高一生物知识点整理:DNA分子的结构及其特点讲解
《DNA 分子的结构和特点》 讲义

《DNA 分子的结构和特点》讲义DNA,这三个字母对于我们来说并不陌生,它是生命的密码,决定着我们的性状、特征以及遗传信息的传递。
那么,DNA 分子到底有着怎样的结构和特点呢?首先,我们来了解一下DNA 分子的基本组成单位——脱氧核苷酸。
脱氧核苷酸由一分子磷酸、一分子脱氧核糖和一分子含氮碱基组成。
含氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
DNA 分子是由两条反向平行的脱氧核苷酸链组成的双螺旋结构。
这就像是一个扭曲的梯子,磷酸和脱氧核糖交替连接构成了梯子的“扶手”,而碱基对则构成了梯子的“踏板”。
碱基之间遵循碱基互补配对原则,即 A 与 T 配对,G 与 C 配对。
这种双螺旋结构具有很多重要的特点。
其一,稳定性强。
DNA 分子的两条链通过碱基之间的氢键相互连接,使得 DNA 分子在正常的生理条件下能够保持相对稳定的结构。
其二,多样性。
由于碱基对的排列顺序可以千变万化,这就使得 DNA 分子能够储存大量的遗传信息。
再来说说 DNA 分子的长度。
它可以非常长,比如人类的一个细胞中的 DNA 分子如果展开,长度可达数米。
但在细胞内,DNA 分子能够通过紧密的缠绕和折叠,形成高度压缩的染色体结构,从而能够被容纳在小小的细胞核中。
DNA 分子还具有自我复制的能力。
在细胞分裂时,DNA 分子会以自身为模板,按照碱基互补配对原则进行复制,从而保证了遗传信息的准确传递。
那么,DNA 分子是如何进行复制的呢?这一过程是半保留复制。
也就是说,复制形成的子代 DNA 分子中,一条链是来自亲代 DNA 分子,另一条链是新合成的。
DNA 分子的结构和特点使得它能够在生物的遗传和变异中发挥关键作用。
遗传信息通过 DNA 的复制和传递,从亲代传递给子代,保证了物种的延续和稳定性。
而碱基对的突变等变化,则可能导致遗传信息的改变,从而产生生物的变异。
此外,DNA 分子的结构和特点也为现代生物技术的发展提供了重要的基础。
高一dna知识点总结

高一dna知识点总结一、DNA的结构和组成1. DNA的化学结构DNA分子是由若干个核苷酸单元通过磷酸二酯键连接而成的长链。
每个核苷酸单元由一个含氮碱基、一个脱氧核糖和一个磷酸基团组成。
四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
DNA的磷酸基团连接在脱氧核糖的3'和5'位,形成链状结构。
2. DNA的双螺旋结构DNA分子的双螺旋结构是由两条互相缠绕的链组成的。
其中,两条链是以反平行方式排列的,即一个链的5'末端对应另一个链的3'末端。
两条链之间通过氢键相互连接。
DNA的碱基配对规则是A与T之间有两条氢键连接,G与C之间有三条氢键连接,这种配对方式决定了DNA的结构和信息传递方式。
3. DNA的组成DNA分子的组成是由多个核苷酸单元组成的长链。
生物体内的DNA是以染色体的形式存在的,每个染色体上都包含着大量的DNA分子。
DNA还可以进一步组装成染色质的结构,参与到细胞分裂、遗传信息的传递和表达等生命活动中。
二、DNA的复制1. DNA的复制过程DNA的复制是指在细胞分裂的时候,DNA分子能够通过复制过程生成完全相同的两条新的DNA分子。
复制过程主要分为解旋、复制和连接三个阶段。
首先,DNA双螺旋结构被解开形成两条互相分离的单条链。
然后,在每条单链上,酶类和辅助蛋白协同作用,复制出一条新的链。
最后,两条新的DNA分子与原有的DNA分子连接,形成两个完全一样的DNA分子。
2. 半保留复制DNA的复制过程是半保留的,即每一条新的DNA分子都包含有一个原有DNA分子的链和一个新合成的链。
这是因为每个核苷酸单元都只有一个可以提供能量的磷酸基团,因此在复制过程中只有一条链可以持续生长,另一条链只能以碎片的方式进行合成。
三、DNA的转录和翻译1. DNA的转录过程DNA的转录是指DNA分子中的遗传信息被转录成RNA分子的过程。
转录过程分为启动、延伸和终止三个阶段。
高一生物必修二第三章DNA分子的结构和复制知识点总结

DNA分子的结构和复制、基因的本质一DNA分子的结构及特点1.DNA双螺旋模型构建者:沃森和克里克。
2.DNA双螺旋结构的形成3.DNA的双螺旋结构(1)DNA由两条脱氧核苷酸链组成,这两条链按反向平行的方式盘旋成双螺旋结构。
(2)外侧:脱氧核糖和磷酸交替连接,构成基本骨架。
(3)内侧:两条链上的碱基通过氢键连接成碱基对。
碱基互补配对遵循以下原则:A===T(两个氢键)、G≡C(三个氢键)。
类型决定因素多样性具n个碱基对的DNA具有4n种碱基的排列顺序特异性如每种DNA分子都有其特定的碱基的排列顺序稳定性磷酸与脱氧核糖交替连接形成的基本骨架不变,碱基之间互补配对形成氢键方式不变等补充:1. DNA分子中的数量关系(1)DNA分子中,脱氧核苷酸数∶脱氧核糖数∶磷酸数∶含氮碱基数=1∶1∶1∶1。
(2)配对的碱基,A与T之间形成2个氢键,G与C之间形成3个氢键,C—G 所占比例越大,氢键数目越多,DNA结构越稳定。
(3)每条脱氧核苷酸链上都只有一个游离的磷酸基团,因此DNA分子中含有2个游离的磷酸基团。
(4)对于真核细胞来说,染色体是基因的主要载体;线粒体和叶绿体中也存在基因。
(5)对于原核细胞来说,拟核中的DNA分子或者质粒DNA均是裸露的,并不与蛋白质一起构成染色体。
2. DNA中碱基的相关计算规律1.规律一:一个双链DNA分子中,A=T、C=G,则A+G=C+T,即嘌呤碱基总数等于嘧啶碱基总数。
2.规律二:在双链DNA分子中,A+TA+T+C+G=A1+T1A1+T1+C1+G1=A2+T2A2+T2+C2+G2。
3.规律三:在DNA双链中,一条单链的A1+G1T1+C1的值与其互补单链的A2+G2T2+C2的值互为倒数关系。
(不配对的碱基之和比例在两条单链中互为倒数) 提醒:在整个DNA分子中该比值等于1。
4.规律四:在DNA双链中,一条单链的A1+T1G1+C1的值,与该互补链的A2+T2G2+C2的值是相等的,也与整个DNA分子中的A+TG+C的值是相等的。
《DNA 的分子结构和特点》 知识清单

《DNA 的分子结构和特点》知识清单DNA,即脱氧核糖核酸,是生物体内极其重要的大分子物质,承载着遗传信息。
了解 DNA 的分子结构和特点对于理解生命的奥秘至关重要。
一、DNA 的分子组成DNA 由脱氧核苷酸组成。
每个脱氧核苷酸由三部分构成:含氮碱基、脱氧核糖和磷酸基团。
含氮碱基有四种,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
碱基之间遵循特定的配对原则,即 A 与 T 配对,G 与 C 配对,这种配对关系被称为碱基互补配对原则。
脱氧核糖是一种五碳糖,它与含氮碱基相连形成核苷,再与磷酸基团结合形成脱氧核苷酸。
磷酸基团则通过酯键与脱氧核糖的 5'位羟基相连。
二、DNA 的分子结构DNA 具有双螺旋结构,这一结构是由沃森和克里克于 1953 年提出的。
双螺旋结构就像是一个螺旋上升的楼梯。
两条核苷酸链反向平行,一条链的方向是5'→3',另一条链则是3'→5'。
碱基位于双螺旋结构的内侧,通过氢键相互连接形成碱基对。
A 与T 之间形成两个氢键,G 与 C 之间形成三个氢键。
由于 GC 碱基对之间的氢键数量多于 AT 碱基对,因此 GC 含量高的 DNA 分子相对更加稳定。
脱氧核糖和磷酸基团交替连接,构成了双螺旋结构的骨架,位于外侧。
双螺旋结构的直径约为 2nm,每一圈螺旋包含 10 个碱基对,螺距为 34nm。
三、DNA 分子的特点1、稳定性DNA 分子的稳定性主要源于以下几个方面。
首先,碱基互补配对原则使得两条链能够紧密结合,保证了遗传信息的准确传递。
其次,脱氧核糖和磷酸基团构成的骨架结构稳定,不易被破坏。
再者,碱基对之间的氢键以及碱基堆积力等相互作用也有助于维持 DNA 分子的结构稳定。
2、多样性DNA 分子中碱基的排列顺序千变万化,这使得 DNA 能够储存极其丰富的遗传信息。
假设一个 DNA 片段有 n 个碱基对,那么其可能的排列方式就有 4 的 n 次方种。
《DNA分子的结构和特点》 讲义

《DNA分子的结构和特点》讲义在探索生命奥秘的旅程中,DNA 分子无疑是其中最为关键的角色之一。
它就像是生命的密码本,承载着遗传信息,决定着生物的特征和性状。
接下来,让我们一起深入了解 DNA 分子的结构和特点。
一、DNA 分子的组成DNA 是由脱氧核苷酸组成的大分子聚合物。
脱氧核苷酸由碱基、脱氧核糖和磷酸三部分组成。
碱基有四种,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
这些碱基就像字母一样,按照特定的规则排列,形成了 DNA 的语言。
脱氧核糖是一种五碳糖,它与磷酸共同构成了 DNA 分子的骨架,为碱基的排列提供了支撑。
二、DNA 分子的结构DNA 分子具有独特的双螺旋结构,就像一个扭曲的梯子。
两条核苷酸链反向平行,一条链的方向是5’到3’,另一条链则是3’到5’。
这两条链通过碱基之间的氢键相互连接。
A 总是与 T 配对,G 总是与 C 配对,这种碱基互补配对原则保证了DNA 复制和遗传信息传递的准确性。
双螺旋结构的外侧是由脱氧核糖和磷酸交替连接形成的骨架,内侧则是碱基对。
碱基对之间的距离相等,使得双螺旋结构十分稳定。
三、DNA 分子的特点1、稳定性DNA 分子的双螺旋结构和碱基互补配对原则为其提供了高度的稳定性。
这种稳定性使得遗传信息能够在细胞分裂和世代传递中保持相对不变。
2、多样性碱基的排列顺序千变万化,使得 DNA 分子能够储存极其丰富的遗传信息。
不同生物的 DNA 具有不同的碱基排列顺序,这造就了生物的多样性。
3、特异性每个个体的 DNA 都具有独特的碱基排列顺序,就像每个人都有独特的指纹一样。
这使得 DNA 可以作为个体识别和亲子鉴定的重要依据。
4、半保留复制在 DNA 复制过程中,亲代 DNA 的两条链分别作为模板,合成出两条新的子链,每个子代 DNA 分子都包含一条亲代链和一条新合成的链。
这种半保留复制方式保证了遗传信息的准确传递。
四、DNA 分子结构和特点的意义DNA 分子的结构和特点对于生命的延续和物种的进化具有极其重要的意义。
高一生物DNA分子的结构知识点

高一生物DNA分子的结构知识点DNA(脱氧核糖核酸)是生物体内负责遗传信息传递的分子,它是生命的基础。
掌握DNA分子的结构知识点对于理解生物学的许多概念和理论至关重要。
下面将从不同的角度来介绍DNA分子的结构知识点。
1. DNA的基本构造DNA由两条互相纠缠的链组成,形成一个螺旋结构。
这种结构被称为双螺旋结构。
每条链都由许多的碱基(基因)组成,碱基分为腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)四种。
A和T之间存在着两个氢键,G和C之间存在着三个氢键。
这些氢键的存在使得DNA的两条链互相衔接,保持着稳定的双螺旋结构。
2. DNA的结构层级除了基本构造之外,DNA还具有不同的结构层级。
首先是碱基对的排列方式,它决定了DNA的序列。
DNA的序列决定了生物个体在性状、功能以及遗传传递方面的差异。
其次是DNA的链结构。
DNA链是由糖和磷酸基团交替排列组成的,形成了一个糖磷酸链。
两条链之间通过碱基之间的氢键连接,形成了DNA分子的骨架结构。
最后是DNA的组织结构,DNA可以通过缠结和弯曲来形成染色体的结构,进一步组织起来。
3. DNA的结构与功能DNA的结构与其功能密切相关。
首先,DNA的双螺旋结构使其具有良好的稳定性,可以保护遗传信息不被破坏。
其次,DNA的序列决定了生物体遗传信息的传递和表达。
通过基因的转录和翻译,DNA中的遗传信息被转化为RNA和蛋白质,从而决定了生物体的形态和功能。
此外,DNA的结构还与遗传变异有关。
基因突变中的碱基替换、插入和删除等改变都会导致DNA结构的改变,进而影响生物的发育和适应环境的能力。
4. DNA的复制与修复DNA的复制是生物体进行繁殖和遗传的基础。
在细胞分裂过程中,DNA能够准确地复制自身,确保新生细胞与母细胞具有相同的遗传信息。
DNA的修复也是生物体保持基因完整性的重要机制。
生物体在遭受DNA损伤时,会通过一系列的修复机制来修复DNA,以防止不正常的遗传变异发生。
DNA的分子结构和特点

DNA的分子结构和特点
一.DNA的分子结构
DNA(Deoxyribonucleic acid)是指一种核酸,它是一种左旋半胱氨
酸二糖,是有机分子中最大的一种,它包含有一个糖基骨架,也称作双螺
旋(double helix)。
DNA的每一个碱基对中含有一个碱基,碱基有P
(腺嘌呤,Adenine)和Q(胞嘧啶,Guanine)、T(胸腺嘧啶,Thymine)和C(胞嘧啶,Cytosine),它们之间形成非共价键关系,以构成DNA分
子的双螺旋结构。
其中,P与Q形成两个氮原子之间的三原子氢键,而T
与C之间则由两组二原子硫键构成双螺旋的一条边。
二.DNA的特点
1.DNA的双螺旋结构是其特有的特点,每条DNA分子都是一个由碱基
对组成的双螺旋结构,它们之间形成了一个特殊的结构,这允许DNA在其
双螺旋结构中存储信息、转录和翻译基因密码子。
2.DNA的具有强烈的能量和稳定性。
DNA分子的稳定性比一般有机分
子都要高,并且具有良好的酸碱分析能力,可以有效地吸收环境中存在的
营养物质,在生物体发展中发挥重要作用。
3.DNA具有良好的熔点。
DNA分子的熔点比较高,在此温度下分子就
可以被分解,从而进行DNA的分子克隆、序列分析、基因工程等活性操作,因此,DNA的熔点是其重要特点之一
4.DNA具有优异的遗传性能。
DNA是遗传物质,它可以从一代传到另
一代,从而保证生物体进化的连续性。
高一生物dna的复制知识点

高一生物dna的复制知识点DNA的复制是生物体生长发育和繁殖的基础,也是细胞遗传信息传递的关键过程。
本文将介绍关于DNA复制的知识点,包括DNA的结构特点、复制方式和复制步骤。
通过对这些知识的了解,我们可以更好地理解DNA复制的重要性以及细胞传代的机制。
一、DNA的结构特点DNA是由核苷酸组成的长链状分子,核苷酸由糖、磷酸和碱基组成。
DNA分子的结构特点主要包括:1. 双螺旋结构:DNA呈现出双螺旋结构,由两条互补的链以螺旋形状缠绕在一起。
2. 核苷酸配对规律:DNA的两条链通过碱基之间的氢键进行配对,遵循腺嘌呤(A)与胸腺嘧啶(T)之间的配对,鸟嘌呤(G)与胞嘧啶(C)之间的配对。
3. 5'端和3'端:DNA分子的每条链都有一个5'端和一个3'端,两条链是反向排列的,形成头尾相连的结构。
二、DNA的复制方式DNA的复制方式可以分为半保留复制和保留复制两种方式。
1. 半保留复制:在DNA复制过程中,每条亲本链作为模板,通过拆开双链,形成互补链,最终得到两个新的DNA分子,每个新分子中包含一个旧链和一个新合成的链。
这种复制方式保留了原始DNA分子的一半信息。
2. 保留复制:在某些特定的细胞或病毒中,DNA的全部信息都被复制并传递给下一代。
这种复制方式保留了原始DNA分子的全部信息。
三、DNA的复制步骤DNA的复制过程通常分为三个主要步骤:解旋、复制和连接。
1. 解旋:复制过程开始时,酶类介导DNA的解旋,使得双链DNA分离为两条单链DNA。
2. 复制:解旋后的DNA链上的酶根据碱基互补规律,以亲和特异性选择和配对相应的核苷酸,合成新的DNA链。
新合成的链与模板链形成互补的碱基序列。
3. 连接:新的DNA链由DNA聚合酶连接到模板链的3'端,经过多次的合成和连接,形成完整的双链DNA分子。
复制过程中还涉及一些辅助酶类,如DNA聚合酶、DNA引物和DNA修复酶,它们在复制过程中发挥重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一生物知识点整理:DNA分子的结构
及其特点讲解
1.基本单位
DNA分子的基本单位是脱氧核苷酸。
每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成。
由于构成DNA的含氮碱基有四种:腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。
2.分子结构
DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。
DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
DNA分子两条链上的碱基通过氢键连接成碱基对,碱基配对遵循碱基互补配对原则。
应注意以下几点:
⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。
⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。
⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。
⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、c与G配对。
双链DNA分子中,A=T,c=G,A%=T%,c%=G%,可据此得出:
①A+G=T+c:即嘌呤碱基数与嘧啶碱基数相等;
②A+c=T+G:即任意两不互补碱基的数目相等;
③A%+c%=T%+G%=A%+G%=T%+c%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;
④/=/=/=A/c=T/G:即双链DNA及其任一条链的/为一定值;
⑤/=/=1/[/]:DNA分子两条链中的/互为倒数;双链DNA 分子的/=1。
根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。
3.结构特点
⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。
⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。
⑶特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。