初三数学竞赛试题及答案解析
初三数学趣味竞赛附答案

家(16 )根香蕉?
30分
• 有鸡与兔若干,总头数与总脚数之 比为2 :5,那么鸡和兔的头数之 比为( A )
A 2 :5 B 1 :3 C 3 :1 D 1 :1
第五模块
•能力展示
010101010101010101010101010101010101010101010101010101010101
7天
• 4.井深8米,一只青蛙从井底往上 跳,每次跳3米,又滑下2米,那么 它要跳几次才能到达井口? (说明理由)
6次
• 5.王老太上集市上去卖鸡蛋,第一 个人买走篮子鸡蛋的一半又一个, 第二个人买走剩下一半又一个,这 时篮子里还剩一个鸡蛋,请问王老
太共卖出(10个)个鸡蛋。
6.谜底为数学名词的谜语:失去联络 平行
2000π,
20分
甲乙丙丁四位同学在篮球比赛中犯规 的次数各不相同,A、B、C、D四位 裁判有一段对话;
A说:“甲犯规4次,乙犯规3次”; B说:“丙犯规4次,乙犯规2次”; C说:“丁犯规2次,丙犯规3次”; D说:“丁犯规1次,乙犯规3次” 记录员说:四位裁判每人只说对了一半。
甲犯规( 4 )次。
• 圆柱体的侧面展开图在满足 (长和宽相等)条件时是正方形。
二号题
二号题
• 有一组数:1,4,9,16,25,……,请观 察这组数的构成规律,用你发现的规律
• 确定第8个数为( 64 ),
•
第n个数为( n2 ).
• 三号题(8-2)
9-1准备
• 判断:
初三奥数竞赛试题及答案

全国初中数学竞赛试题及参考答案一、 选择题(共5小题,每小题6分,满分30分。
)1、如图,有一块矩形纸片ABCD ,AB =8,AD =6。
将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A 、2B 、4C 、6D 、8答:A解:由折叠过程知,DE =AD =6,∠DAE =∠CEF =45°,所以△CEF 是等腰直角三角形,且EC =8-6=2,所以,S △CEF =22、若M =136498322++-+-y x y xy x (x ,y 是实数),则M 的值一定是( ) A 、正数 B 、负数 C 、零 D 、整数解:因为M =136498322++-+-y x y xy x =222)3()2()2(2++-+-y x y x ≥0 且y x 2-,2-x ,3+y 这三个数不能同时为0,所以M ≥03、已知点I 是锐角三角形ABC 的内心,A 1,B 1,C 1分别是 点I 关于边BC ,CA ,AB 的对称点。
若点B 在△A 1B 1C 1的外接 圆上,则∠ABC 等于( )A 、30°B 、45°C 、60°D 、90° 答:C 解:因为IA 1=IB 1=IC 1=2r (r 为△ABC 的内切圆半径),所以点I 同时是△A 1B 1C 1的外接圆的圆心,设IA 1与BC 的交点为D ,则IB =IA 1=2ID , 所以∠IBD =30°,同理,∠IBA =30°,于是,∠ABC =60°4、设A =)41001441431(48222-++-+-⨯ ,则与A 最接近的正整数为( ) A 、18 B 、20 C 、24 D 、25答:D解:对于正整数m n≥3,有)2121(414n 12+--=-n n ,所以A =)1021101110019914131211(12)10216151()981211(4148----+++⨯=⎥⎦⎤⎢⎣⎡+++-+++⨯=)102110111001991(1225+++⨯-EB 1C 1因为)102110111001991(12+++⨯<99412⨯<21,所以与A 最接近的正整数为25。
全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知m 、n 是两个连续正整数,m<n ,且a=mn ,设x=,y=.下列说法正确的是( ).A .x 为奇数,y 为偶数B .x 为偶数,y 为奇数C .x 、y 都为奇数D .x 、y 都为偶数2.设a 、b 、c 和S 分别为三角形的三边长和面积,关于x 的方程b 2x 2+(b 2+c 2-a 2)x+c 2=0的判别式为Δ.则Δ与S 的大小关系为( ).A .Δ=16S 2B .Δ=-16S 2C .Δ=16SD .Δ=-16S3..设a 为的小数部分,b 为的小数部分.则的值为( ). A .+-1B .-+1C .--1D .++14.如图,D 、E 分别为△ABC 的边AB 、AC 上的点,△ACD 与△BCD 的周长相等,△ABE 与△CBE 的周长相等,记△ABC 的面积为S.若∠ACB=90°,则AD·CE 与S 的大小关系为( ).A 、S=AD·CEB 、S>AD·CEC 、S<AD·CED 、无法确定5.如图,在△ABC 中,AB=8,BC=7,AC=6,延长边BC 到点P ,使得△PAB 与△PCA 相似.则PC 的长是( ).A .7B .8C .9D .106.如图,以PQ=2r(r ∈Q)为直径的圆与一个以R(R ∈Q)为半径的圆相切于点P.正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r="2"B.R=4,r=3/2C.R=4,r="2"D.R=5,r=3/2二、填空题1.已知方程x 2+x-1=0的两个根为α、β.则的值为 .2.把1,2,…,2 008个正整数分成1 004组:a 1,b 1;a 2,b 2;…;a 1 004,b 1 004,且满足a 1+b 1=a 2+b 2=…=a 1004+b 1004.对于所有的i(i=1,2,…,1 004),a i b i 的最大值为 .3.AD、BE、CF为△ABC的内角平分线.若BD+BF=CD+CE=AE+AF,则∠BAC的度数为 .4.下列四个命题:①一组对边相等且一组对角相等的四边形是平行四边形; ②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所联结的对角线被另一条对角线平分的四边形是平行四边形;④一组对角相等且这一组对角的顶点所联结的对角线平分另一条对角线的四边形是平行四边形.其中,正确命题的序号是 .三、解答题1.(20分)已知△ABC中,∠A>∠B>∠C,且∠A=2∠B.若三角形的三边长为整数,面积也为整数,求△ABC面积的最小值.2.(25分)已知G是△ABC内任一点,BG、CG分别交AC、AB于点E、F.求使不等式S△BGF ·S△CGE≤kS2△ABC恒成立的k的最小值.3.(25分)已知(x+)(y+)=1.求证:x+y=0.全国初三初中数学竞赛测试答案及解析一、选择题1.已知m、n是两个连续正整数,m<n,且a=mn,设x=,y=.下列说法正确的是( ).A.x为奇数,y为偶数B.x为偶数,y为奇数C.x、y都为奇数D.x、y都为偶数【答案】C【解析】考查知识点:两个连续正整数之间的关系,平方根的意义,奇数和偶数的概念。
历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A. m(1+a%)(1-b%)元B. m?a%(1-b%)元C. m(1+a%)b%元D. m(1+a%b%)元解:选C。
设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。
由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。
解:出发1小时后,①、②、③号艇与④号艇的距离分别为各艇追上④号艇的时间为对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。
解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则由①②得,代入③得:∴,故n的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台解:设第一层有客房间,则第二层有间,由题可得由①得:,即由②得:,即∴原不等式组的解集为∴整数的值为。
答:一层有客房10间。
解:设劳动竞赛前每人一天做个零件由题意解得∵是整数∴=16(16+37)÷16≈3.3故改进技术后的生产效率是劳动竞赛前的3.3倍。
初中数学竞赛专项训练(2)(方程应用)一、选择题:答:D。
解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:,化简得,解得不合题意舍去)。
应选D。
答:C。
解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为所以,生产第9档次产品获利润最大,每天获利864元。
答:C。
解:若这商品原来进价为每件a元,提价后的利润率为,则解这个方程组,得,即提价后的利润率为16%。
答:B。
解:设甲乙合作用天完成。
由题意:,解得。
故选B。
答:A。
解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。
初三奥数竞赛数学试卷答案

一、选择题1. 下列各数中,有理数是()A. √2B. πC. -√3D. 0.1010010001…答案:D解析:有理数是可以表示为两个整数之比的数,其中分母不为零。
选项D可以表示为101/999,是有理数。
2. 若a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a × 2 > b × 2D. a ÷ 2 < b ÷ 2答案:C解析:根据不等式的性质,当两边同时乘以一个正数时,不等号的方向不变。
因此,选项C正确。
3. 一个等差数列的前三项分别是1,3,5,那么这个数列的第10项是()A. 15B. 17C. 19D. 21答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d,其中a1是首项,d是公差,n 是项数。
根据题意,首项a1 = 1,公差d = 3 - 1 = 2,代入公式计算第10项,得到a10 = 1 + (10 - 1) × 2 = 19。
4. 一个正方形的对角线长为10cm,那么这个正方形的面积是()A. 50cm²B. 100cm²C. 25cm²D. 50√2cm²答案:B解析:正方形的对角线等于边长的√2倍,所以边长为10/√2 = 5√2cm。
正方形的面积等于边长的平方,即(5√2)² = 25 × 2 = 50cm²。
5. 一个圆的半径增加了20%,那么这个圆的面积增加了()A. 20%B. 44%C. 40%D. 36%答案:B解析:圆的面积公式为S = πr²,其中r是半径。
半径增加了20%,则新的半径为1.2r。
新的面积S' = π(1.2r)² = 1.44πr²,面积增加了(1.44πr² - πr²) / πr² = 0.44,即44%。
初三奥数竞赛试题

初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A, B, C, D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1•设a「2 3 2 - ;3,则a •1的整数部分为()aA. 1 B . 2 C . 3 D . 4【答案】B【解答】由a2 =2 •、、3 2 2 --3 ■■■:. 2- -3• 2 -3 = 6,知,6。
(a - )2=6 2」=8 丄,4 :. (a 丄)2:: 9。
a 6 6 a1因此,a •丄的整数部分为2a(注:a「十■严二4一云3. • 4二「3 = 3 1「3 "=v2 v2 v2 v22.方程2x•(士)一3的所有实数根之和为()A. 1 B . 3 C . 5 D . 7 【答案】A【解答】方程2x (」)2=3化为2x(x-2)2 x2 =3(x-2)2。
x —2即 x3 -5x2 10x -6 =0,(x -1)(x2 -4x 6)=0。
解得x =1 o经检验X =1是原方程的根。
• • •原方程所有实数根之和为1 o3.如图,A、B、C三点均在二次函数y=x2的图像上,M为线段AC 的中点,BM // y轴,且MB =2。
设A、C两点的横坐标分别为t、t2仁2丸),则t2 7的值为()A. 3 B . 2、入 C . -2.2 D . 2.2【答案】D【解答】依题意线段AC的中点M的坐标为厂)。
-6)于是a •1a2 2知B点坐标为(t1匕上色一2)222 2 由点B在抛物线y =x2上,知」_2=(」)2。
2 2整理,得 2t"・2t; -8 • 2t i t2 t f,即仇-t i)2 =8。
结合t2 - t i,得t2-1| = 2'、2 o由 BM // y 轴,且BM =2 ,4.如图,在RtAABC中,ABC =90,D为线段BC的中点,E在线段AB内,CE与AD 交于点若AE 二EF ,且AC = 7,FC = 3,贝U cs • ACB 的值为(A. 1 D .迈14 7【答案】B【解答】如图,过B作BK // AD与CE的延长线交于点KoEK =EB o又由D为BC中点,得F为KC中点。
全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。
初三全国数学竞赛试题及答案

全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a bb c++的值为( ). (A )1121 (B )2111 (C )11021 (D )210112.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB=BC=4-CD=则AD 边的长为( ). (A)(B )64(C )64+ (D )622+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444-⎛⎫⎡⎤⎡⎤ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭--=+--k k k k x x (取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).(A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2)(第3题)二、填空题6.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AEAD= .10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan EFPAD BC∠=. (第8题)(第9题)12.如图,抛物线2y ax bx =+(a >0)与双曲线ky x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点). (1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.13.求满足22282p p m m ++=-的所有素数p 和正整数m .14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?全国初中数学竞赛试题参考答案1\解:D 由题设得12012101111110aa b b c b c b +++===+++.2\解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.3\解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE,CF=,DF =,于是 EF =4.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD ==2+4\解:B 由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =, 51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5\解:B 由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-).记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,.令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 6\解:0由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -12=3a 2+6a -12=0. 7\解:15设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,,(千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ①()152a c S -=, ② ()x b c S -=. ③由①②,得30b c S -=(),所以,x =30. 故 3010515t =--=(分).8\解:11133y x =-+如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N . 由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以, 过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,,解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,,故所求直线l 的函数表达式为11133y x =-+.9\解:215- 见题图,设,FC m AF n ==. 因为Rt △AFB ∽Rt △ABC ,所以 2AB AF AC =⋅.又因为 FC =DC =AB ,所以 2()m n n m =+,即 2()10n nm m+-=,解得n m =,或n m =(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF nAD BC FC m ====, 即AEAD.10\解:9 因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足[]012 3 n k +=,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数. 由于[][]2 3 88402 3 92520 ==,,,,,,,, [][]2 3 1025202 3 1127720==,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9. 11\证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分) 连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠,所以,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得EF AHBC AP =, 从而 EF PDBC AP=, 所以 tan PD EFPAD AP BC∠==. …………(20分)12\解:(1)因为点A (1,4)在双曲线ky x=上, 所以k=4. 故双曲线的函数表达式为xy 4=. 设点B (t ,4t),0t <,AB 所在直线的函数表达式为y mx n =+,则有 44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫⎪⎝⎭,故(第11题)()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=,解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-).因为点A ,B 都在抛物线2y ax bx =+(a >0)上,所以4422a b a b +=⎧⎨-=-⎩,,解得13.a b =⎧⎨=⎩, …………(10分)(2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BOCO. 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D , 则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-,2)是CO 的中点,点1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点. (ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-). …………(20分) 13\解:由题设得(21)(4)(2)p p m m +=-+,所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分) (1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>,2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =.所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩, …………(10分)(2)若(2)p m +,令2m kp +=,k 是正整数.当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-,故(1)3k k -<,从而1k =或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,, 这不可能.当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解.综上所述,所求素数p =5,正整数m =9. …………(20分) 14\解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件. …………(5分)另一方面,设12n a a a <<<是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++,33()j k m a a a ++,所以 33()j i a a -.因此,所取的数中任意两数之差都是33的倍数. …………(10分) 设133i i a a d =+,i =1,2,3,…,n .由12333()a a a ++,得12333(33333)a d d ++,所以1333a ,111a ,即1a ≥11. …………(15分)133n n a a d -=≤2010116133-<, 故n d ≤60. 所以,n ≤61.综上所述,n 的最大值为61. …………(20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第7题图)ABCD GFE(第5题图) 全国初中数学竞赛试题一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1、在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪。
刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )A 、36B 、37C 、55D 、902、已知21+=m ,21-=n ,且()()876314722=--+-n n a m m ,则a 的值等于( )A 、5-B 、5C 、9-D 、9 3、ABC Rt ∆的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴。
若斜边上的高为h ,则( )A 、1 hB 、1=hC 、21 hD 、2 h 4、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A 、2004B 、2005C 、2006D 、20075、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QO QP =,则QAQC的值为( ) A 、132- B 、32 C 、23+ D 、23+二、填空题 (共5小题,每小题6分,满分30分)6、已知a ,b ,c 为整数,且2006=+b a ,2005=-a c .若b a ,则c b a ++的最大值为 .7、如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则bc a -的值等于 .8、正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A 、C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上。
9、已知10 a ,且满足183029302301=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+a a a ,则[]a 10的值等于 .([]x 表示不超过x 的最大整数)10、小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11、已知ab x =,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且8≤a ,1312-- x .(1)试写出一个满足条件的x ;(2)求所有满足条件的x .12、设a ,b ,c 为互不相等的实数,且满足关系式: 14162222++=+a a c b ①和542--=a a bc ② 求a 的取值范围。
13、如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:KB CE AC PE ⋅=⋅.14、10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中。
求n的最小值。
全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1、在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪。
刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )A 、36B 、37C 、55D 、90 答案:C解析:因为4和9的最小公倍数为36,553619=+,所以第二次同时经过这两种设施的千米数是在55千米处。
故选C .2、已知21+=m ,21-=n ,且()()876314722=--+-n n a m m ,则a 的值等于( )A 、5-B 、5C 、9-D 、9答案:C解析:由已知可得122=-m m ,122=-n n 又()()876314722=--+-n n a m m 所以()()8737=-+a ,解得9-=a 故选C .3、ABC Rt ∆的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴。
若斜边上的高为h ,则( )A 、1 hB 、1=hC 、21 hD 、2 h 答案:B解析:由已设点A 的坐标为(a ,2a ),点C 的坐标为(c ,2c )(||||a c ),则点B 的坐标为(a -,2a ),由勾股定理,得()()22222a c a c AC -+-=,22222)()(a c a c BC -++=,222AB BC AC =+所以()22222c a c a -=-.由于22c a ,所以122=-c a ,故斜边AB 上高122=-=c a h 故选B .(第5题图)4、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A 、2004B 、2005C 、2006D 、2007 答案:B解析:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加︒360.于是,剪过k 次后,可得(1+k )个多边形,这些多边形的内角和为()︒⨯+3601k .因这(1+k )个多边形中有34个六十二边形,它们的内角和为()︒⨯⨯=︒⨯-⨯180603418026234,其余多边形有()33341-=-+k k (个),而这些多边形的内角和不少于()︒⨯-18033k .所以()()︒⨯-+︒⨯⨯≥︒⨯+1803318060343601k k ,解得2005≥k .当我们按如下方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形。
再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33×58个三角形。
于是共剪了200558333358=⨯++(刀)故选B .5、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QO QP =,则QAQC的值为( ) A 、132- B 、32 C 、23+ D 、23+ 答案:D解析:如图,设⊙O 的半径为r ,m QO =,则m QP =,m r QC +=,m r QA -= 在⊙O 中,根据相交弦定理,得QD QP QC QA ⋅=⋅ 即()()QD m m r m r ⋅=+-所以mm r QD 22-=.连结DO ,由勾股定理,得222QO DO QD +=即 22222m r mm r +=⎪⎪⎭⎫ ⎝⎛-, 解得r m 33=(第7题图)A BD GFE 所以 231313+=-+=-+=mr m r QAQC故选D .二、填空题 (共5小题,每小题6分,满分30分)6、已知a ,b ,c 为整数,且2006=+b a ,2005=-a c .若b a ,则c b a ++的最大值为 .答案:5013.解析:由2006=+b a ,2005=-a c ,得 4011+=++a c b a因为2006=+b a ,b a ,a 为整数,所以,a 的最大值为1002 于是,c b a ++的最大值为5013.7、如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则bc a -的值等于 .答案:320-解析:设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则342=m由ADG ∆∽ABC ∆,可得m xm m x 2323-=,解得()m x 332-= 于是()48328332222-=-=m x ,由题意,28=a ,3=b ,48=c ,所以320-=-bc a8、正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A 、C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上。
答案:104解析:设甲走完x 条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x 米,乙走了x x 3685040046=⨯米.于是()()40014008001368 --+-x x所以,5.135.12 x ≤故13=x ,此时1045013400=⨯=t9、已知10 a ,且满足183029302301=⎥⎦⎤⎢⎣⎡+++⎦⎤⎢⎣⎡++⎦⎤⎢⎣⎡+a a a ,则[]a 10的值等于 .([]x 表示不超过x 的最大整数)答案:6.解析:因为230293023010 +++a a a ,所以⎥⎦⎤⎢⎣⎡+301a ,⎥⎦⎤⎢⎣⎡+302a ,…,⎥⎦⎤⎢⎣⎡+3029a 等于0或1.由题设知,其中有18个等于1,所以03011302301=⎥⎦⎤⎢⎣⎡+==⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+a a a ,1302930133012=⎥⎦⎤⎢⎣⎡+==⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+a a a 所以 130110 +a ,230121 +≤a故193018 a ≤,于是319106a ≤,所以[]610=a . 10、小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .答案:282500解析:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为bcdef a 82.根据题意,有abcdef ⨯81bcdef a 82=.记f e d c b x +⨯+⨯+⨯+⨯=10101010234 于是x a x a +⨯+⨯=+⨯⨯6551010208811081, 解得()a x 712081250-⨯=因为5100 x ≤,所以()5107120812500 a -⨯≤,故7120871128≤a因为a 为整数,所以2=a .于是()825002712081250=⨯-⨯=x 所以,小明家原来的电话号码为282500.三、解答题(共4题,每小题15分,满分60分)11、已知ab x =,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且8≤a ,1312-- x .(1)试写出一个满足条件的x ; (2)求所有满足条件的x .解:(1)21=x 满足条件. ……………5分(2)因为ab x =,a ,b 为互质的正整数,且8≤a ,所以1312--ab, 即()()a b a 1312--当1=a 时,()()113112⨯-⨯- b ,这样的正整数b 不存在当2=a 时,()()213212⨯-⨯- b ,故1=b ,此时21=x当3=a 时,()()313312⨯-⨯- b ,故2=b ,此时32=x当4=a 时,()()413412⨯-⨯- b ,与a 互质的正整数b 不存在 当5=a 时,()()513512⨯-⨯- b ,故3=b ,此时53=x当6=a 时,()()613612⨯-⨯- b ,与a 互质的正整数b 不存在 当7=a 时,()()713712⨯-⨯- b ,故3=b ,4,5此时73=x ,74,75当8=a 时,()()813812⨯-⨯- b ,故5=b ,此时85=x所以,满足条件的所有分数为21,32,53,73,74,75,85.………………15分12、设a ,b ,c 为互不相等的实数,且满足关系式: 14162222++=+a a c b ①和542--=a a bc ② 求a 的取值范围。