2017年春中考数学总复习 第二轮 中考题型专题 专题复习(三)阅读理解题试题含答案
全国数学专卷2019年中考数学总复习 第二轮 中考题型专题 专题复习(三)阅读理解题试题

专题复习(三) 阅读理解题1.(2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点(2,12)在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;(2)函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题 提示:(1)∵P(a,b)在y =1x 上,∴a 和b 同号.∴对称轴在y 轴左侧.∴存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧,是假命题;(2)∵函数y =1x 的所有“派生函数”为y =ax 2+bx ,∴x =0时,y =0.∴所有“派生函数”的图象都经过原点.∴函数y =1x的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:27 3根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 212=-1.其中正确的是(B)A .①②B .①③C .②③D .①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P 为正整数,现规定P !=P(P -1)(P -2)×…×2×1,若m !=24,则正整数m =4. 5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a +b +c2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S =下面我们对公式②进行变形: 14[a 2b 2-(a 2+b 2-c 22)2] =(12ab )2-(a 2+b 2-c 24)2 =(12ab +a 2+b 2-c 24)(12ab -a 2+b 2-c 24) =2ab +a 2+b 2-c 24·2ab -a 2-b 2+c24=(a +b )2-c 24·c 2-(a -b )24=a +b +c 2·a +b -c 2·a +c -b 2·b +c -a 2=p (p -a )(p -b )(p -c ).这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在△ABC 中,AB =13,B C =12,AC =7,⊙O 内切于△ABC,切点分别是D 、E 、F.(1)求△ABC 的面积; (2)求⊙O 的半径.解:(1)∵AB=13,BC =12,AC =7, ∴p =13+12+72=16.∴S =p (p -a )(p -b )(p -c )=16×(16-12)×(16-7)×(16-13) =24 3.(2)连接OE 、OF 、OD 、OB 、OC 、OA.设⊙O 的半径为r. ∵BC 切⊙O 于E 点,∴OE ⊥BC. ∴S △OBC =12BC·OE=12ar.同理:S △OAC =12br ,S △OAB =12cr.∴S △ABC =S △OBC +S △OAC +S △OAB =12r(a +b +c).∴12r(12+7+13)=243,解得r =332.6.(2016·重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n|=0,∴n ×n 是m 的最佳分解. ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 为“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=18. ∴y -x =2,即y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79. ∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179. ∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F(t)的最大值是57.7.(2015·遂宁改编)阅读下列材料,并用相关的思想方法解决问题. 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).令12+13+14=t ,则 原式=(1-t)×(t+15)-(1-t -15)×t=t +15-t 2-15t -t +t 2+15t=15. 问题:(1)计算:(1-12-13-14-…-12 015)×(12+13+14+…+12 016)-(1-12-13-14-…-12 016)×(12+13+14+…+12 015); (2)解方程:(x 2+5x +1)(x 2+5x +7)=7. 解:(1)令12+13+14…+12 015=t ,则原式=(1-t )×(t+12 016)-(1-t -12 016)×t=t +12 016-t 2-12 016t -t +t 2+12 016t=12 016. (2)令x 2+5x =t ,则原方程化为(t +1)(t +7)=7.整理,得t 2+8t =0,解得t =0或t =-8.①当t =0时,x 2+5x =0,解得x =0或x =-5;②当t =-8时,x 2+5x =-8,即x 2+5x +8=0.∵Δ=b 2-4ac =52-4×1×8=-7<0, ∴此方程无解.因此原方程的解是x =0或x =-5.8.(2016·郴州)设a 、b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a⊕b=⎩⎪⎨⎪⎧b a (a >0),a -b (a≤0),例如:1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x-1)=x -1x 2+1(因为x 2+1>0).参照上面材料,解答下列问题: (1)2⊕4=2,(-2)⊕4=-6;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x),求x 的值.解:∵x>12,∴2x -1>0.∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=(2x +1)(2x -1)2x -1=2x +1.∵-4<0,∴(-4)⊕(1-4x)=-4-(1-4x)=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.9.(2016·咸宁)阅读理解:我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是1203猜想证明:(2)若矩形的面积为S 1,其变形后的平行四边形面积为S 2,试猜想S 1,S 2,1sin α之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD 中,E 是AD 边上的一点,且AB 2=AE·AD,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,E 1为E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为4m(m >0),平行四边形A 1B 1C 1D 1的面积为2m(m >0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.图1 图2 图3解:(2)猜想:1sin α=S 1S 2.理由如下:如图3,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h. 则S 1=ab ,S 2=ah ,sin α=hb.∴S 1S 2=ab ah =b h ,1sin α=b h .∴1sin α=S 1S 2. (3)由AB 2=AE·AD,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.又∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1. ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)中1sin α=S 1S 2,可知1sin ∠A 1B 1C 1=4m2m =2.∴sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°.10.(2016·邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF ,BE 是△ABC 的中线,且AF⊥BE,垂足为P ,设BC =a ,A C =b ,AB =c.求证:a 2+b 2=5c 2. 该同学仔细分析后,得到如下解题思路:先连接EF ,利用EF 为△ABC 的中位线得到△EPF∽△BPA,故EP BP =PF PA =EF BA =12,设PF =m ,PE =n ,用m ,n 把PA ,PB分别表示出来,再在Rt △APE ,Rt △BPF 中利用勾股定理计算,消去m ,n 即可得证. (1)请你根据以上解题思路帮尤秀同学写出证明过程; (2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.解:(1)连接EF ,设PF =m ,PE =n. ∵AF ,BE 是△ABC 的中线,∴EF 为△ABC 的中位线,AE =12b ,BF =12a.∴EF ∥AB ,EF =12c.∴△EPF ∽△BPA. ∴EP BP =PF PA =EF BA =12,即n PB =m PA =12. ∴PB =2n ,PA =2m.在Rt △AEP 中,∵PE 2+PA 2=AE 2, ∴n 2+4m 2=14b 2.①在Rt △BFP 中,∵PF 2+PB 2=BF 2, ∴m 2+4n 2=14a 2.②①+②,得5(n 2+m 2)=14(a 2+b 2).在Rt △EFP 中,∵PE 2+PF 2=EF 2, ∴n 2+m 2=14c 2.∴5·14c 2=14(a 2+b 2),即a 2+b 2=5c 2.(2)连接EF.∵四边形ABCD 为菱形, ∴AD ∥BC ,AD =BC ,BD ⊥AC.∵E ,F 分别为线段AO ,DO 的中点, ∴EF ∥AD ,EF =12AD.∴EF ∥BC ,EF =12BC.∴E ,F 分别是BM ,CM 的中点.由(1)的结论得MB 2+MC 2=5BC 2=5×32=45. ∵AG ∥BC ,∴△AEG ∽△CEB. ∴AG BC =AE CE =13.∴AG=1. 同理可得DH =1.∴GH =AD -AG -DH =1. 又∵GH∥BC,∴MG MB =MH MC =GH BC =13.∴MB =3GM ,MC =3MH.∴9MG 2+9MH 2=45,即MG 2+MH 2=5.11.(2016·永州)问题探究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”). 2.解决问题已知等边△ABC 的边长为2.(1)如图1,若AD⊥BC,垂足为D ,试说明AD 是△ABC 的一条面径,并求AD 的长; (2)如图2,若M E∥BC,且ME 是△ABC 的一条面径,求面径ME 的长;(3)如图3,已知D 为BC 的中点,连接AD ,M 为AB 上的一点(0<AM <1),E 是DC 上的一点,连接ME ,ME 与AD 交于点O ,且S △MOA =S △DOE .①求证:ME 是△ABC 的面径; ②连接AE ,求证:MD∥AE;(4)请你猜测等边三角形ABC 的面径长l 的取值范围(直接写出结果).提示:x 2+y 2≥2xy. 解:(1)∵AB=AC =BC =2,AD ⊥BC , ∴BD =DC =1,∴S △ABD =S △ACD . ∴线段AD 是△ABC 的面径. 又∵∠B=60°,∴AD =B D·tanB = 3.(2)∵ME∥BC,且ME 是△ABC 的一条面径, ∴△AME ∽△ABC ,S △AME S △ABC =12.∴ME BC =12.(3)①证明:∵D 为BC 的中点,∴S △ABD =S △ACD . ∴S 四边形BDOM +S △MOA =S 四边形ACEO +S △DOE . 又S △MOA =S △DOE ,∴S 四边形BDOM +S △DOE =S 四边形ACEO +S △MOA , 即S △BME =S 四边形ACEM . ∴ME 是△ABC 的面径.②作MN⊥AE 于N ,DF ⊥AE 于F , 则MN∥DF. ∵S △MOA =S △DOE ,∴S △MOA +S △AOE =S △DOE +S △AOE , 即S △AEM =S △AED .∴12AE·MN=12AE·DF.∴MN=DF. 又∵MN∥DF,∴四边形MNFD 是平行四边形. ∴DM ∥AE.(4)作MH⊥BC 于H ,设BM =x ,BE =y , ∵DM ∥AE ,∴BM BA =BD BE .∴x 2=1y.∴xy=2.在Rt △MBH 中,∵∠MHB =90°,∠B =60°,BM =x , ∴BH =12x ,MH =32x.∴ME =MH 2+EH 2=(32x )2+(y -12x )2=x 2+y 2-xy ≥2xy -xy , 即ME≥ 2.∵ME 、AD 都是等边△ABC 的面径,∴等边△ABC 的面径长l 的取值范围是2≤l≤ 3.。
中考数学总复习第二轮中考题型专题专题复习(三)阅读理解题试题

专题复习(三)阅读理解题1.(2016·湖州)定义:若点P(a,b)在函数y=错误!的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=错误!的一个“派生函数”.例如:点(2,错误!)在函数y=错误!的图象上,则函数y=2x2+错误!x称为函数y=错误!的一个“派生函数”.现给出以下两个命题:(1)存在函数y=错误!的一个“派生函数”,其图象的对称轴在y轴的右侧;(2)函数y=错误!的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题提示:(1)∵P(a,b)在y=错误!上,∴a和b同号.∴对称轴在y轴左侧.∴存在函数y=错误!的一个“派生函数",其图象的对称轴在y轴的右侧,是假命题;(2)∵函数y=错误!的所有“派生函数”为y=ax2+bx,∴x=0时,y=0.∴所有“派生函数"的图象都经过原点.∴函数y=错误!的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:指数运算21=2 22=423=8 …31=3 32=9 33=27 …新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3…根据上表规律,某同学写出了三个式子:①log216=4;②log525=5;③log2错误!=-1。
其中正确的是(B) A.①② B.①③ C.②③ D.①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=-错误!的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P为正整数,现规定P!=P(P-1)(P-2)×…×2×1,若m!=24,则正整数m=4.5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a,b,c,记p=错误!,那么三角形的面积为S=错误!.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S=错误!.②下面我们对公式②进行变形:错误!=错误!=错误!=错误!=错误!=错误!=错误!。
2017年中考数学真题分类解析 阅读理解型问题

一、选择题1. (2017甘肃庆阳,10,3分)如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ) A.22cmB.32cmC.42cmD.52cm答案:B ,解析:当点P 运动2.5秒时,如图所示:AB CDPQ则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B .二、填空题1. (2017广西百色,18,3分)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=⨯;(2)常数项3131(3)-=-⨯=⨯-,验算:“交叉相乘之和”;ABCD Q Px (秒)y (cm )O 2图②图① 第10题图(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 答案:(x+3)(3x -4).解析:如图.2. (2017贵州毕节)观察下列运算过程: 计算:1+2+22+...+210.. 解:设S =1+2+22+ (210)①①⨯2得2S =2+22+23+…+211,②②-①,得 S =211-1.所以,1+2+22+…+210=211-1.运用上面的计算方法计算:1+3+32+…+32017=______________.答案:2018312-,解析:设S =1+3+32+ (32017)①①⨯3得3S =3+32+33+…+32018,②②-①,得 2S =32018-1.所以,1+3+32+ (32017)2018312-.3. (2017湖南湘潭,16,3分)阅读材料:设),,(),,(2211y x b y x a ==如果b a //,则x 1·y 2=x 2·y 1.根据该材料填空:已知),4(),3,2(m ==,且b a //,则m=_________.答案:6,由材料可以得到:2m=3×4,从而求得m=6.三、解答题1. 20.(2017湖南张家界)(本小题满分6分)阅读理解题:i.2.△ABC2S△ABC=12ac sin∠B,aDBC+S 4.60°S 4S 3S 2S 1B'A'ABC3. (2017•日照,21,12分)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By C A B+++.例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知,A =4,B =3,C =-3, ∴点P 0(0,0)到直线4x +3y -3=0的距离为d =224030343⨯+⨯-+=35. 根据以上材料,解决下列问题: 问题1:点P 1(3,4)到直线y =-34x +54的距离为 4 ; 问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =-34x +b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.【思路分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.解:(1)点P 1(3,4)到直线3x +4y -5=0的距离d 223344534⨯+⨯-+,故答案为4.(2)∵⊙C 与直线y =-34x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y -b =0的距离d =1,解得b =5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d,∴4.- ((为图1思路分析:(1)将tan75°转化为tan (45°+30°),根据公式计算即可; (2)根据(1)中tan75°的值及AC 的值,先求出BE ,然后加上AE 的值也就是CD 即可.解:(1)tan75°= tan (45°+30°)= tan45tan301tan45tan30+-ooo o g 1+33=2(2)依题有DE=CA=5.7,∴BE=DE×tan75°=5.7×(2 5.7×3.732≈21.3,∴AB=BE+AE=BE +CD=21.27+1.72≈23(米)。
中考数学第二轮专题复习 3阅读理解题试题

卜人入州八九几市潮王学校阅读理解题Ⅰ、综合问题精讲:阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的根底上,理解其中的内容、方法和思想,然后在把握本质,理解本质的根底上作出答复.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,擅长总结解题规律,并能准确阐述自己的思想和观点,考察学生对数学知识的理解程度、数学方法的运用程度及分析推理才能、数据处理才能、文字概括才能、书面表达才能、随机应变才能和知识的迁移才能等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中表达出的数学思想和方法.Ⅱ、典型例题剖析【例1】〔2021,模拟,9分〕如图2-7-1所示,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线上平移时,正方形EFH 也随之平移,在平移时正方形EFGH的形状、大小没有改变.〔1〕计算:O1D=_______,O2F=______;〔2〕当中心O2在直线l上平移到两个正方形只有一个公一共点时,中心距O1O2=_________.〔3〕随着中心O2在直线l上的平移,两个正方形的公一共点的个数还有哪些变化?并求出相对应的中心距的值或者取值范围.〔不必写出计算过程〕解:〔1〕O1D=2,O2F=1;〔2〕O1O2=3;〔2〕当O1O2>3或者0≤O1O2<1时,两个正方形无公一共点;当O1O2=1时,两个正方形有无数个公一共点;当1<O1O2<3时,两个正方形有2个公一共点.点拨:此题实际上考察的知识点是“两圆的位置关系〞,但形式有所变化.因此,可以再次经历探究两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d与半径R和r的数量关系,五种位置关系主要由两个因素确定:①公一共点的个数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探究方法迁移到研究“两个正方形的位置关系〞上来.【例2】〔2021,,9分〕阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+,其中n是正整数。
2017年中考数学复习考点解密 阅读理解型问题含11真题带解析

阅读理解型问题一、专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题. kmCez0EPtm二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.kmCez0EPtm三、考点精讲考点一:阅读试题提供新定义、新定理,解决新问题<2018连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:<1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;<2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.<S表示面积)ADC B P 1P 2 P 3 P 4 Q 1 Q 2 Q 3 Q 4图3问题1:如图1,现有一块三角形纸板ABC ,P1,P2三等分边AB ,R1,R2三等分边AC .经探究知=错误!S △ABC ,请证明.kmCez0EPtm 问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD ,如图2,Q1,Q2三等分边DC .请探究与S 四边形ABCD 之间的数量关系.kmCez0EPtm 问题3:如图3,P1,P2,P3,P4五等分边AB ,Q1,Q2,Q3,Q4五等分边DC .若 S 四边形ABCD =1,求.问题4:如图4,P1,P2,P3四等分边AB ,Q1,Q2,Q3四等分边DC ,P1Q1,P2Q2,P3Q3kmCez0EPtm 将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.kmCez0EPtm 【分析】问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得。
【最新】中考数学总复习 专题二 阅读理解(含解析) 北师大版

专题二阅读理解阅读理解题是近年来中考的常见题型.它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题,提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.解答这类题关键是理解阅读材料的实质,把握方法、规律,然后加以解决.阅读理解题是近几年中考的热点,出现形式多样.考点一新知学习型问题新知学习型阅读理解题,是指题目中首先给出一个新知识通常是新概念或新公式,通过阅读题目提供的材料,从中获取新知识,通过对新知识的理解来解决题目提出的问题,其主要目的是考查学生的自学能力及对新知识的理解与运用能力,便于学生养成良好的学习习惯.【例1】如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为.A.π B.1 C.2 D.错误!解析:根据新定义“等边扇形”的特点,其扇形的弧长等于半径,=错误!R,则S=错误!×2×2=2答案:C解此类题时,要结合新知识、新定义的特点,定义本身即是给出的相应条件,结合条件,利用已有知识解答.考点二方法模仿型问题方法模仿型阅读理解题,是指材料先给出一道题目的解答方法或解题过程,要求模仿这一方法来解决同类型或者类似的问题.【例2】阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD中,AD∥BC,对角线AC,的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.图1 图2小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形如图2.请你回答:图2中△BDE的面积等于__________.参考小伟同学思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF图31在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形保留画图痕迹.2若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于__________.解:△BDE的面积等于11如图.以AD,BE,CF的长度为三边长的一个三角形是△CF006 2 2m,-1-m]的函数的一些结论:①当m=-3时,函数图象的顶点坐标是错误!,错误!;②当m>0时,函数图象截轴所得的线段长度大于错误!;③当m<0时,函数在>错误!时,随的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有.A.①②③④ B.①②④ C.①③④ D.②④5.定义运算ab=a1-b,下列给出了关于这种运算的几个式子:①2-2=6 ②ab=ba③若a+b=0,则ab+ba=2ab④若ab=0,则a=0其中正确结论序号是__________.6.若函数=错误!,则当函数值=8时,自变量的值是__________.7.先阅读理解下面的例题,再按要求解答.例题:解一元二次不等式2-9>0解:∵2-9=+3-3,∴+3-3>0由有理数的乘法法则“两数相乘,同号得正”,有1错误!2错误!解不等式组1,得>3,解不等式组2,得<-3,故+3-3>0的解集为>3或<-3,即一元二次不等式2-9>0的解集为>3或<-3问题:求分式不等式错误!<0的解集.8.如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.1如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B 作BE⊥CD,是△ABC的自相似点.2在△ABC中,∠A<∠B<∠C.如图③,利用尺规作出△ABC的自相似点P写出作法并保留图痕迹.参考答案专题提升演练1.C 5①或-错误!7.解:由有理数的除法法则“两数相除,异号得负”,有1错误!2错误!解不等式组1,得-错误!<<错误!,解不等式组2,得无解.故分式不等式错误!<0的解集为-错误!<<错误!8.解:1在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴CD=错误!AB,∴CD=BD,∴∠BCE=∠ABC∵BE⊥CD,∴∠BEC=90°∴∠BEC=∠ACB∴△BCE∽△ABC∴E是△ABC的自相似点.2作图略.作法如下:ⅰ在∠ABC内,作∠CBD=∠A;ⅱ在∠ACB内,作∠BCE=∠ABC,BD交CE于点P则P为△ABC的自相似点.。
2017年春中考数学总复习单元测试三函数试题

单元测试(三) 函数(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分) 1.(2016·娄底)函数y =x x -2的自变量x 的取值范围是( A ) A .x ≥0且x≠2 B .x ≥0 C .x ≠2 D .x >22.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( A ) A .5 B .6 C .7 D .83.(2016·苏州)已知点A(2,y 1)、B(4,y 2)都在反比例函数y =k x(k<0)的图象上,则y 1、y 2的大小关系为( B ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .无法比较4.对于函数y =k 2x(k 是常数,k ≠0)的图象,下列说法不正确的是( C )A .是一条直线B .过点(1k,k) C .经过一、三象限或二、四象限 D .y 随着x 增大而增大5.(2016·新疆)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( B )6.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0),若0<y 1<y 2,则x 的取值范围是( C )A .0<x <2B .0<x <3C .2<x <3D .x <0或x >37.(2016·威海)已知二次函数y =-(x -a)2-b 的图象如图所示,则反比例函数y =ab x与一次函数y =ax +b 的图象可能是( B )8.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( C )A .①②③B .①③④C .①③⑤D .②④⑤二、填空题(每小题4分,共16分)9.(2016·淮安)点A(3,-2)关于x 轴对称的点的坐标是(3,2).10.(2016·广安)若反比例函数y =k x(k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过一、二、四象限.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y =3x经过点D ,则正方形ABCD 的面积是12.12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是y =-19(x +6)2+4. 三、解答题(共52分)13.(12分)如图,已知反比例函数y =m x的图象与一次函数y =ax +b 的图象相交于点A(1,4)和点B(n ,-2). (1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.解:(1)∵反比例函数y =m x 的图象过点A(1,4), ∴m =4.∴反比例函数解析式为y =4x. ∵反比例函数y =4x过点B(n ,-2), ∴4n=-2,即n =-2. ∴B 点坐标为(-2,-2).∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴⎩⎪⎨⎪⎧a +b =4,-2a +b =-2.解得⎩⎪⎨⎪⎧a =2,b =2. ∴一次函数解析式为y =2x +2.(2)x<-2或0<x<1.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间?(2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分),在超市逗留的时间为40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得⎩⎪⎨⎪⎧40k +b =3 000,45k +b =2 000.解得⎩⎪⎨⎪⎧k =-200,b =11 000. ∴y 与x 的函数表达式为y =-200x +11 000.令y =0,得-200x +11 000=0,解得x =55.∴小敏8点55分返回到家.15.(14分)某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y =60+2x ,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为62元/千克,获得的总利润为10_340元;(2)设批发商将这批水果保存x 天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.解:(2)由题意,得w =(60+2x)(500-10x)-40x -500×40=-20x 2+360x +10 000(0≤x≤8,且x 为整数).(3)w =-20x 2+360x +10 000=-20(x -9)2+11 620.∵0≤x ≤8,x 为整数,当x<9时,w 随x 的增大而增大,∴当x =8时,w 取最大值,w 最大=11 600.答:批发商所获利润最大为11 600元.16.(14分)(2015·临沂改编)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C.(1)求过点A 、B 、C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC 为菱形时,求点P 的坐标.解:(1)由题意,得⎩⎪⎨⎪⎧y =-2x -1,y =-x.解得⎩⎪⎨⎪⎧x =-1,y =1.∴B(-1,1).∵点B 关于原点的对称点为点C ,∴C(1,-1).∵直线y =-2x -1与y 轴交于点A ,∴A(0,-1).设抛物线解析式为y =ax 2+bx +c ,∵抛物线过A ,B ,C ,∴⎩⎪⎨⎪⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎪⎨⎪⎧a =1,b =-1,c =-1.∴抛物线解析式为y =x 2-x -1.(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,∴P(x ,y)需满足⎩⎪⎨⎪⎧y =x ,y =x 2-x -1. 解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,y 2=1- 2.∴P 点坐标为(1+2,1+2)或(1-2,1-2).。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习(三) 阅读理解题1.(2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点(2,12)在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;(2)函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题 提示:(1)∵P(a,b)在y =1x 上,∴a 和b 同号.∴对称轴在y 轴左侧.∴存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧,是假命题;(2)∵函数y =1x 的所有“派生函数”为y =ax 2+bx ,∴x =0时,y =0.∴所有“派生函数”的图象都经过原点.∴函数y =1x的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:27 3根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 212=-1.其中正确的是(B)A .①②B .①③C .②③D .①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P 为正整数,现规定P !=P(P -1)(P -2)×…×2×1,若m !=24,则正整数m =4. 5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a +b +c2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S =下面我们对公式②进行变形: 14[a 2b 2-(a 2+b 2-c 22)2] =(12ab )2-(a 2+b 2-c 24)2 =(12ab +a 2+b 2-c 24)(12ab -a 2+b 2-c 24) =2ab +a 2+b 2-c 24·2ab -a 2-b 2+c24=(a +b )2-c 24·c 2-(a -b )24=a +b +c 2·a +b -c 2·a +c -b 2·b +c -a 2=p (p -a )(p -b )(p -c ).这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在△ABC 中,AB =13,B C =12,AC =7,⊙O 内切于△ABC,切点分别是D 、E 、F.(1)求△ABC 的面积; (2)求⊙O 的半径.解:(1)∵AB=13,BC =12,AC =7, ∴p =13+12+72=16.∴S =p (p -a )(p -b )(p -c )=16×(16-12)×(16-7)×(16-13) =24 3.(2)连接OE 、OF 、OD 、OB 、OC 、OA.设⊙O 的半径为r. ∵BC 切⊙O 于E 点,∴OE ⊥BC. ∴S △OBC =12BC·OE=12ar.同理:S △OAC =12br ,S △OAB =12cr.∴S △ABC =S △OBC +S △OAC +S △OAB =12r(a +b +c).∴12r(12+7+13)=243,解得r =332.6.(2016·重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n|=0,∴n ×n 是m 的最佳分解. ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 为“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=18. ∴y -x =2,即y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79. ∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179. ∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F(t)的最大值是57.7.(2015·遂宁改编)阅读下列材料,并用相关的思想方法解决问题. 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).令12+13+14=t ,则 原式=(1-t)×(t+15)-(1-t -15)×t=t +15-t 2-15t -t +t 2+15t=15. 问题:(1)计算:(1-12-13-14-…-12 015)×(12+13+14+…+12 016)-(1-12-13-14-…-12 016)×(12+13+14+…+12 015); (2)解方程:(x 2+5x +1)(x 2+5x +7)=7. 解:(1)令12+13+14…+12 015=t ,则原式=(1-t )×(t+12 016)-(1-t -12 016)×t=t +12 016-t 2-12 016t -t +t 2+12 016t=12 016. (2)令x 2+5x =t ,则原方程化为(t +1)(t +7)=7.整理,得t 2+8t =0,解得t =0或t =-8.①当t =0时,x 2+5x =0,解得x =0或x =-5;②当t =-8时,x 2+5x =-8,即x 2+5x +8=0.∵Δ=b 2-4ac =52-4×1×8=-7<0, ∴此方程无解.因此原方程的解是x =0或x =-5.8.(2016·郴州)设a 、b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a⊕b=⎩⎪⎨⎪⎧b a (a >0),a -b (a≤0),例如:1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x-1)=x -1x 2+1(因为x 2+1>0).参照上面材料,解答下列问题: (1)2⊕4=2,(-2)⊕4=-6;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x),求x 的值.解:∵x>12,∴2x -1>0.∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=(2x +1)(2x -1)2x -1=2x +1.∵-4<0,∴(-4)⊕(1-4x)=-4-(1-4x)=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.9.(2016·咸宁)阅读理解:我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是1203猜想证明:(2)若矩形的面积为S 1,其变形后的平行四边形面积为S 2,试猜想S 1,S 2,1sin α之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD 中,E 是AD 边上的一点,且AB 2=AE·AD,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,E 1为E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为4m(m >0),平行四边形A 1B 1C 1D 1的面积为2m(m >0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.图1 图2 图3解:(2)猜想:1sin α=S 1S 2.理由如下:如图3,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h. 则S 1=ab ,S 2=ah ,sin α=hb.∴S 1S 2=ab ah =b h ,1sin α=b h .∴1sin α=S 1S 2. (3)由AB 2=AE·AD,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.又∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1. ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)中1sin α=S 1S 2,可知1sin ∠A 1B 1C 1=4m2m =2.∴sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°.10.(2016·邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF ,BE 是△ABC 的中线,且AF⊥BE,垂足为P ,设BC =a ,A C =b ,AB =c.求证:a 2+b 2=5c 2. 该同学仔细分析后,得到如下解题思路:先连接EF ,利用EF 为△ABC 的中位线得到△EPF∽△BPA,故EP BP =PF PA =EF BA =12,设PF =m ,PE =n ,用m ,n 把PA ,PB分别表示出来,再在Rt △APE ,Rt △BPF 中利用勾股定理计算,消去m ,n 即可得证. (1)请你根据以上解题思路帮尤秀同学写出证明过程; (2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.解:(1)连接EF ,设PF =m ,PE =n. ∵AF ,BE 是△ABC 的中线,∴EF 为△ABC 的中位线,AE =12b ,BF =12a.∴EF ∥AB ,EF =12c.∴△EPF ∽△BPA. ∴EP BP =PF PA =EF BA =12,即n PB =m PA =12. ∴PB =2n ,PA =2m.在Rt △AEP 中,∵PE 2+PA 2=AE 2, ∴n 2+4m 2=14b 2.①在Rt △BFP 中,∵PF 2+PB 2=BF 2, ∴m 2+4n 2=14a 2.②①+②,得5(n 2+m 2)=14(a 2+b 2).在Rt △EFP 中,∵PE 2+PF 2=EF 2, ∴n 2+m 2=14c 2.∴5·14c 2=14(a 2+b 2),即a 2+b 2=5c 2.(2)连接EF.∵四边形ABCD 为菱形, ∴AD ∥BC ,AD =BC ,BD ⊥AC.∵E ,F 分别为线段AO ,DO 的中点, ∴EF ∥AD ,EF =12AD.∴EF ∥BC ,EF =12BC.∴E ,F 分别是BM ,CM 的中点.由(1)的结论得MB 2+MC 2=5BC 2=5×32=45. ∵AG ∥BC ,∴△AEG ∽△CEB. ∴AG BC =AE CE =13.∴AG=1. 同理可得DH =1.∴GH =AD -AG -DH =1. 又∵GH∥BC,∴MG MB =MH MC =GH BC =13.∴MB =3GM ,MC =3MH.∴9MG 2+9MH 2=45,即MG 2+MH 2=5.11.(2016·永州)问题探究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”). 2.解决问题已知等边△ABC 的边长为2.(1)如图1,若AD⊥BC,垂足为D ,试说明AD 是△ABC 的一条面径,并求AD 的长; (2)如图2,若M E∥BC,且ME 是△ABC 的一条面径,求面径ME 的长;(3)如图3,已知D 为BC 的中点,连接AD ,M 为AB 上的一点(0<AM <1),E 是DC 上的一点,连接ME ,ME 与AD 交于点O ,且S △MOA =S △DOE .①求证:ME 是△ABC 的面径; ②连接AE ,求证:MD∥AE;(4)请你猜测等边三角形ABC 的面径长l 的取值范围(直接写出结果).提示:x 2+y 2≥2xy. 解:(1)∵AB=AC =BC =2,AD ⊥BC , ∴BD =DC =1,∴S △ABD =S △ACD . ∴线段AD 是△ABC 的面径. 又∵∠B=60°,∴AD =B D·tanB = 3.(2)∵ME∥BC,且ME 是△ABC 的一条面径, ∴△AME ∽△ABC ,S △AME S △ABC =12.∴ME BC =12.(3)①证明:∵D 为BC 的中点,∴S △ABD =S △ACD . ∴S 四边形BDOM +S △MOA =S 四边形ACEO +S △DOE . 又S △MOA =S △DOE ,∴S 四边形BDOM +S △DOE =S 四边形ACEO +S △MOA , 即S △BME =S 四边形ACEM . ∴ME 是△ABC 的面径.②作MN⊥AE 于N ,DF ⊥AE 于F , 则MN∥DF. ∵S △MOA =S △DOE ,∴S △MOA +S △AOE =S △DOE +S △AOE , 即S △AEM =S △AED .∴12AE·MN=12AE·DF.∴MN=DF. 又∵MN∥DF,∴四边形MNFD 是平行四边形. ∴DM ∥AE.(4)作MH⊥BC 于H ,设BM =x ,BE =y , ∵DM ∥AE ,∴BM BA =BD BE .∴x 2=1y.∴xy=2.在Rt △MBH 中,∵∠MHB =90°,∠B =60°,BM =x , ∴BH =12x ,MH =32x.∴ME =MH 2+EH 2=(32x )2+(y -12x )2=x 2+y 2-xy ≥2xy -xy , 即ME≥ 2.∵ME 、AD 都是等边△ABC 的面径,∴等边△ABC 的面径长l 的取值范围是2≤l≤ 3.。