七年级数学上册期中测试卷二含解析新版华东师大版

合集下载

华东师大版七年级数学上册 第一、二、三章综合检测题(含解析)

华东师大版七年级数学上册 第一、二、三章综合检测题(含解析)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯华东师大版七年级数学上册 第一、二、三章综合检测题(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(每小题3分,共24分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(嘉兴中考)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( )A .0.35×108B .3.5×107C .3.5×106D .35×105 3.下列各式中,不是同类项的是( )A.12x 2y 和13x 2yB .-ab 和baC .-37abcx 2和-73x 2abc D.25x 2y 和52xy 24.下列各对数中,相等的一对数是( ) A .(-2)3与-23 B .-22与(-2)2 C .-(-3)与-|-3|D.223与232⎪⎭⎫⎝⎛ 5.下列说法中,正确的是( ) A.m 2n4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( ) A .abc B .a +10b +100c C .100a +10b +c D .a +b +c7.有理数a ,b 在数轴上的位置如图所示,则下列各式中错误的是( )A .b<aB .|b|>|a|C .a +b>0D .ab<08.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22 018的个位数字是( )A .2B .4C .6D .8第Ⅱ卷二、填空题(每小题3分,共24分)9.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离是 . 10.若规定a*b =5a +2b -1,则(-4)*6的值为 .11.把多项式3xy 2-12x 2y 2-1-x 3按x 的降幂排列为 .12.若a ,b 互为相反数,c ,d 互为倒数,|m|=2,则a +b4m+m 2-3cd = . 13.若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是 . 14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m +n =-2,mn =-4,则2(mn -3m)-3(2n -mn)的值为 .15.将四个有理数3,4,-6,10(每个数必用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 .16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照下面的规律,摆第(n)图,需用火柴棒的根数为 .三、解答题(要求写出必要的解题过程:共8题,17题-18题各10分,19题-23题每题8分,24题12分,共72分)17.计算:(1)(-2)2-|-7|+3-2×⎪⎭⎫ ⎝⎛-21; (2)-12×⎣⎡⎦⎤-32×⎝⎛⎭⎫-232-2.18.用简便方法计算:(1)15×⎝⎛⎭⎫-34-(-15)×32+15×14; (2)⎝⎛⎭⎫-1112+56-79×(-36)+(-5)×(-1)3.19.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.20.画一条数轴,并在数轴上表示:3.5和它的相反数,-12和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.21.在计算(-5)-(-5)×110÷110×(-5)时,小明的解法如下:解:原式=-5-⎝⎛⎭⎫-12÷⎝⎛⎭⎫-12 (第一步)=-5-1 (第二步)=-4 (第三步)回答:(1)小明的解法是错误的,主要错在第 步,错因是 ;(2)请在下面给出正确的解答过程.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,(1)(2)本周的总生产量是多少辆?(3)若每辆自行车的生产成本为150元,出厂价为每辆280元,求本周自行车的利润.23.已知关于x的多项式(a+b)x5+(b-2)x3-2(a-1)x2-2ax-3中不含x3和x2项,试求当x=-1时,这个多项式的值.24.某中学七年级(4)班的3位教师决定带领本班a名学生在十一期间去北京旅游,A旅行社的收费标准为教师全价,学生半价;B旅行社不分教师、学生,一律八折优惠,这两家旅行社的基本价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别选择这两家旅行社所需的总费用;(2)如果这个班有55名学生,他们选择哪一家旅行社较为合算?参考答案一、选择题(每小题3分,共24分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( B ) A .-1 B .0 C .1 D .22.(嘉兴中考)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( C )A .0.35×108B .3.5×107C .3.5×106D .35×105 3.下列各式中,不是同类项的是( D )A.12x 2y 和13x 2yB .-ab 和baC .-37abcx 2和-73x 2abc D.25x 2y 和52xy 24.下列各对数中,相等的一对数是( A ) A .(-2)3与-23 B .-22与(-2)2 C .-(-3)与-|-3|D.223与⎝⎛⎭⎫2325.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( B ) A .abc B .a +10b +100c C .100a +10b +c D .a +b +c7.有理数a ,b 在数轴上的位置如图所示,则下列各式中错误的是( C )A .b<aB .|b|>|a|C .a +b>0D .ab<08.下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22 018的个位数字是(B)A .2B .4C .6D .8第Ⅱ卷二、填空题(每小题3分,共24分)9.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离是 8 .10.若规定a*b =5a +2b -1,则(-4)*6的值为 -9 .11.把多项式3xy 2-12x 2y 2-1-x 3按x 的降幂排列为 -x 3-12x 2y 2+3xy 2-1 .12.若a ,b 互为相反数,c ,d 互为倒数,|m|=2,则a +b4m+m 2-3cd = 1 . 13.若M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是 M>N . 14.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m +n =-2,mn =-4,则2(mn -3m)-3(2n -mn)的值为 -8 .15.将四个有理数3,4,-6,10(每个数必用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 3×(4-6+10) .16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照下面的规律,摆第(n)图,需用火柴棒的根数为 6n +2 .三、解答题(要求写出必要的解题过程:共8题,17题-18题各10分,19题-23题每题8分,24题12分,共72分)17.计算:(1)(-2)2-|-7|+3-2×⎝⎛⎭⎫-12; 解:原式=4-7+3+1=1.(2)-12×⎣⎡⎦⎤-32×⎝⎛⎭⎫-232-2.解:原式=-12×⎝⎛⎭⎫-9×49-2=-12×(-6)=3.18.用简便方法计算:(1)15×⎝⎛⎭⎫-34-(-15)×32+15×14; 解:原式=15×⎝⎛⎭⎫-34+15×32+15×14=15×⎝⎛⎭⎫-34+32+14=15.(2)⎝⎛⎭⎫-1112+56-79×(-36)+(-5)×(-1)3. 解:原式=33-30+28+5=36.19.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.解:原式=3x 2-xy +y -10xy +8x 2-2y = 3x 2+8x 2-xy -10xy +y -2y = 11x 2-11xy -y.当x =-2,y =13时,原式=44+223-13=51.20.画一条数轴,并在数轴上表示:3.5和它的相反数,-12和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.解:3.5的相反数是-3.5;-12的倒数是-2;绝对值等于3的数为±3;最大的负整数是-1,它的平方是1.如图所示:-3.5<-3<-2<-1<-12<1<3<3.5.21.在计算(-5)-(-5)×110÷110×(-5)时,小明的解法如下:解:原式=-5-⎝⎛⎭⎫-12÷⎝⎛⎭⎫-12 (第一步)=-5-1 (第二步)=-4 (第三步)回答:(1)小明的解法是错误的,主要错在第 一 步,错因是 同级运算没有按照从左到右的顺序依次进行运算 ;(2)请在下面给出正确的解答过程.解:(-5)-(-5)×110÷110×(-5) =-5-(-5)×110×10×(-5) =-5-25 =-30.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,星期 一 二 三 四 五 六 日 增减/辆-1+3-2+4+7-5-10(1)(2)本周的总生产量是多少辆?(3)若每辆自行车的生产成本为150元,出厂价为每辆280元,求本周自行车的利润. 解:(1)星期五,100+7=107辆;(2)100×7+(-1)+(+3)+(-2)+(+4)+(+7)+(-5)+(-10)=696辆; (3)696×(280-150)=90 480元.23.已知关于x 的多项式(a +b)x 5+(b -2)x 3-2(a -1)x 2-2ax -3中不含x 3和x 2项,试求当x =-1时,这个多项式的值.解:由题意可知b -2=0,a -1=0,解得b =2,a =1.当a=1,b=2时,原多项式化简为3x5-2x-3,把x=-1代入,原式=3x5-2x-3=3×(-1)5-2×(-1)-3=-3+2-3=-4.24.某中学七年级(4)班的3位教师决定带领本班a名学生在十一期间去北京旅游,A旅行社的收费标准为教师全价,学生半价;B旅行社不分教师、学生,一律八折优惠,这两家旅行社的基本价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别选择这两家旅行社所需的总费用;(2)如果这个班有55名学生,他们选择哪一家旅行社较为合算?解:(1)选择A旅行社所需的总费用为3×500+250a=(250a+1 500)元,选择B旅行社所需的总费用为(3+a)×500×0.8=(400a+1 200)元.(2)当a=55时,选择A旅行社所需的总费用为250×55+1 500=15 250(元);选择B旅行社所需的总费用为400×55+1 200=23 200(元),因为15 250<23 200,所以选择A旅行社较为合算.一天,毕达哥拉斯应邀到朋友家做客。

七年级数学上册 期中测试卷(一)(含解析)(新版)华东师大版-(新版)华东师大版初中七年级上册数学试

七年级数学上册 期中测试卷(一)(含解析)(新版)华东师大版-(新版)华东师大版初中七年级上册数学试

期中测试卷(一)总分120分一.选择题(共9小题,每题3分)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C (﹣1)n D.1﹣22.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和43.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣84.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.26.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣ C ﹣2 D.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.19.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0D.﹣1二.填空题(共6小题,每题3分)10.﹣(﹣)的相反数与﹣的倒数的积为_________.11.若a与b互为倒数,则3﹣5ab=_________.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为_________.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为_________.14.32×3.14+3×(﹣9.42)=_________.15.(为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为_________分.三.解答题(共12小题)16.计算:(6分)2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.17.(6分)计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)18.(6分)计算:.19.先化简,再求值:(6分)(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.20.(6分)已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.21.(6分)已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.22(6分).若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.23.(6分)在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?24.(6分)如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成_________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.25.(7分)观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.26.(7分)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).27.(7分)在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为_________.(2)请你利用下图,再设计一个能求的值的几何图形.新华师版七年级上期中测试卷(一)参考答案与试题解析一.选择题(共9小题)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)n D.1﹣2考点:正数和负数;有理数的乘方;负整数指数幂.专题:常规题型.分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.解答:解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、(﹣1)﹣1=﹣1,为负数,故本选项正确;C、当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1,故本选项错误;D、1﹣2=1,为正数,故本选项错误.故选B.点评:本题考查了正数与负数的知识,属于基础题,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和4考点:数轴.专题:探究型.分析:根据两点间距离的定义进行解答即可.解答:解:A、﹣1和1之间的距离为:|﹣1﹣1|=2,故本选项错误;B、﹣1和2之间的距离为:|﹣1﹣2|=3,故本选项正确;C、﹣1和3之间的距离为:|﹣1﹣3|=4,故本选项错误;D、﹣1和4之间的距离为:|﹣1﹣4|=5,故本选项错误.故选B.点评:本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣8考点:数轴.专题:计算题.分析:根据数轴上的点与实数的对应关系利用数形结合的思想,用较大的数减去较小的数即可求解.解答:解:∵7>﹣1,∴在数轴上表示实数﹣1和7这两点间的距离为=7﹣(﹣1)=8.故选B.点评:本题考查的知识点为:求数轴上两点间的距离就让两点中对应的较大的数减去较小的数.4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|考点:数轴;绝对值.分析:本题通过观察数轴,判断出A点表示的数的正负性,再根据距离等于坐标的绝对值,化简,即可得出答案.解答:解:依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.点评:本题考查了数轴的性质及绝对值的定义,能够根据数轴判断出数的符号,再进一步确定距离.5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.2考点:绝对值;相反数.分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解答:解:∵|﹣2|=2,∴2的相反数是﹣2.故选A.点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.6.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.专题:数形结合.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=﹣、C=﹣2、D=,E=1标于数轴之上,可得:∵C点位于数轴最左侧,是最小的数故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃考点:有理数的加法.专题:计算题.分析:原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.解答:解:﹣5+4=﹣1故选C.点评:本题主要考查从实际问题抽象出有理数的加法运算.8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.1考点:有理数的减法;绝对值.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故选A.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.9.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1考点:有理数的加减混合运算.专题:规律型.分析:由题意,这从1到2010一共可分为1005组,每组的结果都是1,由此不难得出答案.解答:解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.点评:此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共6小题)10.﹣(﹣)的相反数与﹣的倒数的积为.考点:有理数的乘法;相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据有理数的乘法,可得答案.解答:解:﹣(﹣)的相反数是﹣,﹣的倒数是﹣,﹣(﹣)的相反数与﹣的倒数的积是﹣×(﹣)=,故答案为:.点评:本题考查了有理数的乘法,同号得正,异号得负,并把绝对值相乘.11.若a与b互为倒数,则3﹣5ab=﹣2.考点:倒数.专题:计算题.分析:根据互为倒数的两个数的积为1,直接求出ab的值,从而得到3﹣5ab的值.解答:解:∵ab=1,∴3﹣5ab=3﹣5×1=﹣2.故答案为﹣2.点评:本题考查了利用倒数求代数式的值,明确互为倒数的两个数的积为1是解题的关键.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为1.考点:非负数的性质:偶次方;非负数的性质:绝对值;有理数的乘方.专题:计算题.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵|m+3|+(n﹣2)2=0,∴m=﹣3,y=2;∴原式=(﹣3+2)2010=1故答案为1.点评:本题考查了非负数的性质以及有理数的乘方,几个非负数的何为0,这几个数都为0.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.32×3.14+3×(﹣9.42)=0.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)即可求解.解答:解:原式=3×9.42+3×(﹣9.42)=3×=3×0=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.15.为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为分.考点:近似数和有效数字.分析:应根据得9.4分得到7位裁判的准确打分和,除以7,再保留2位小数即可.解答:解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值X围是:(大于等于9.35和小于9.45之间)∴9个裁判去掉最高和最低得分后,实际取值就是7个人的分数.∴该运动员的有效总得分在大于或等于9.35×7=65.45分和小于9.45×7=66.15之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在65.45和66.15之间只有66是整数,∴该运动员的有效总得分是66分.∴得分为:66÷7≈9.4286,精确到两位小数就是9.43.点评:本题考查了近似数和有效数字,得到得分为一位小数的准确分值的X围,及得到7位裁判的准确打分和是难点.三.解答题(共12小题)16.计算:2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.考点:有理数的混合运算.专题:计算题.分析:(1)原式变形后,利用积的乘方逆运算法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣(0.125×8)2009×8=﹣8;(2)原式=﹣32﹣5××(﹣18)÷9=﹣32+=﹣30.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)考点:有理数的混合运算.分析:先算减法,再算乘法,分子与分母错位约分得出答案即可.解答:解:原式=××××…××=.点评:此题考查有理数的混合运算,掌握运算顺序与计算的方法是解决问题的关键.18.计算:.考点:有理数的混合运算.分析:利用乘法分配律计算即可.解答:解:原式=10×(﹣18)﹣×(﹣18)=﹣180+=﹣179.点评:此题考查有理数的混合运算,掌握运算方法和运算定律,正确判定运算符号计算即可.19.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:整式的加减—化简求值.分析:(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.20.已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.考点:整式的加减—化简求值.分析:首先利用整式的混合运算法则整理进而将已知代入求出即可.解答:解:∵a﹣b=6,ab=﹣2,∴3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)=3ab+3a﹣6b﹣5b+10a+2ab﹣2a=5ab+11a﹣11b=5ab+11(a﹣b)=﹣10+11×6=56.点评:此题主要考查了整式的加减运算,正确把握运算法则是解题关键.21.已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值.分析:由|a+1|与|2a+b|互为相反数,可得|a+1|+|2a+b|=0,因为|a+1|≥0,|2a+b|≥0,所以a+1=0,2a+b=0,进而求出a=﹣1,b=2,然后计算a﹣b=﹣3,a+b=1,然后代入即可.解答解:∵|a+1|与|2a+b|互为相反数,∴|a+1|+|2a+b|=0,∵|a+1|≥0,|2a+b|≥0,∴a+1=0,2a+b=0,∴a=﹣1,b=2,∴a﹣b=﹣3,a+b=1,∴3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)=3(a﹣b)﹣4(a﹣b)2﹣7(a+b)2=3×(﹣3)﹣4×(﹣3)2﹣7×12=﹣9﹣4×9﹣7=﹣9﹣36﹣7=﹣52.点评:此题考查了整式的加减化简求值,解题的关键是求出a、b的值.22.若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.考点:整式的加减—化简求值;多项式.专题:计算题.分析:由题意求出m与n的值,原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:∵多项式2x n﹣1﹣x n+3x m+1是六次二项式,∴n﹣1=m+1,n=6,解得:m=4,n=6,原式=2m﹣2n2﹣3n+3m2﹣2m+n+8m﹣4n=3m2﹣2n2+8m﹣6n,当m=4,n=6时,原式=48﹣72+32﹣36=﹣28.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?考点:正数和负数.分析:(1)根据有理数的加法运算,可得答案;(2)根据有理数的加法,可得每次距离,根据有理数比较大小,可得答案;(3)根据有理数的加法,可的路程,根据路程与时间的关系,可得答案.解答:解:(1)﹣0.7+2.7+(﹣1.3)+0.3+(﹣1.4)+2.6=2.2(km),答:工作组最后到达的地方在出发点的北方,距出发点;(2)第一次的距离是|﹣0.7|=0.7(km),第二次的距离是|﹣0.7+2.7|=2(km),第三次的距离是|2+(﹣1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(﹣1.4)|=0.4,第六次的距离是|﹣0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4,答:在一天的工作中,最远处离出发点有;(3)(|﹣0.7|+2.7+|﹣1.3|+0.3+|﹣1.4|+2.6)÷2=4(h),9+4+6=19(点),即下午7点,答:工作组早上九点出发,做完工作时是下午7点.点评:本题考查了正数和负数,利用了有理数的加法运算.24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成16个细胞;(2)这样的一个细胞经过3小时后可分裂成64个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.考点:有理数的乘方.专题:规律型.分析:根据图形可知其规律为n小时是22n.解答:解:(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.点评:主要考查从图示或数据中寻找规律的能力.25.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.26.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).考点:列代数式;代数式求值.分析:(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.解答:解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.27.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.考点:规律型:图形的变化类.分析:此题要结合图形分析计算其面积和的方法是总面积减去剩下的面积.解答:解:(1)设总面积为:1,最后余下的面积为:,故几何图形的值为:.故答案为:.(2)如图等.点评:(1)此题结合图形观察发现,计算面积和的时候,运用总面积减去剩下的面积非常简便.(2)只要是按照图形的对称轴进行折叠均可.word 21 / 21。

2024年华东师大版七年级数学上册阶段测试试卷含答案

2024年华东师大版七年级数学上册阶段测试试卷含答案

2024年华东师大版七年级数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A. 4.6×108B. 46×108C. 4.6×109D. 0.46×10102、若∠α与∠β互余,且∠α:∠β=3:2,那么∠α与∠β的度数分别是()A. 54°,36°B. 36°,54°C. 72°,108°D. 60°,40°3、已知a2+a-3=0,那么a2(a+4)的值是( ____ )A.9 B.-12 C.-18 D.-154、若(a < 0) (b > 0) 则(a) (b) (a+b) (a-b)中最小的是(()())A. (a)B. (b)C. (a+b)D. (a-b)5、下列计算结果等于0的是()A. (-2)+(-2)B. (-2)-(-2)C. -2×(-2)D. (-2)÷(-2)6、笔记本每本m元,圆珠笔每支n元,买x本笔记本和y支圆珠笔共需()A. (mx+ny)元B. (m+n)(x+y)元C. (nx+my)元D. mn(x+y)元7、木匠师傅锯木料的时候,一般先在木板上画两个点,然后过这两点弹出一条墨线,这是因为()A. 两点之间,线段最短B. 经过两点有且只有一条直线C. 经过一点,有且只有一条直线与已知直线平行D. 垂线段最短评卷人得分二、填空题(共6题,共12分)8、用“>”或“<”填空:|-3.5|____3;-____-.9、【题文】地球上七大洲的总面积约为149480000km2,该数请用科学计数法并保留3个有效数字表示为 ____.10、((-3)^{4})的底数是 ______ ,指数是 ______ ,读作 ______ .11、如图:(1)在△ABC中,BC边上的高是____;(2)在△AEC中,CE边上的高是____;(3)在△BCF中,BC边上的高是____.12、已知方程的解也是方程的解,则=_________.13、【题文】若则的值是____.评卷人得分三、判断题(共5题,共10分)14、除以一个数等于乘以这个数的倒数.____.(判断对错)15、线段AB和线段BA是同一条线段.____.(判断对错)16、直线AB平行于直线AC.____.(判断对错)17、比-5大的非正整数有4个.____.(判断对错)18、有两边及其夹角对应相等的两个三角形全等.()四、其他(共4题,共8分)19、用一根绳子去量一根长木,绳子还剩余4.5米,将绳子对折再量长木,长木还剩余1米,则长木为____米,绳子____米.20、气象统计资料表明浙西南地区,当高度每增加100米,气温就降低大约0.6℃.小明和小林为考证“校本”教材中有关浙南第一高峰白云尖(位于泰顺县乌岩岭国家保护区)的海拔高度.国庆期间他俩进行实地测量,小明在山下一个海拔高度为11米的小山坡上测得气温为24℃,小林在“白云尖”最高位置测得气温为14.4℃,那么你知道“白云尖”的海拔高度是多少米吗?请列式计算.21、小宝、小贝和爸爸三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有小宝一半的小贝和小宝同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和小贝坐的一端,结果爸爸被跷起离地.问:小贝体重可能范围是多少千克?22、气象统计资料表明浙西南地区,当高度每增加100米,气温就降低大约0.6℃.小明和小林为考证“校本”教材中有关浙南第一高峰白云尖(位于泰顺县乌岩岭国家保护区)的海拔高度.国庆期间他俩进行实地测量,小明在山下一个海拔高度为11米的小山坡上测得气温为24℃,小林在“白云尖”最高位置测得气温为14.4℃,那么你知道“白云尖”的海拔高度是多少米吗?请列式计算.参考答案一、选择题(共7题,共14分)1、C【分析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.2、A【分析】【分析】设α,β的度数分别为3x,2x,再根据余角的性质即可求得两角的度数.【解析】【解答】解:设α;β的度数分别为3x,2x,则。

第4章 相交线和平行线 华东师大版(2024)数学七年级上册单元测试(含解析)

第4章 相交线和平行线 华东师大版(2024)数学七年级上册单元测试(含解析)

相交线和平行线一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图,同一平面内,在直线l外任取一点Q,过点Q画直线l的垂线,可画出的垂线有( )A.0条B.1条C.2条D.无数条2.如图,直线a,b被直线c所截,若,,则∠2的度数为( ).A.27°B.53°C.63°D.117°3.如图,直线,,则的度数为( )A. B. C. D.4.如图,下列结论正确的是( )A.与是对顶角B.与是同位角C.与是同旁内角D.与是同旁内角5.如图,在下列给出的条件中,不能判定的是( )A. B. C. D.6.如图,已知直线AB和CD相交于点O,,OF平分.若,则的度数为( )A.70°B.65°C.55°D.45°7.如图,,,若.则的度数为( )A. B. C. D.8.如图,已知AB//EG,BC//DE,CD//EF,则x、y、z三者之间的关系是( )A.x+y+z=180°B.x﹣z=yC.y﹣x=zD.y﹣x=x﹣z9.中华武术,博大精深.小林把如图1所示的武术动作抽象成数学问题.如图2,已知,,,,则的度数是( )A. B. C. D.10.如图,,平分,平分,,则下列结论:①;②;③;④;⑤.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共20分)11.如图,直线a、b被直线c所截,若,则的度数是______°能判定.12.如图,直线b、c被直线a所截,如果,,那么与其内错角的角度之和等于______.13.如图,直线与直线相交于点O,于点O,且,则的度数为______.14.如图,,,则的度数是_____.15.如图,,点F在直线上,点E为直线,之间的一点,连接,,直线,交于点G,,,,则的度数为______.(用含a的式子表示).三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)(1)如图,若,,求的度数.(2)如图,直线相交于点O,平分,若,求的度数.17.(8分)如图,,交于点F,,垂足为E.(1)若,求的度数;(2)直接写出图中与互余的所有角.18.(10分)已知:如图,,,,,(1)求证:;(2)求的度数.19.(10分)如图,,,平分交于点E.(1)求的度数;(2)若,判断与的位置关系,并说明理由.20.(12分)平行直线与被直线所截.(1)如图1,点E在之间的直线上,P、Q分别在直线上,连接,若求的值;(2)如图2,点E在之间的直线上,P、Q分别在直线上,连接,平分,平分则和之间有什么数量关系,请写出你的结论并说明理由.21.(12分)如图1,,点P为直线上方一点.(1)若,,则度数为______;(2)猜想、、所满足的数量关系,并说明理由;(3)如图2,,若点P为直线下方一点,此时、、满足怎样的数量关系?如图3,,若点P在直线和直线之间,此时、、又满足怎样的数量关系?请你在图2和图3中任选一个直接写出你的结论.答案以及解析1.答案:B解析:在平面内,过一点有且只有一条直线与已知直线垂直.故选:B.2.答案:B解析:,,.故选:B.3.答案:B解析:与为对顶角,,,,.故选:B.4.答案:D解析:A、与是对顶角,故本选项错误,不符合题意;B、与是同位角,故本选项错误,不符合题意;C、与没有处在两条被截线之间,故本选项错误,不符合题意;D、与是同旁内角;故本选项正确,符合题意;故选:D.5.答案:C解析:A、因为,所以(同位角相等,两直线平行),不符合题意;B、因为,所以(内错角相等,两直线平行),不符合题意;C、因为,所以(同位角相等,两直线平行),不能证出,符合题意,D、因为,所以(同旁内角互补,两直线平行),不符合题意;故答案为:C.6.答案:C解析:,,,,平分,,.故选:C.7.答案:C解析:如图,,,,,,,,故选:C.8.答案:B解析:如图所示,延长AB交DE于H,∵BC//DE,∴∠ABC=∠AHE=x,∵CD//EF,AB//EG,∴∠D=∠DEF=z,∠AHE=∠DEG=z+y,∴∠ABC=∠DEG,即x=z+y,∴x-z=y,故选:B.9.答案:A解析:过点E,F分别作的平行线,,,,,,,,,,,,,故选:A.10.答案:D解析:,,平分,,故①不正确,⑤正确;平分,平分,,,,∴,故②正确;,,故③正确;,,,,,,故④正确.故正确结论为:②③④⑤,故选:D.11.答案:125解析:当时,,,,,即当时,,故答案为:125.12.答案:/135度解析:,的内错角为,,,与其内错角的角度之和为,故答案为:.13.答案:120°/120度解析:,,,,,故答案为:.14.答案:解析:作,,,,,,,,,故答案为.15.答案:解析:如图,过点E作交于点P,延长交于点Q,设,则,∵,∴,∵,∴,∵,∴,∴,,,∴,∴.故答案为:16.答案:(1)(2)解析:(1)∵,∴,∵,∴;(2)∵平分,若,∴,∴.17.答案:(1)(2),,解析:(1)∵,∴,∵,∴,∴,∴;(2)∵,,∴,,即,,都与互余.18.答案:(1)证明见解析(2)解析:(1)证明:∵,,∴,∴,∵,∴,∴;(2)∵,∴,,∵,,∴,∴,∴.19.答案:(1)(2),理由见解析解析:(1),,又,,平分,,(2)与的位置关系是:.理由如下:由(1)可知:,,,又,,.20.答案:(1)(2)解析:(1)过点E作∵,∴,∵∴∴;(2)过点E作∵,∴,∴,∴∵,,平分,平分∴,∴∴21.答案:(1)(2)(3)选择图2,,选择图3,解析:(1)过点P作平行,如图,∵,∴,,∴,∵,∴,∵,∴,∴,故答案为:.(2)猜想:,理由如下:如图:过点P作平行,∵,∴,∴,,即,∴.(3)选择图2,过点P作,如图,∵,∴,则,,即:,选择图3,过点P作,如图,∵,∴,∴,,∴,即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试卷(二) 总分120分 一.选择题(共10小题,每题3分) 1.如果向南走10m记作+10m,那么﹣50m表示( ) A. 向东走50m B.向西走50m C.向南走50m D. 向北走50m

2.点A在数轴上表示+1,把点A沿数轴向左平移4个单位到点B,则点B所表示的数是( ) A. ﹣4 B.﹣3 C.5 D. ﹣3或5

3.下列语句: ①﹣5是相反数; ②﹣5与+3互为相反数; ③﹣5是5的相反数; ④﹣3和+3互为相反数; ⑤0的相反数是0中,正确的是( ) A. ①② B.②③⑤ C.①④⑤ D. ③④⑤

4.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是( ) A. 0 B 1 C.4 D. 9

5.以下哪个数在﹣2和1之间( ) A. ﹣3 B.3 C.2 D. 0

6.﹣7,﹣12,2三个数的绝对值的和是( ) A. ﹣17 B.﹣7 C.7 D. 21

7.若一个有理数与它的相反数的差是一个负数,则( ) A. 这个有理数一定是负数 B. 这个有理数一定是正数 C. 这个有理数可以为正数、负数 D. 这个有理数为零

8.式子﹣5﹣(﹣3)+(+6)﹣(﹣2)写成和的形式是( ) A. ﹣5+(+3)+(+6)+(﹣2) B.﹣5+(﹣3)+(+6)+(+2) C. (﹣5)+(+3)+(+6)+(+2) D.(﹣5)+(+3)+(﹣6)+(+2)

9.下列说法中正确的是( ) A. 积比每一个因数都大 B. 两数相乘,如果积为0,则这两个因数异号 C. 两数相乘,如果积为0,则这两个因数至少一个为0 D. 两数相乘,如果积为负数,则这两个因数都为正数

10.已知a,b互为相反数,且a≠0,则( ) A. >0 B.=0 C.=1 D. =﹣1

二.填空题(共8小题,每题3分) 11.当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是 _________ .

12.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.请问这样第10次可拉出 _________ 根面条.

13.如果|x﹣2|+(y+)2=0,那么x+y= _________ . 14.去年大连市接待入境旅游者约876000人,这个数可用科学记数法表示为 _________ . 15.. 16.将有理数0.23456精确到百分位的结果是 _________ . 17.某企业由于改进技术,三月份的产值比二月份翻了一番,四月份因清明小长假等因素的影响,产值比三月份减少20%,则四月份的产值比二月份增加了 _________ .

18.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 _________ . 三.解答题(共8小题) 19.计算(6分) (1)(﹣+﹣)×12+(﹣1)2011

(2)100÷(﹣2)2﹣(﹣2)÷(﹣)

20.(6分)已知代数式3x2﹣4x+6值为9,则x2﹣+6的值.

21.(8分)1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?

22(8分).要是关于x、y的多项式my3+3nx2y+2y3﹣x2y+y不含三次项,求2m+3n的值.

23.(8分)已知(﹣3a)3与(2m﹣5)an互为相反数,求的值. 24.(10分)先化简,后求值,其中. 25.(10分)先化简,再求值:,其中a,b满足|a﹣1|+(b+2)2=0. 26.(10分)福州市的出租车收费标准是:乘车里程不超过3千米的收费是起步价加出租汽车燃油附加费共8元,超过3千米的除了照收8元以外超过部分每千米加收1.5元; (1)若某人乘坐了15千米,应支付多少元? (2)若某人乘坐了x(x>3)千米,用代数式表示他应支付的费用. 新华师版七年级上期中测试卷(二) 参考答案与试题解析

一.选择题(共10小题) 1.如果向南走10m记作+10m,那么﹣50m表示( ) A.向东走50m B.向西走50m C.向南走50m D.向北走50m

考点:正数和负数. 分析:根据正数和负数表示相反意义的量,向南记为正,可得向北的表示方法. 解答:解:向南走10m记作+10m,那么﹣50m表示向北走50米, 故选:D. 点评:本题考查了正数和负数,相反意义的量用正数和负数表示.

2.点A在数轴上表示+1,把点A沿数轴向左平移4个单位到点B,则点B所表示的数是( ) A. ﹣4 B.﹣3 C.5 D. ﹣3或5

考点:数轴. 分析:用1减去平移的单位即为点B所表示的数. 解答:解:1﹣4=﹣3. 故选B. 点评:本题考查的是数轴,熟知数轴上的点平移的规律是“左减右加”是解答此题的关键.

3.下列语句: ①﹣5是相反数; ②﹣5与+3互为相反数; ③﹣5是5的相反数; ④﹣3和+3互为相反数; ⑤0的相反数是0中,正确的是( ) A. ①② B.②③⑤ C.①④⑤ D. ③④⑤ 考点:相反数. 分析:根据相反数的定义对各小题分析判断即可得解. 解答:解:①﹣5是相反数,错误; ②﹣5与+3互为相反数,错误; ③﹣5是5的相反数,正确; ④﹣3和+3互为相反数,正确; ⑤0的相反数是0,正确, 综上所述,正确的有③④⑤. 故选D. 点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.

4.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是( ) A. 0 B.1 C.4 D. 9

考点:非负数的性质:绝对值;非负数的性质:偶次方;代数式求值. 分析:由|x+1|+(x﹣y+3)2=0,结合非负数的性质,可以求出x、y的值,进而求出(x+y)2的值. 解答:解:∵|x+1|+(x﹣y+3)2=0,

∴, 解得x=﹣1,y=2, ∴(x+y)2=1. 故选B. 点评:本题主要考查代数式的求值和非负数的性质.

5.以下哪个数在﹣2和1之间( ) A. ﹣3 B.3 C.2 D. 0

考点:有理数大小比较. 专题:计算题. 分析:利用数轴,根据有理数大小的比较法则进行比较. 解答:解:从数轴上看﹣3在﹣2的左侧,2、3在﹣2的右侧,只有0在﹣2和1之间. 故选D. 点评:本题考查了有理数大小比较,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

6.﹣7,﹣12,2三个数的绝对值的和是( ) A. ﹣17 B. ﹣7 C 7 D. 21

考点:有理数的加法;绝对值. 分析:先分别求出三个数的绝对值,再求出绝对值的和即可. 解答:解:∵|﹣7|=5,|﹣12|=12,|2|=2, ∴这三个数的绝对值的和=5+12+2=21. 故选D. 点评:此题考查了有理数加法法则的简单应用及绝对值的知识,属于基础题.

7.若一个有理数与它的相反数的差是一个负数,则( ) A. 这个有理数一定是负数 B. 这个有理数一定是正数 C. 这个有理数可以为正数、负数 D. 这个有理数为零

考点:有理数的减法;相反数. 分析:根据减去一个数等于加上这个数的相反数,负数减正数等于负数加负数,可得答案. 解答:解:若一个有理数与它的相反数的差是一个负数,这个有理数一定是正数, 故选:A. 点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数,注意负数减正数等于负数加负数.

8.式子﹣5﹣(﹣3)+(+6)﹣(﹣2)写成和的形式是( ) A. ﹣5+(+3)+(+6)+(﹣2) B.﹣5+(﹣3)+(+6)+(+2) C. (﹣5)+(+3)+(+6)+(+2) D.(﹣5)+(+3)+(﹣6)+(+2)

考点:有理数的加减混合运算. 专题:计算题. 分析:利用减法法则计算即可得到结果. 解答:解:原式=(﹣5)+(+3)+(+6)+(+2). 故选C 点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.

9.下列说法中正确的是( ) A. 积比每一个因数都大 B. 两数相乘,如果积为0,则这两个因数异号 C. 两数相乘,如果积为0,则这两个因数至少一个为0 D. 两数相乘,如果积为负数,则这两个因数都为正数

考点:有理数的乘法. 分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘都得零.逐一分析探讨得出结论即可. 解答:解:A、﹣3×2=﹣6,积比每一个因数都小,此选项错误; B、两数相乘,如果积为0,则这两个因数至少有一个为0,此选项错误; C、两数相乘,如果积为0,则这两个因数至少一个为0,此选项正确; D、两数相乘,如果积为负数,则必须有一个为负数,此选项错误. 故选:C. 点评:此题考查有理数的乘法法则,加深对乘法法则的理解和掌握是解决问题的关键.

10.已知a,b互为相反数,且a≠0,则( ) A. >0 B.=0 C.=1 D. =﹣1

考点:有理数的除法;相反数. 专题:计算题. 分析:利用互为相反数两数(非0)之商为﹣1即可得到结果. 解答:解:∵a,b互为相反数,且a≠0, ∴=﹣1. 故选D

相关文档
最新文档