】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义,准确识图并熟记性质与概念是解题的关键.24.(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。

七年级下数学竞赛试卷

七年级下数学竞赛试卷

1. 下列各数中,有理数是()A. √16B. √-9C. √0.81D. √22. 下列运算正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)(a - b) = a² - b²D. (a + b)(a + b) = a² + b²3. 已知方程x² - 5x + 6 = 0,下列解法正确的是()A. 因式分解法B. 配方法C. 求根公式法D. 直接开平方4. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形5. 已知一次函数 y = kx + b 的图象经过点 (1, 2),则下列结论正确的是()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 06. 下列各式中,完全平方公式正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²7. 已知一元二次方程x² - 3x - 4 = 0,下列解法正确的是()A. 因式分解法B. 配方法C. 求根公式法D. 直接开平方8. 下列图形中,是中心对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形9. 已知一次函数 y = kx + b 的图象经过点 (0, 1),则下列结论正确的是()A. k = 1,b = 0B. k = 0,b = 1C. k = 1,b = 1D. k = 0,b = 010. 下列各式中,二次根式正确的是()A. √(-4)B. √(9/4)C. √(4/9)D. √(16/25)11. 计算:(-3)² + (-2)² = _______12. 若a² = 25,则 a = _______13. 下列方程的解为 x = _______x² - 4x + 4 = 014. 下列函数中,是正比例函数的是 y = _______15. 下列各式中,是等差数列的是 1, 3, 5, _______三、解答题(每题10分,共30分)16. 解方程:x² - 6x + 9 = 017. 已知一次函数 y = kx + b 的图象经过点 (2, 3) 和 (4, 7),求该函数的表达式。

2016年度初一年数学竞赛试题及规范标准答案

2016年度初一年数学竞赛试题及规范标准答案

2016年初一年数学竞赛试题(考试时间:120分钟,满分150分) 题号一 二 三 总分1~56~1011 121314(1) (2) 得分 评卷人 复查人一、选择题(共5小题,每小题7分,共35分.) 1.2016201620162016(2016)+-⨯-÷-=( )A. 2016;B. -2016;C. 4032;D. 6048;2.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少。

若设篮球有x 个,排球有y 个,则根据题意得到的方程组是( )A. 2332x y x y =-⎧⎨=⎩B.2332x y x y =+⎧⎨=⎩ C. 2323x y x y =-⎧⎨=⎩ D. 2323x y x y =+⎧⎨=⎩3.如图,1l ∥2l ,下列式子中,值等于180º的是( ) A.α+β+r B. α+β-r C. -α+β+r D. α-β+r第3题αrl 2l 1β第4题学校: 姓名: 参赛号: 考室:.....................密.....................封.....................装.....................订......................线.......................4.如图,在四边形ABCD中,AB=3,BC=4,CD=9,AD=a,则()A.a≥16;B.a<2;C.2<a<16;D.a=16;5.某个货场有2016辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的5辆车装货总数为43箱,为满足上述要求,至少应该有货物的箱数是( ).A.17286 B.17295 C.17329 D.17338二、填空题(共5小题,每小题7分,共35分.)6.计算:()()()232016121122411154⎡⎤⎛⎫-⨯---÷--⎢⎥⎪⎝⎭⎢⎥⎣⎦⎛⎫-÷-⨯⎪⎝⎭=。

七年级下数学竞赛试题【精编】

七年级下数学竞赛试题【精编】

OE D B A CD BO P A C 七年级第二学期竞赛试卷数 学 试 卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将此选项的代号填入题后的括号内,每小题3分,共24分)一、选择题(每小题3分,共24分) 1.下列运算中,正确的个数是 ( ) (1)5322x x x =+ (2)()632x x = (3)51230=-⨯(4)835=+-- (5)12121=⨯÷A . 1个B . 2个C . 3个D .4个2.温家宝总理在2009年的《政府工作报告》中指出:为应对国际金融危机,实施总额4万亿元的投资计划,刺激经济增长,4万亿元用科学计数法表示为 ( ) A .8410⨯元B .11410⨯元C .12410⨯元D .13410⨯元3.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC, ∠EOC=110°,则∠BOD 的度数是 ( ) A .25° B .35° C .45° D .55°(第3题图) (第4题图) (第5题图) 4.如图,AB CD ∥,AD 和BC 相交于点O ,2580A COD =︒=︒∠,∠,则C ∠= ( )A .65︒B .75︒C .85︒D .105︒5.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于21CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是 ( ) A . SAS B .ASA C .AASD .SSSA B O C D6.三根长度分别为3cm ,7cm ,4cm 的木棒能围成三角形的事件是 ( ) A .必然事件 B .不可能事件 C .不确定事件 D .以上说法都不对 7.用若干个小立方块搭一个几何体,使得它的左视图 和俯视图如图所示,则所搭成的几何体中小立方块 最多有 ( ) A .15个 B .14个C .13个D .12个 (第7题图) 8.如图, 小虎在篮球场上玩, 从点O 出发, 沿着O →A →B →O 的路径匀速跑动,能近似刻画小虎所在位置距出发点O 的距离S 与时间t 之间的函数关系的大致图象是( ) (第8题图)二、选择题(每小题3分,满分24分)9.如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 .(第9题图) (第12题图) (第16题图)10. 一个等腰三角形的两边长分别是2cm 、5cm, 则它的周长为 cm.. 11. 若0164)5(2=-+-y x , 则2010)(x y -= .12.若实数a b 、在数轴上对应的点的位置如图所示,则化简a b b a ++-的结果是 .13. 某品牌的复读机每台进价是400元, 售价为480元, “五·一”期间搞活动打9折促销, 则销售1台复读机的利润是 元. 14.设1=-b a ,2=-c b ,则=---++bc ac ab c b a 222. 15.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.16.为了向建国六十周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级某班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.某同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC =20cm ,宽AB =16cm 的矩形纸片ABCD ,②将纸片沿着左视图俯视图(1) (2) (3) (4) (5) ……直线AE 折叠,点D 恰好落在BC 边上的F 处,…… 请你根据①②步骤找出图中∠FEC 的余角 .三、(第17题8分) 17.⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211 .四、(第18题8分)18.小明解方程512+x -1=2ax +,去分母时方程左边的1没有乘以10,由此求得方程的解为4=x ,试求a 的值,并正确求出方程的解.五、(第19题8分)19.某中学新建游泳池开启使用, 先用一天时间匀速将空游泳池注满, 经两天的游泳开放后,同速将水放光; 然后开始同速注水, 注满一半时, 将注水速度加倍直到注满. 请在下图中用图表示游泳池中水量随时间的变化关系.(第19题图)六、(第20题12分)20. 在33⨯的正方形格点图中,有格点△ABC 和△DEF,且△ABC 和△DEF 关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF .七、(第21题8分)21.一个单项式加上多项式 52)1(92---x x 后等于一个整式的平方, 试求所有这样的单项式.八、(第22题8分)22.如图, △ABE 和△BCD 都是等边三角形,且A 、B 、C 三点共线,那么线段A D 与EC 有何数量关系?请说明理由.(第22题图)七年级第二学期竞赛试卷数学试卷参考答案一、1.A 2.C 3.D 4.B 5.D6.B7.B 8.B二、9.50° 10.12 11.1 12.2a - 13.32 14. 7 15. 21n n -+16.∠CFE 、∠BAF三、17.1.1(或1011) 四、18.a =-53, 5-=x五、19.(第19题答图)六、20.(第20题答图)七、21.答案: 216x , 或8x , 或32x , 或649. ()()()222291251691620452;x x x x x x ---+=+-+=- ()()()()22222291258912432;912532912432;x x x x x x x x x x x x ---+=-+=----+=++=+()222641001091259203;993x x x x x ⎫⎛---+=-+=- ⎪⎝⎭所求的单项式为216x , 或8x , 或32x , 或649, 再无其他解答. 八、22. 解: A D=EC∵△ABC 和△BCD 都是等边三角形. ∴AB=EB,DB=BC,∠ABE=∠DBC=60°, ∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC -------------------------------------------5分在△ABD 和△EBC 中 AB=EB, ∠ABD=∠EBC DB=BC∴△ABD ≌△EBC (SAS )------------------------------------------9分 ∴A D=EC-------------------------------------------10分BC(此题只要学生说理正确就给分)。

七年级下学期数学竞赛考试试题

七年级下学期数学竞赛考试试题

七年级数学竞赛试题一、选择题(每小题3分,共36分)1、现有两根木条,长度分别为30cm 、50cm ,若要做一个三角形板,要求不剩余木料,则可以选择下列哪根木条( )A 、20cmB 、30cmC 、80cmD 、90cm2、已知a >b ,则下列不等式①-4a >-4b ② a c >bc ③4-a >4-b④a-4>b-4 中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个3、如图,直线A B ∥CD ,直线EF 分别与AB 、CDA 、∠1+∠2-∠3=1800B 、∠1-∠2+∠3=1800C 、∠3+∠2-∠1=1800D 、∠1+∠2+∠3=1800 4、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个5、从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选一种正多边形镶嵌,能够拼成一个平面图形的共有( )A 、3种B 、 4种C 、 5种D 、 6种6、三角形A ’B ’C ’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A ’(1,-1),则点B (1,1)的对应点B ’、点C (-1,4)的对应点C ’的坐标分别为( )A 、(2,2)(3,4)B 、(3,4)(1,7)C 、(-2,2)(1,7)D 、(3,4)(2,-2)7、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、178、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<69、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%10、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题11、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3112、方程198919901989...433221=⨯++⨯+⨯+⨯xx x x 的解是( )A 、1989B 、1990C 、1991D 、1992二、填空题(每小题3分,共63分)13、如图,周长为68cm 的长方形ABCD 被分成7个相同的矩形,则长方形ABCD 的面积是 .14、已知线段AB=3,AB ∥x 轴,若点A 的坐标为(-1,2),则点B 的坐标 是 _。

2016年世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛七年级试题A卷

2016年世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛七年级试题A卷




∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕
参赛证号
绝密★启用前
世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛
选手须知:
(2016 年 12 月)
1、本卷共三部分,第一部分:填空题,共计 64 分;第二部分:计算题,共计 20 分;第三部分:
解答题,共计 66 分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
题号



总分
核分员
得分
七年级(A 卷)
(本试卷满分 150 分 ,考试时间 120 分钟 )
一、填空题(共 8 题,每题 8 分,共计 64 分)


ab 0
c
图1
4、定义 a△b=ab+2a+b,若 5△x=x△5,则 x 的值是___
图2 __ 。
abc 5 、 三 个 有 理 数 a, b, c 之 积 是 正 数 , 其 和 是 负 数 , 当 x = + + 时 , 则
abc
x101 − 2016x + 1=

6、A、B、C、D、E、F 六足球队进行单循环比赛,当比赛到某一天时,统计出 A、B、C、D、E 五队
得分 评卷人
1、当 x=-3 时, ax3 − bx + 3 的值为 5,则当 x=3 时, ax3 − bx + 3 的值为

2、把 14 个棱长为 2 的正方体,在地面上堆叠成如图 1 所示的立体,然后将露出的表面部分染成绿

七年级下数学竞赛试题

七年级下数学竞赛试题

七年级下数学竞赛试题一、选择题(每题3分,共15分)1. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项2. 下列哪个代数式不能表示为两个数的平方和:A. 5B. 6C. 7D. 83. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是:A. 5B. 6C. 7D. 84. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是:A. 144B. 89C. 233D. 14405. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π二、填空题(每题2分,共10分)6. 如果一个数的立方等于它本身,那么这个数是______。

7. 一个数的绝对值是它本身,这个数是______或______。

8. 一个数的相反数是它本身,这个数是______。

9. 如果一个数的平方根是2,那么这个数是______。

10. 一个数的立方根是3,那么这个数是______。

三、解答题(每题5分,共20分)11. 证明勾股定理:在一个直角三角形中,斜边的平方等于两直角边的平方和。

12. 解方程:\( x^2 - 5x + 6 = 0 \)。

13. 证明:如果一个数的平方和它的立方相等,那么这个数只能是0或1。

14. 计算:\( \sqrt{81} + \frac{1}{2} - \frac{2}{3} \)。

四、应用题(每题10分,共20分)15. 一个农场主有一块长为20米,宽为10米的矩形土地。

他想在这块土地上种植果树,每棵果树需要2平方米的空间。

请问他最多可以种植多少棵果树?16. 一个班级有40名学生,其中1/3的学生参加了数学竞赛,1/4的学生参加了科学竞赛。

如果参加数学竞赛的学生中有一半也参加了科学竞赛,那么至少有多少名学生参加了至少一项竞赛?五、开放性问题(每题15分,共30分)17. 假设你有一个无限长的直尺和一个圆规,你能用它们来构造一个正十七边形吗?如果可以,请描述你的构造方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F E D 石室联中(西区)初2016级七下数学竞赛选拔试题
合卷100分(时间1小时)
班级___________,姓名____________ 命题人:胡涛 一、选择题(每题4分,共20分)
1、
()1997
1997+-⨯--⨯+⨯的值的负倒数是( )
A .8372
B .2429
C .2924
D .7283
2、有理数a ,b ,c ,d 满足a<b<0<c<d ,且d |a |c |b |<<<,则a+b+c+d 的值( )
A .大于0
B .等于0
C .小于0
D .与0的大小关系不确定 3、如图,数轴上的六个点满足AB=BC=CD=DE=EF ,
则在点B 、C 、D 、E 对应的数中,最接近-10的点
是( ) A .点B B .点C C .点D D .点E
4、已知∠A 与∠B 之和的补角等于∠A 与∠B 之差的余角,则∠B=( ) A .75° B .60° C .45° D .30°
5、观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),……问2005在第( )组。

A .44
B .45
C .46
D .无法确定 二、填空题(每题5分,共25分) 6、化简:
()()()()121997231996121996231997a a a a a a a a a a a a ++++++-++++++= _____.
7、若设x ,y 为实数,代数式2254824x y xy x +-++的最小值为__________.
8、133=-x x ,则1999731292
34+--+x x x x =______________.
9、如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是___________.
10、图中,阴影面积是50平方厘米,四边形ABCD 与DEFG 都是正方形,那么AB 长____厘米. 三、解答题(共55分)
11、已知m ,n 满足382014m
=,532014n
=,试求代数式11
m n
+的值。

(12分)
E C B -13
12、已知2
10m m --=,
试求代数①2
21m m +(4分);②1
32
42+-m m m (6分);③84
17m m -+(8分)的值
13、某中学租用两辆小轿车(设速度相同)同时送1名带队老师及7名七年级的学生到某地参加数学竞赛,每辆车限坐4人(不包括司机).其中一辆小轿车在距离考场15km 的地方出现故障,此时距离竞赛开始还有42分钟,唯一可利用的交通工具是另一辆小轿车,且这辆车的平均速度是60km/h ,人步行的速度是12km/h (上、下车时间忽略不计).
(1)小明提议:可以让另一辆小轿车先送4名学生走,再返回来接我们.你认为小明的提议合理吗?通过计算说明理由.(4分)
(2)小强提议:让另一辆小轿车先送4名学生走,而其他4名师生同时步行前往,小轿车到达考场之后再返回途中接送其他人.请你求出小轿车在距离考场多远处与另外4名师生相遇?(5分)
(3)按小强的建议这7名学生能在竞赛开始前进入考场吗?为什么?(7分) (4)在现有条件下,是否存在一种运送方案,使老师及7名学生能同时到达考场参加竞赛.若存在,请你求出学生到达考场时,距离竞赛开始还有多长时间;若不存在,请说明理由.(9分)
石室联中(西区)初2016级七下数学竞赛选拔试题答题卡。

相关文档
最新文档