八年级数学反比例函数知识点归纳和典型例题
(完整版)初中数学反比例函数知识点及经典例

04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
八年级数学反比例函数知识点归纳和典型例题

八年级数学反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,也是学生在八年级学习数学的一部分。
本文将对八年级数学中的反比例函数知识点进行归纳和解析,并给出一些典型例题进行讲解。
一、反比例函数的定义和性质反比例函数,也称为倒数函数,是指在定义域内,变量的值和函数的值成反比关系,即一个变量的增大导致函数值的减小,而变量的减小导致函数值的增大。
反比例函数的一般形式可以表示为 y = k/x ,其中 k 是非零常数。
反比例函数的性质如下:1. 函数图像:反比例函数的图像通常是一个经过原点的开口向上的函数。
2. 定义域和值域:反比例函数的定义域是除去 x = 0 的所有实数,值域是除去 y = 0 的所有实数。
3. 单调性:反比例函数在其定义域内是单调递减的。
4. 零点:当x ≠ 0 且 y = 0 时,我们可以得到反比例函数的一个零点。
二、反比例函数的典型例题下面我们将通过一些典型例题来帮助理解反比例函数的性质和应用。
例题1:已知函数 y = 3/x ,求当 x = 2 时,函数的值 y 是多少?解析:根据反比例函数的定义,当 x = 2 时,y = 3/2。
所以函数在 x = 2 时的值为 3/2。
例题2:若反比例函数 y = k/x 的图线经过点 (2, 6),求常数 k 的值。
解析:将点 (2, 6) 代入反比例函数的表达式,得到 6 = k/2。
解方程可以得到 k = 12,因此常数 k 的值为 12。
例题3:已知 y 和 x 成反比例关系,且 y = 15 当 x = 3,求 y = 2 时x 的值。
解析:由反比例函数的性质可知,在反比例关系中,y 和 x 是互相倒数的关系,即 y = 1/x。
根据已知条件可得 15 = 1/3,所以当 y = 2 时,x =1/2,即反比例函数的值。
例题4:若反比例函数 y = 4/x 经过点 (3, 2),求函数的值域。
解析:将点 (3, 2) 代入反比例函数的表达式,得到 2 = 4/3x。
初中数学反比例函数知识点及经典例题

反比例函数一、基础知识1. 概念:一样地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x k y =还能够写成kx y =1- 2. 反比例函数解析式的特点:⑴等号左侧是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边别离取三对或以上互为相反的数)② 描点(有小到大的顺序)③ 连线(从左到右滑腻的曲线) ⑵反比例函数的图像是双曲线,xk y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,因此双曲线是不通过原点,断开的两个分支,延伸部份慢慢靠近坐标轴,可是永久不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
45. k )6.“反比例关系”与“反比例函数”:成反比例的关系式不必然是反比例函数,可是反比例函数xk y =中的两个变量必成反比例关系。
7. 反比例函数的应用二、例题【例1】若是函数222-+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y =,(0≠k )即kx y =1-(0≠k )又在第二,四象限内,则0<k 能够求出的值【答案】由反比例函数的概念,得:⎩⎨⎧<-=-+01222k k k 解得⎪⎩⎪⎨⎧<=-=0211k k k 或 1-=∴k1-=∴k 时函数222-+=k k kx y 为xy 1-= 【例2】在反比例函数xy 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
初二数学反比例函数知识要点及经典例题解析(可编辑修改word版)

初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(2010 四川成都)如图 1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨: 由于 A 在反比例函数图象上,由反比例函数定义得,从而求出 A 点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B 点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时 x 的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点 A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或∵点 B 在第三象限,∴点 B 的坐标为。
反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
(完整版)初二数学反比例函数知识要点及经典例题解析

初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(2010四川成都)如图1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨:由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或∵点B在第三象限,∴点B的坐标为。
由图象可知,当反比例函数的值大于一次函数的值时,的取值范围是或。
初中数学反比例函数知识点及经典例题

反比例函数一、基础知识1. 定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成2. 反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法1 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)2 描点(有小到大的顺序)3 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
⑷反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。
4.反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
7. 反比例函数的应用二、例题【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数,()即()又在第二,四象限内,则可以求出的值【答案】由反比例函数的定义,得:解得时函数为【例2】在反比例函数的图像上有三点,,,,,。
若则下列各式正确的是()A. B. C. D.【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。
解法一:由题意得,,,所以选A解法二:用图像法,在直角坐标系中作出的图像描出三个点,满足观察图像直接得到选A解法三:用特殊值法【例3】如果一次函数相交于点(),那么该直线与双曲线的另一个交点为()【解析】【例4】如图,在中,点是直线与双曲线在第一象限的交点,且,则的值是_____.图解:因为直线与双曲线过点,设点的坐标为.则有.所以.又点在第一象限,所以.所以.而已知.所以.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点归纳和典型例题
知识点归纳
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.
越小,图象的弯曲度越大.
(2)图象的位臵和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当时,图象的两支分别位于一、三象限;
在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;
在每个象限内,y随x的增大而增大.
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,
则(,)在双曲线的另一支上.
图象关于直线对称,即若(a,b)在双曲线的一支上,
则(,)和(,)在双曲线的另一支上.
4.k 的几何意义
如图1,设点P (a ,b )是双曲线
上任意一点,作PA⊥x 轴于A 点,PB⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).
如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC⊥PA 的延长线于C ,则有三角形PQC 的面积为.
图1 5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.
(2)直线
与双曲线的关系: 当
时,两图象没有交点; 当
时,两图象必有两个交点,且这两个交点关于原点成中心对
称.
(3)反比例函数与一次函数的联系.
(四)实际问题与反比例函数
1.求函数解析式的方法:
(1)待定系数法;(2)根据实际意义列函数解析式.
图2
(五)充分利用数形结合的思想解决问题.
例题分析
1.反比例函数的概念
(1)下列函数中,y是x的反比例函数的是().
A.y=3x B.C.3xy=1 D.
(2)下列函数中,y是x的反比例函数的是().
A.B.C.D.
2.图象和性质
(1)已知函数是反比例函数,
①若它的图象在第二、四象限内,那么k=___________.
②若y随x的增大而减小,那么k=___________.
(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.
(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.
(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().
A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().
A.B.C.D.
3.函数的增减性
(1)在反比例函数的图象上有两点,,且
,则的值为().
A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,
,则函数值、、的大小关系是().
A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().
A.0个B.1个C.2个D.3个
(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).
4.解析式的确定
(1)若与成反比例,与成正比例,则y是z的().
A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.
(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.
(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).
①求x 0的值;②求一次函数和反比例函数的解析式.
(5)为了预防“非典”,某学校对教室采用
药薰消毒法进行消毒.已知药物燃烧时,室内每
立方米空气中的含药量y (毫克)与时间x (分
钟)成正比例,药物燃烧完后,y与x成反比例(如
图所示),现测得药物8分钟燃毕,此时室内空气中
每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:
①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.
②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;
③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
5.面积计算
(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、
、,则().
A.B.C.D.
第(1)题图第(2)题图
(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().
A.S=1 B.1<S<2 C.S=2 D.S>2
(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.
第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.
(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.
第(5)题图第(6)题图
(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.
①求这两个函数的解析式;
②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.
① 求B点坐标和k的值;
② 当时,求点P的坐标;
③ 写出S关于m的函数关系式.
6.综合应用
(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().
A.互为倒数B.符号相同C.绝对值相等D.符号相反
(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).
① 求反比例函数和一次函数的解析式;
② 根据图象写出使一次函数的值大于反比例函数
的值的x的取值范围.
(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD 垂直于x轴,垂足为D,若OA=OB=OD=1.
① 求点A、B、D的坐标;
② 求一次函数和反比例函数的解析式.
(4)如图,一次函数的图象与反比例函数
的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD (O是坐标原点).
① 利用图中条件,求反比例函数的解析式和m的值;
② 双曲线上是否存在一点P,使得△POC和△POD
的面积相等?若存在,给出证明并求出点P的坐标;若不
存在,说明理由.
(5)不解方程,判断下列方程解的个数.
①;②.。