《整式的乘除与因式分解》测试题
整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题。
因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。
因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等第十五章整式的乘除与因式分解阶段测试(有答案)整式的乘法测试题(总分:100分时间:60分钟)班级姓名学号得分一、填空题(每小题2分,共28分)1.计算(直接写出结果)①abull;a3=.③(b3)4=.④(2ab)3=.⑤3x2ybull; =.2.计算: = .3.计算: = .4.( ) =__________.5. ,求 = .6.若,求 = .7.若x2n=4,则x6n=___.8.若,,则 = .9.-12 =-6abbull;().10.计算:(2× )×(-4× )=.11.计算: = .12.①2a2(3a2-5b)=.②(5x+2y)(3x-2y)=.13.计算: = .14.若15.化简的结果是()A.0B. C. D.16.下列计算中,正确的是()A. B. C. D.17.下列运算正确的是()(A) (B)(C) (D)18.计算: bull; 等于().(A)-2(B)2(C)- (D)19.(-5x)2bull; xy的运算结果是().(A)10 (B)-10 (C)-2x2y(D)2x2y20.下列各式从左到右的变形,正确的是().(A) -x-y=-(x-y)(B)-a+b=-(a+b)(C) (D)21.若的积中不含有的一次项,则的值是()A.0B.5C.-5D.-5或522.若,则的值为()(A)-5(B)5(C)-2(D)223.若,,则等于()(A)-5(B)-3(C)-1(D)124.如果,,,那么()(A) gt; gt; (B) gt; gt; (C) gt; gt; (D) gt; gt;三、解答题:25.计算:(每小题4分,共8分)(1) ;(2) ;26.先化简,再求值:(每小题5分,共10分)(1)x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2.(2) ,其中 =27.解方程(3x-2)(2x-3)=(6x+5)(x-1)+15.(5分)28.①已知求的值,(4分)②若值.(4分)29.若,求的值.(6分)30.说明:对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除.(7分)31.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.(8分)参考答案:一.填空题:1.a4,b4,8a3b3,-6x5y3;2.0;3.-12x7y9;4.a18;5.2;6.1;7.64;8.180;9.2ab4c;10.-8×108,11. ;12.6a4-10a2b;15x2-4xy-4y2;13.2x-40;14.4二.选择题:15.C;16.D;17C;18.A;19.A;20.C;21.B;22.C;23.B;24.B;三.解答题:25.(1)x2y+3xy;(2)6a3-35a2+13a;26.(1)-3x2+18x-5,19;(2)m9,-512;27.x=- ;28.① ;②56;29.8;30.6(n+1);31.m=-4;m=2,可以提出多种问题..初二数学下册期末测试题及答案苏州市初二第二学期期末数学试题及答案初二数学第八章分式及分式方程单元复习题。
第十四章 整式的乘除和因式分解 单元检测

第十四章 整式的乘除与因式分解一、选择题(每小题3分,共36分) 1. 计算()232-a 的结果是 ( )A. 52a B. 54a C. 62a - D. 64a 2. 下列运算正确的是 ( )A. ab b a 532=+B. 1535a a a =⋅C. ()3362a a = D. 936a a a =+3. 计算等于()3432--x x 等于 ( ) A. 23912x x +- B. 23912x x -- C. 22912x x +- D. 22912x x -- 4. 一个长方体的长、宽、高分别是,,2,4-3a a a ,它的体积等于 ( ) A. 2343a a - B. 2a C. 2286a a - D. a a 862- 5. 已知:a+b=m,ab=-4,化简(a-2)(b-2)的结果是 ( ) A. 6 B. 2m-8 C. 2m D. -2m6. 已知k x a ++162是完全平方式,则常数k 等于 ( ) A. 64 B. 16± C. 32 D. 167. 下列各因式分解正确的是 ( ) A. )2)(2()2(22+-=-+-x x x B. ()22112-=-+x x xC. ()2212144-=+-x x x D. ()()2242+-=-x x x x x8. 下列多项式中,含有因式()1+y 的多项式是 ( ) A. 2232x xy y -- B. ()()2211--+y yC. ()()1122--+y y D. ()()11212++++y y9. 把多项式()()()111++-+m m m 提取公因式后,余下的部分是( ) A. 1+m B. m C. 2 D. 2+m 10. 下列各式能用完全平方公式进行分解因式的是 ( ) A. 12+x B. 122-+x x C. 12++x x D. 442++x x11.分解因式y x y xy x -++-222的结果是 ( ) A. ()()1+--y x y x B. ()()1---y x y x C. ()()1+-+y x y x D. ()()1--+y x y x12.已知1=-b a ,则b b a 222--的值为A. 4B. 3C. 1D. 0一、填空题(每小题3分,共18分) 13.分解因式:x x 10-22= .14.已知42+-mx x 是一个完全平方式,则=m .15.已知1,2-==+ab b a ,则=++b ab a 33 ; =+22b a . 16.已知,3,4==n ma a,则=+n m a .17. 观察图填空:各块图面积之和为2223b ab a ++,分解因式为 . 18.已知,,14222c b a c b a +==++,则ac bc ab +-的值为 三、解答题(共66分) 19.(15分)计算:(1) ()();3)2(222x z xy y x ⋅-- (2) ()b a b a 32)53(-+(3) ()()()y x y x y x 22322+--+第17题20.(10分)因式分解(1) ()x x -+-24)2(2 (2)()22)(9b a b a --+21.(9分)化简:()()[]()()[]11112+--++-m m m m m m m m .若是任意整数,请观察化简后的结果,你发现原式表示一个什么数? 22.(10分)如图是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图开头拼成一个正方形。
第14章 整式乘除与因式分解 单元同步检测试题 2022—2023学年人教版数学八年级上册

第十四章《整式的乘法与因式分解》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a62.下列因式分解正确的是()A. x2﹣4=(x+4)(x﹣4) B. x2+2x+1=x(x+2)+1C. 3mx﹣6my=3m(x-6y) D. 2x+4=2(x+2)3.下列因式分解错误的是()A. 2a﹣2b=2(a-b) B. x2﹣9=(x+3)(x﹣3)C. a2+4a-4=(a+2)2 D. -x2-x+2=-(x-1)(x+2)4.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.15.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7. 如果单项式-2x a-2b y2a+b与x3y8b是同类项,那么这两个单项式的积是()A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y168. 化简(-2)2n+1+2(-2)2n的结果是()A.0 B.-22n+1 C.22n+1 D.22n9. 因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3)C.(x-2)(x-3) D.(x+2)(x+3)10. 如图,设k =甲阴影部分的面积乙阴影部分的面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1D .0<k <12二、填空题(每题3分,共24分)11.计算:223()32x y --=__________.12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________. 13.当x __________时,(x -4)0=1.14.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为_______. 15.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 16.已知3a =5,9b =10,则3a +2b 的值为________. 17.已知A =2x +y ,B =2x -y ,计算A 2-B 2=________. 18.如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
整式的乘除与因式分解(4)

整式的乘除与因式分解(4)一填空题1.多项式a2b3+a2b2-3ab2-2ab-1是___次____项式,三次项系数是______,常数项是______2.已知m-n=2,则8-3m+3n=__________3.若a2-b2+ab加上一个多项式得-a2+b2-3ab -,则所加的多项式是___________________4.计算: 4a2b2-[2abc+( 5a2b3 -7abc)-a2b3)]=____________5.计算:(a3)2(a4)3=________;(-a2bc3)3=___________;(a+b)(-a-b)=_______(-5x+y)2=_______________;(2a3bc)×(-3ab2)÷(-2ab)=__________6.若(x+2)(x-3)=x2+mx+n,则m=______,n=________7.若x2-kxy+9y2是一个完全平方式,则k=_________8.因式分解:8a -4a2-4=_________________________9.计算:999×1001=______;729-27×34+289=_______10.若a2-2a+b2-6b+10=0,则a=_______, b=________11.已知ab≠0,a2+ab-2b2=0,,那么(2a-b)/(2a+b)的值为_____________12.分解因式:m2a-4ma+4a=_________________________13.分解因式:x(a-b)2n+y(b-a)2n+1=_______________________14.若x2-y2-x+y=(x-y)·A,则A=___________15.如图,据图形面积关系,不需要连线,便可以得到一个用来分解因式的公式,这个公式是16.若x2+2(m-3)x+16是完全平方式,则m=___________17.若(x2+y2)(x2+y2-1)=12,则x2+y2=___________18.已知a,b,c,d为非负整数,且ac+bd+ad+bc=1997,则a+b+c+d=___________19.分解因式x2-4x+y2+2xy-4y+4= ____________________20.两位同学将一个二次三项式分解因式,一位同学因看错了一次项而分解成2(x-1)(x-9),另一位同学因看错了常数项而分解成2(x-2)(x-4),则原多项式可分解_________________________二选择题21.下列等式中,正确的是( ) A (-5a)2=25a2 B (-5a)2=-25a2 C (-5a)2=10a2 D -(5a)2=25a222.计算(3x2y3)3,正确的结果是( )A 27x6y27 B 27x5y6 C 9x6y9 D 27x6y923.计算2100·(-2)100的正确结果是( )A 0 B 2100 C 2200 D -220024.计算y n·(-y)n的正确结果是( )A y2n B -y2n C -2y n D (-1)n·y2n25.(-2)2n+1+2×22n+1=( ) A 22n+1 B -22n+1 C 0 D 126.已知a+b=2,ab=3,则a2+b2-3ab 的值是( )A 11 B -11 C 1 D -127.计算(-2×104)·(3×105)的正确结果是( )A 6×1020 B 6×109 C 5×109 D -6×10928.下列个各单项式中,与2x4y是同类项的为( ) A 2x4 B 2xy C x4y D 2x2y329.小亮从一列火车的第m节车厢数起,一直数到第2m节车厢,他数过的车厢节数是( )A m+2m =3mB 2m-m =mC 2m-m-1 =m-1D 2m-m+1 =m+130.单项式:2a2b2,ab3,-3a2b的公因式是( ) A 6ab B 2ab C ab D 3ab31.下列从左边到右边的变形,是因式分解的是()A (3-x)(3+x)=9-x2B m3-mn2=m(m+n)(m-n)C (y+1)(y-3)=-(3-y)(y+1)D 4yz-2y2z+z=2y(2z-yz)+z32.下列式子中能用平方差公式分解因式的是() A a2+(-b)2 B 5m2-20mn C -x2-y2 D -x2+933.若(p-q)2-(q-p)3=(q-p)2·E,则E是()A 1-q-p B q-p C 1+p-q D 1+q-p34.若(x-3)(x+5)是x2+px+q的因式,则p为()A -15 B -2 C 8 D 235.如果9x2+kx+25是一个完全平方式,那么k的值是()A 15 B ±5 C 30 D ±3036.△ABC三边满足a2-2bc=c2-2ab,则△ABC是()三角形 A等腰 B直角 C等边 D锐角37.要在二次三项式x2+□x-6的□中填上一个整数,使它能按x2+(a+b)x+ab型分解为(x+a)(x+b)的形式,那么这些数只能是()A.1,-1; B.5,-5; C.1,-1,5,-5;D.以上答案都不对38.若a=2002x+2003,b=2002x+2004,c=2002x+2005,则a2+b2+c2-ab-bc-ca的值为() A 0 B 1 C 2 D 339.若a,b,c是△ABC的三条边,则a2-2ab+b2-c2的值()A大于零 B等于零 C小于零 D不能确定40.如图,R1、R2、R3三个电阻串联,线路AB上电流为I,电压为V,V=IR1+IR2+IR3,R1=19.7,R2=32.4,R3=35.9,I=2,V=() A 178 B 28 C 176 D 100三解答题41计算题(1)(-x)3·(-x)·(-x)5(2)(-2x2y)3+8(x2)2·(-x2)·(-y)3 (3)(a-2b+3)(a+2b-3)(4)[(x-2y)2+(3x-2y) (3x+2y)]÷(-5x) (5)a5b3/2÷(-a3b/4)(-3a)2 (6) (2x+5y)2(2x-5y)242.(1)化简求值10a(5a2-b)-2a(5b+25a2)-3ab,其中a=1, b=2 (2)解方程 4(x-2)(x+5)-(2x-3)(2x+1)=543.(1)已知a+b=3, 求(a2+b2)/2+ab的值;(2)已知a-b=3, ab=4,求a2b-ab2的值44.因式分解: (1)x2y-2xy+y (2)a3-a (3)-9m2+16n2(4)6x2y(x-y)3-4xy2(y-x)3 (5)6(x-y)-9-(x-y)2(6)2x3y+8x2y2+8xy345.利用因式分解计算:(1-1/22)(1-1/32)(1-1/42)…(1-1/102)46.已知a2b2+a2+b2+1=4ab,求a,b47.(1)若x-2y=15,xy=-25,求x2+4y2-1的值(2)若x+1/x=3,求5x2+5/x2及3(x-1/x)2的值。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
八年级上册数学整式的乘除与因式分解精选练习题及答案

整式的乘除与因式分解精选练习题(一)一、填空题(每题2分,共32分)1.-x2·(-x)3·(-x)2=__________.2.分解因式:4mx+6my=_________.3.___ ____.4._________;4101×0.2599=__________.5.用科学记数法表示-0.0000308=___________.6.①a2-4a+4,②a2+a+,③4a2-a+,•④4a2+4a+1,•以上各式中属于完全平方式的有______(填序号).7.(4a2-b2)÷(b-2a)=________.8.若x+y=8,x2y2=4,则x2+y2=_________.9.计算:832+83×34+172=________.10..11.已知.12.代数式4x2+3mx+9是完全平方式,则m=___________.13.若,则,.14.已知正方形的面积是(x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式.15.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________.16.已知,那么_______.二、解答题(共68分)17.(12分)计算:(1)(-3xy2)3·(x3y)2;(2)4a2x2·(-a4x3y3)÷(-a5xy2);(3);(4).18.(12分)因式分解:(1);(2);(3);(4).19.(4分)解方程:.20.(4分)长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的.求原面积.21.(4分)已知x2+x-1=0,求x3+2x2+3的值.22.(4分)已知,求的值.3.(4分)给出三个多项式:,,4.(4分)已知,求的值.6.(4分)已知,试判断此三角形的形状.答案一、填空题1.x7 2.3.4.5.6.①②④7.8.12 9.10000 10.11.2 12.13.14. 15. 16.65二、解答题17.(1)-x9y8;(2)ax4y;(3);(4)18.(1);(2);(3);(4)19.3 20.180cm21.4 22.4 23.略24.7 25. 26.等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
《整式的乘除与因式分解》测试题
班级__________ 姓名______________ 得分
一、选择题(每小题3分,共24分)
1.下列计算中正确的是 ( )
A .5322a b a =+
B .44a a a =÷
C .842a a a =⋅
D .()63
2a a -=-
2. ()()22a ax x a x ++-的计算结果是 ( )
A .3232a ax x -+
B .33a x -
C .3232a x a x -+
D .322322a a ax x -++ 3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ) ①()5
2
3
623x
x
x -=-⋅; ②()a b a b a 2242
3
-=-÷;
③()52
3a a =; ④()()23a a a -=-÷-
A .1个
B .2个
C .3个
D .4个
4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( ) A 、x 2+3x -1 B 、x 2+2x C 、x 2-1 D 、x 2
-3x+1 5.是完全平方式的是(
)
A 、4
1
2+
-x x B 、21x + C 1++xy x D 、122-+x x
6.把多项式)2()2(2
a m a m -+-分解因式等于(
)
A 、))(2(2m m a +-
B 、))(2(2m m a --
C 、m(a-2)(m-1)
D 、m(a-2)(m+1) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A. –3
B. 3
C. 0
D. 1
8.若3x
=15,3y
=5,则3x -y
等于( )
A 、5
B 、3
C 、15
D 、10 二、填空题(每空3分,共21分) 9.=
--
+-
)3
2)(3
2(n n n m ___________.10.=-
-
2
)2
33
2(y x ______________,
11当x ___________时,()0
4-x 等于__________;. 12.若。
=
,,则b a b b a ==+-+-01222 13.已知31=+
a
a ,则2
2
1a
a +
的值是 。
三、解答题:(共55分)
14、计算题(每小题5分,共15分)
(1) 2
2)1
)2)(2(x
x x x x +-+--(
(2) [(x+y )2-(x -y )2]÷(2xy) (3)简便方法计算 1198992++
15、因式分解:(每小题5分,共20分)
(1)3123x x -(4分) (2)a a a 1812223-+- (4分)
(3)9a 2(x-y)+4b 2(y-x); (4)(x+y)2+2(x +y)+1
16、先化简,再求值. (10分)
.2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x=1
17(本题10分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。