2017年中考数学专题练习数与式

合集下载

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

数学中考专项:数与式

数学中考专项:数与式

-------------代数式(★★★)1、理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2、能按要求列出代数式,会求代数式的值。

3、会识别单项式系数与次数、多项式的项与系数。

重点:单项式的概念,系数和次数。

基本理解多项式的概念和正确确定多项式的次数和项数。

难点:系数是负数或分数时的情形;多项式的次数和项的次数的异同点。

知识结构知识点一:用字母表示数要点诠释:用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了.举例:如果用a、b表示任意两个有理数,那么加法交换律可以用字母表示为:a+b=b+a.乘法交换律可以用字母表示为:ab=ba知识点二:代数式要点诠释:诸如:16n ;2a+3b ;34 ;;等式子,叫做代数式。

(1)代数式中出现的乘号,通常写作“·”或省略不写,如6×b常写作6·b或6b;(2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6;(3)除法运算写成分数形式,如1÷a通常写作(4)带等号的式子(等式)不是代数式,如就不是代数式。

知识点三:列代数式要点诠释:用字母来表示数.在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.知识点四:代数式的值要点诠释:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。

知识点五:单项式要点诠释:1.代数式都是由数与字母的乘积组成的,这样的代数式叫做单项式。

例如,、、abc、-m都是单项式.但不是单项式,因它分母中含有字母,相当于含有字母与字母的除法运算。

,,a,b都是单项式。

在a2b, ,2x2+3x+5中,只有a2b是单项式.2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.例如,的系数是,的系数是,abc的系数是1,-m的系数是-1.注:特别地,单独一个数或一个字母也是单项式.3. 单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数.如: x3y2的次数是x的指数3与y的指数2的和5,即x3y2的次数是5;ab的次数是2;4abc的次数是3;2a的次数是1;4的次数是0。

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案

2017丽水中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. πD. 0.5答案:B2. 一个长方体的长、宽、高分别为a、b、c,其体积为:A. abcB. ab + bc + acC. a² + b² + c²D. abc²答案:A3. 已知函数y=kx+b,当x=1时,y=5;当x=-1时,y=1。

则k和b的值分别是:A. k=3,b=2B. k=-3,b=2C. k=3,b=-2D. k=-3,b=-2答案:A4. 若一个角的补角是它的余角的两倍,则这个角的度数为:A. 30°B. 45°C. 60°D. 90°答案:B5. 一个圆的半径为5,它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B6. 若a、b、c是△ABC的三边,且满足a²+b²=c²,则△ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B7. 下列哪个选项是不等式2x-3>0的解集?A. x>3/2B. x<3/2C. x>-3/2D. x<-3/2答案:A8. 一个等腰三角形的底边长为6,腰长为5,则它的周长是:A. 16B. 21C. 26D. 31答案:B9. 一个二次函数y=ax²+bx+c的图象开口向上,且经过点(1,0)和(-1,0),则a的符号为:A. 正B. 负C. 零D. 不能确定答案:A10. 一个多项式P(x)=x³+ax²+bx+c,若P(1)=0且P(-1)=0,则a和b的值分别是:A. a=0,b=0B. a=-2,b=0C. a=0,b=0D. a=-2,b=2答案:B二、填空题(每题4分,共20分)11. 一个数的相反数是-5,则这个数是________。

天津市2017年中考数学真题试题(含扫描答案)

天津市2017年中考数学真题试题(含扫描答案)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.11。

南京2017初中中考数学试卷习题包括答案.docx

南京2017初中中考数学试卷习题包括答案.docx

精品文档南京市 2017 年初中毕业生学业考试第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.计算 12 18 63 2 的结果是() A . 7B . 8C . 21D .362.计算 106 10 2 3104 的结果是( )A . 103B . 107C . 104D . 1093.不透明袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特征 .甲同学:它有 4 个面是三角形;乙间学:它有 8 条棱 .该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.若 3a10 ,则下列结论中正确的是()A . 1 a 3B . 1 a 4 C. 2 a 3D . 2 a 4 若方程 x 5219 的两根为 a 和 b ,且 a b ,则下列结论中正确的是 ( )5.A . a 是 19 的算术平方根B . b 是 19 的平方根C. a 5 是 19 的算术平方根D . b 5 是19 的平方根6.过三点 A (2,2), B (6,2), C (4,5)的圆的圆心坐标为( )A .(4,17)B .(4,3)C.(5,17)D .(5, 3)66第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)7.计算:332;.8.2016 年南京实现 GDP 约 10500 亿元,成为全国第 11 个经济总量超过万亿的城市,用科学记数法表示 10500 是 .9.若式子x 2 在实数范围内有意义,则 x 的取值范围是.110.计算 12 8 6 的结果是 .11.方程 21 0 的解是.2 xx12.已知关于x的方程x2px q 0 的两根为-3和-1,则 p;q.13.下面是某市 2013~2016 年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.如图, 1 是五边形ABCDE的一个外角,若 1 65 ,则A B C D.15.如图,四边形 ABCD 是菱形,⊙ O 经过点A,C , D,与 BC 相交于点 E ,连接AC , AE,若D 78 ,则EAC.16.函数y1x 与 y24的图像如图所示,下列关于函数y y1y2的结论:①函数的图像关于x原点中心对称;②当 x 2 时,随的增大而减小;③当 x 0 时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算 a 21a1.a a2x6, ①18. 解不等式组x2, ②3 x 1 x 1.③请结合题意,完成本题的解答.( 1)解不等式①,得.( 2)解不等式③,得.( 3)把不等式①,②和③的解集在数轴上表示出来.( 4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19. 如图,在ABCD 中,点E, F分别在AD, BC上,且AE CF , EF , BD 相交于点O .求证OE OF .20.某公司共 25 名员工,下标是他们月收入的资料 .月收入 /元45000180001000055004800340050002200人数111361111( 1)该公司员工月收入的中位数是元,众数是元.( 2)根据上表,可以算得该公司员工月收入的平均数为6276 元 .你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划 .假定生男生女的概率相同,回答下列问题:( 1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;( 2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在 .如图,已知 AOB ,请仿照小丽的方式,再用两种不同的方法判断 AOB 是否为直角(仅限用直尺和圆规) .小丽的方法如图,在 OA, OB 上分别取点 C , D ,以C为圆心,CD长为半径画弧,交OB 的反向延长线于点E ,若OE OD,则AOB 90 ..文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具 .设购买x个甲种文具时,需购买 y 个乙种文具 .( 1)①当减少购买一个甲种文具时,x▲,y▲;②求 y 与x之间的函数表达式 .(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去 540 元 .甲,乙两种文具各购买了多少个?24.如图,PA, PB是⊙ O 的切线,A, B为切点 .连接 AO 并延长,交 PB 的延长线于点 C ,连接 PO ,交⊙ O 于点D .(1)求证: PO 平分 APC .()连结 DB ,若C30 ,求证 DB / / AC.225.如图,港口B位于港口A的南偏东 37 方向,灯塔 C 恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行 5 km ,到达E处,测得灯塔 C 在北偏东 45 方向上 .这时,E处距离港口A有多远?(参考数据: sin370.60,cos370.80, tan370.75 )26.已知函数 y x2m 1 x m (m为常数)( 1)该函数的图像与x 轴公共点的个数是()A.0B.1 C.2 D.1 或 2( 2)求证:不论m为何值,该函数的图像的顶点都在函数y x12的图像上 .( 3)当 2 m 3 时,求该函数的图像的顶点纵坐标的取值范围 .27.折纸的思考 .用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD AB BC (图①),使 AB 与 DC 重合,得到折痕EF ,把纸片展平(图②) .第二步,如图③,再一次折叠纸片,使点 C 落在EF上的P处,并使折痕经过点 B ,得到折痕BG ,折出PB, PC,得到PBC .( 1)说明PBC 是等边三角形 .【数学思考】( 2)如图④ .小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC 经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程 .(3)已知矩形一边长为 3 cm,另一边长为acm .对于每一个确定的a的值,在矩形中都能画出最大的等边三角形 .请画出不同情形的示意图,并写出对应的a的取值范围 .【问题解决】(4)用一张正方形铁片剪一个直角边长分别为 4 cm和 1 cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm .精品文档试卷答案一、选择题1-5:CCDBC 6:A二、填空题7.3,3. 8.1.05 104 .9. x 1.10.6.11. x 2 .12.4,313.2016,2015.14.425.15.27.16.①③ .三、解答题17.解: a21 1aaaa 22a 1 a 2 1aaa 22a 1 aaa 2 1a2a1a a 1 a 1a 1 . a118.(1) x3 .不等式两边乘(或除以)同一个负数,不等号的方向改变 .( 2) x 2 . ( 3)( 4) 2 x 2 .19.证明:∵四边形 ABCD 是平行四边形,∴ AD / /BC , ADBC .∴ EDOFBO , DEO BFO .∵ AE CF ,精品文档∴DOE≌ BOF .∴OE OF .20.解( 1) 3400, 3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大 .该公司员工月收入的中位数是 3400 元,这说明除去收入为 3400 元的员工,一半员工收入高于 3400 元,另一半员工收入低于 3400 元 .因此,利用中位数可以更好地反映这组数据的集中趋势 .21.解:(1)1 . 2(2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有 4 种,它们出现的可能性相同 .所有的结果中,满足“至少有一个是女孩”(记为事件 A )的结果有三种,所以P A 3 .422.本题答案不惟一,下列解法供参考,例如,方法 1:如图①,在OA, OB上分别截取OC4, OD 3 .若CD 5 ,则 AOB 90 .方法 2:如图②,在OA, OB上分别取点C , D,以 CD 为直径画圆 .若点 O 在圆上,则AOB 90 .23.解:(1)① 99,2.②根据题意,得 y 2 100 x 2 x200.所以 y 与x之间的函数表达式为y2x 200 .y2x200,( 2)根据题意,得解得5x 3y540.x 60,y80.答:甲、乙两种文具各购买了60 个和 80 个.24.证明:( 1)如图,连接 OB .∵ PA, PB 是⊙O的切线,∴OA AP,OB BP ,又OA OB ,∴PO 平分 APC .( 2)∵AO AP, OB BP ,∴CAPOBP 90 .∵ C 30 ,∴APC 90 C 90 30 60 .∵PO 平分 APC ,∴116030 ,OPC APC22∴POB 90OPC9030 60 .又OD OB ,∴ODB 是等边三角形 .∴OBD 60 .∴DBPOPB OBD 90 60 30 .∴ DBP C .∴ DB / / AC .25.解:如图,过点 C 作 CH AD ,垂足为 H .设 CH xkm . 在 Rt ACH 中, A 37,∵ tan 37CH ,AH∴ AHCH x .tan 37tan37在 Rt CEH 中, CEH45 ,∵ tan 45CH ,EH∴ EHCH x .tan 45∵ CHAD , BDAD ,∴ AHCADB 90 .∴ HC / / DB .∴AH AC .HD CB又 C 为 AB 的中点, ∴ AC CB .∴ AH HD .∴xx5.tan 37∴ x5 tan 375 0.751 tan 37 1 15 .0.75∴ AEAH HE15 35 km .15tan 37因此, E 处距离港口 A 大约为 35 km .26.解:(1) D .2 2( ) yx 2m 1 x mx m 1 m 1,224m 1 m 2所以该函数的图像的顶点坐标为1.,422m2把 xm 1代入 y2m 1 11x 1 ,得 y.因此,不论 m 为何值,该函数的图像的顶点都在函数y x 12的图像上 .m21( 3)设函数z.4当 m1时,z有最小值 0.当 m1时,z随m的增大而减小;当 m1时,z随m的增大而增大 .2232又当 m 2 时, z11;当 m 3 时, z144.44因此,当 2 m 3时,该函数的的图像的顶点纵坐标的取值范围是0 z 4 .27.解:(1)由折叠,PB PC, BP BC,因此,PBC 是等边三角形 .( 2)本题答案不惟一,下列解法供参考.例如,如图,以点 B 为中心,在矩形ABCD 中把PBC 逆时针方向旋转适当的角度,得到PBC ;11再以点 B 为位似中心,将1 1 放大,使点 1 的对应点C 2落在CD上,得到 2 2.PBC C P BC ( 3)本题答案不惟一,下列解法供参考,例如,3 33 3a 2 30 a2a 2 32( 4)16.5。

2017年南京市中考数学试题及答案解析

2017年南京市中考数学试题及答案解析

第Ⅰ卷(共60分)一、选择题: 本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.计算12+(-18)÷(-6)-(-3)×2的结果是. )A. 7B. 8C. 21D. 36【答案】C考点: 有理数的混合运算2.计算/的结果是. )A. /B. /C. /D. /【答案】C【解析】试题分析: 根据乘方的意义及幂的乘方, 可知/=/.故选:C考点: 同底数幂相乘除3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学: 它有4个面是三角形;乙间学: 它有8条棱.该模型的形状对应的立体图形可能.. )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】试题分析: 根据有四个三角形的面, 且有8条棱, 可知是四棱锥.而三棱柱有两个三角形的面, 四棱柱没有三角形的面, 三棱锥有四个三角形的面, 但是只有6故选:D考点: 几何体的形状4.若/, 则下列结论中正确的.. )A......B.....C..... D./【答案】B【解析】试题分析: 根据二次根式的近似值可知/, 而/, 可得1<a<4.故选:B考点: 二次根式的近似值5.若方程/的两根为/和/,且/,则下列结论中正确的.. )A. /是19的算术平方根B. /是19的平方根C./是19的算术平方根D. /是19的平方根【答案】C/考点: 平方根6.过三点/(2,2),/(6,2),/(4,5)的圆的圆心坐标为. )A.(4, /) B.(4, 3) C.(5, /) D.(5, 3)【答案】A【解析】试题分析: 根据题意, 可知线段AB的线段垂直平分线为x=4, 然后由C点的坐标可求得圆心的横坐标为x=4, 然后设圆的半径为r, 则根据勾股定理可知/, 解得r=/, 因此圆心的纵坐标为/, 因此圆心的坐标为(4, /).考点: 1.线段垂直平分线, 2.三角形的外接圆, 3.勾股定理第Ⅱ卷(共90分)二、填空题(每题5分, 满分20分, 将答案填在答题纸上)7.计算: ..... ;..... .【答案】3, 3【解析】试题分析: 根据绝对值的性质/, 可知|-3|=3, 根据二次根式的性质/, 可知/. 故答案为: 3, 3.考点: 1、绝对值, 2、二次根式的性质8.2019年南京实现/约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500..... .【答案】1.05×104/考点: 科学记数法的表示较大的数9.若式子/在实数范围内有意义,则/的取值范围..... .【答案】x≠1【解析】试题分析: 根据分式有意义的条件, 分母不为0, 可知x-1≠0, 解得x≠1.故答案为: x≠1.考点: 分式有意义的条件10.计算/的结果..... .【答案】试题分析: 根据二次根式的性质化简后合并同类二次根式可得/=/=/.故答案为: /.考点: 合并同类二次根式11.方程/的解..... .【答案】x=2/考点: 解分式方程12.已知关于/的方程/的两根为-3和-1,则..... ;..... .【答案】4, 3【解析】试题分析: 根据一元二次方程的根及系数的关系, 可知p=-(-3-1)=4, q=(-3)×(-1)=3.故答案为:4, 3.考点: 一元二次方程的根及系数的关系13.下面是某市2019~2019年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的..... 年,私人汽车拥有量年增长率最大的..... 年. 【答案】2019, 2019【解析】试题分析: 根据条形统计图可知私家车拥有最多的年份为2019年, 由折线统计图可知2019年的私家车的拥有量增长率最高.故答案为: 2019, 2019.考点: 1、条形统计图, 2、折线统计图14.如图,/是五边形/的一个外角,若/,则..... .【答案】425/考点: 1.多边形的内角和, 2.多边形的外角15.如图,四边形/是菱形,⊙/经过点/,及/相交于点/,连接/,若/,则..... .【答案】27【解析】试题分析: 根据菱形的性质可知AD=DC, AD ∥BC, 因此可知∠DAC=∠DCA, /, 然后根据三角形的内角和为180°, 可知∠DAC=51°, 即∠ACE=51°, 然后根据等弧所对的圆周角可知∠DAE=∠D=78°, 因此可求得∠EAC=78°-51°=27°. 故答案为: 27.考点: 1.菱形的性质, 2.圆周角的性质, 3.三角形的内角和16.函数/及/的图像如图所示,下列关于函数/的结论:①函数的图像关于原点中心对称;②当/时,y 随x 的增大而减小;③当/时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号..... .【答案】①③/考点: 一次函数及反比例函数三、解答题 (本大题共6小题, 共70分.解答应写出文字说明, 证明过程或演算步骤.)17.计算/.【答案】 【解析】试题分析: 根据分式的混合运算的法则, 可先算括号里面的(通分后相加减), 然后把除法转化为乘法, 再约分化简即可.11a a +-试题解析: /考点: 分式的混合运算18. 解不等式组/请结合题意, 完成本题的解答.(1)解不等式①, 得 , 依据是______.(2)解不等式③, 得 .(3)把不等式①, ②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分, 得不等式组的解集 .【答案】【解析】试题分析: 分别求解两个不等式, 系数化为1时可用性质2或性质3, 然后画数轴, 确定其公共部分, 得到不等式组的解集.考点: 解不等式19.如图,在/中,点/分别在/上,且/相交于点/.求证/.【答案】证明见解析/试题解析: ∵四边形/是平行四边形,∴/, 即/.22x -<<(1)该公司员工月收入的中位数是元, 众数是元. (2)根据上表, 可以算得该公司员工月收入的平均数为6276元.你认为用平均数, 中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000.(2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析: (1)根据大小排列确定中间一个或两个的平均数, 得到中位数, 然后找到出现最多的为众数;(2)根据表格信息, 结合中位数、平均数、众数说明即可.试题解析: (1)3400, 3000.(2)本题答案不惟一, 下列解法供参考, 例如,用中位数反映该公司全体员工月收入水平较为合适, 在这组数据中有差异较大的数据, 这会导致平均数较大.该公司员工月收入的中位数是3400元, 这说明除去收入为3400元的员工, 一半员工收入高于3400元, 另一半员工收入低于3400元.因此, 利用中位数可以更好地反映这组数据的集中趋势.考点: 1.中位数, 2.众数21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩, 准备再生一个孩子, 则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1) (2)/考点: 概率 22.“直角”在初中几何学习中无处不在. 如图, 已知/, 请仿照小丽的方式, 再用两种不同的方法判断/是否为直角(仅限用直尺和圆规).小丽的方法如图, 在/上分别取点/, 以/为圆心, /长为半径画弧, 交/的反向延长线于点/, 若/, 则/.如图,在上分别取点,以为圆心,长为半径画弧,交的反向延长线于点,若,则.1234,OA OB ,C D C CD OB E OE OD =90AOB ∠=︒【答案】作图见解析【解析】试题分析: 方法一是根据勾股定理作图, 方法二是根据直径所对的圆周角为直角画图.方法2: 如图②, 在/上分别取点/, 以/为直径画圆.若点/在圆上, 则/.考点: 基本作图——作直角23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买/个甲种文具时,需购买/个乙种文具.(1)①当减少购买一个甲种文具时, / , / ;②求及之间的函数表达式.y x(2)已知甲种文具每个5元, 乙种文具每个3元, 张老师购买这两种文具共用去540元.甲, 乙两种文具各购买了多少个?【答案】(1)①99, 2②/(2)甲、乙两种文具各购买了60个和80个【解析】试题分析: (1)①根据“每减少购买1个甲种文具, 需增加购买2个乙种文具”可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点: 1.一次函数, 2.二元一次方程组24.如图,/是⊙/的切线,/为切点.连接/并延长,交/的延长线于点/,连接/,交⊙/于点/.(1)求证: /平分/.(2)连结/, 若/, 求证/.【答案】(1)证明见解析(2)证明见解析【解析】试题分析: (1)连接OB, 根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB 是等边三角形, 然后根据平行线的判定得证.试题解析: (1)如图, 连接/.∵/是⊙/的切线,又,∴平分.又,∴是等边三角形.考点: 1.圆的切线, 2.角平分线的性质及判定, 3.平行线的判定25.如图,港口/位于港口/的南偏东/方向,灯塔/恰好在/的中点处,一艘海轮位于港口/的正南方向,港口/的正西方向的/处,它沿正北方向航行5/,到达/处,测得灯塔/在北偏东/方向上.这时,/处距离港口/有多远?(参考数据: /)【答案】35km【解析】试题分析: 过点/作/, 垂足为/.构造直角三角形的模型, 然后解直角三角形和OA OB =PO APC ∠OD OB =ODB ∆平行线分线段成比例的定理列方程求解即可.又/为/的中点,因此, /处距离港口/大约为35/.考点: 解直角三角形26.已知函数/(/为常数)(1)该函数的图像及轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证: 不论/为何值, 该函数的图像的顶点都在函数/的图像上.(3)当/时, 求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D (2)证明见解析(3)试题解析: (1)/.(2)/,所以该函数的图像的顶点坐标为. 把//代入/, 得/.因此, 不论/为何值, 该函数的图像的顶点都在函数/的图像上.(3)设函数. 当/时, /有最小值0.当/时, /随/的增大而减小;当/时, /随/的增大而增大.又当/时, /;当/时, /.因此, 当/时, 该函数的的图像的顶点纵坐标的取值范围是/.考点: 二次函数的图像及性质x 04z ≤≤()211,24m m ⎛⎫ ⎝+ -⎪⎪⎭z =()214m +27.折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步, 对折矩形纸片/(图①), 使/及/重合, 得到折痕/, 把纸片展平(图②). 第二步, 如图③, 再一次折叠纸片, 使点/落在/上的/处, 并使折痕经过点/, 得到折痕/, 折出/, 得到/.(1)说明是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形/和等边三角形/.他发现, 在矩形/中把/经过图形变化, 可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3/, 另一边长为/.对于每一个确定的/的值, 在矩形中都能画出最大的等边三角形.请画出不同情形的示意图, 并写出对应的/的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4/和1/的直角三角形铁片, 所需正方形铁片的边长的最小值为 /.【答案】(1)/是等边三角形(2)答案见解析(3)/, /, /;(4) 试题解析: (1)由折叠, / ,因此, /是等边三角形.(2)本题答案不惟一, 下列解法供参考.例如,如图, 以点/为中心, 在矩形/中把/逆时针方向旋转适当的角度, 得到/;PBC 165再以点/为位似中心, 将/放大, 使点/的对应点/落在/上, 得到/.(3)本题答案不惟一, 下列解法供参考, 例如,(4). 考点:1、规律探索, 2、矩形的性质, 3、正方形的性质, 4、等边三角形165。

中考数学总复习 第二轮 中考题型专题复习二 解答题专题学习突破 专题复习(一)数与式的运算试题(2

中考数学总复习 第二轮 中考题型专题复习二 解答题专题学习突破 专题复习(一)数与式的运算试题(2

安徽省2017年中考数学总复习第二轮中考题型专题复习二解答题专题学习突破专题复习(一)数与式的运算试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省2017年中考数学总复习第二轮中考题型专题复习二解答题专题学习突破专题复习(一)数与式的运算试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省2017年中考数学总复习第二轮中考题型专题复习二解答题专题学习突破专题复习(一)数与式的运算试题的全部内容。

二、解答题专题学习突破专题复习(一)数与式的运算类型1 实数的运算1.(2016·阜阳模拟)计算:12×错误!+8×2-2-(-1)2。

解:原式=-4+2-1=-3.2.(2016·邵阳)计算:(-2)2+2cos60°-(错误!-π)0。

解:原式=4+2×错误!-1=4+1-1=4。

3.(2016·滁州模拟)计算:(-错误!)2+|-4|×2-1-(错误!-1)0。

解:原式=3+4×错误!-1=4。

4.(2016·马鞍山模拟)计算:-22+|-错误!|+2sin60°-错误!。

解:原式=-4+错误!+2×错误!-2错误!=-4。

5.(2016·宜宾)计算:错误!错误!- (-1)2 016-错误!+ (π-1)0。

解:原式=9-1-5+1=4。

6.(2016·广安)计算:错误!错误!-错误!+tan60°+错误!。

解:原式=3-33+3-3+23=0.类型2 整式的运算7.计算:(x-3)(3+x)-(x2+x-1).解:原式=x2-9-x2-x+1=-x-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数与式
一、选择题(每小题3分,共24分)
1.3-的相反数是( ) A .13 B . 1
3-
C . 3
D . -3
2.下列数0322
38cos 607π,,,,中,无理数的个数是(
) A .1个 B .2个
C .3个
D .4个
3.下列计算中,结果正确的是( )
A.030= B.1221
-=⨯-
C.331-=- D.527-+=-
4.若式子21
x +有意义,x 的取值范围是( )
A.1
12x x ≥-≠且 B.1x ≠
C.1
2x ≥- D.1
12x x >-≠且
5. 下列运算中,结果正确的是( )
A .235x x x +=
B .326x x x •=
C .55x x x ÷=
D .()23539x x x •=
6.a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是(
) A.2,3 B.3,2
C.3,4
D.6,8
7.若2(1)20m n -++=,则m n +的值是( )
A .-1
B .0
C .1
D .2
8.我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,
[]33=,[
]35.2-=-,若5
104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( )
A.40
B.45
C.51
D.56
二、填空题(每小题3分,共24分) 9.四个实数2-,0,2-,1中,最小的实数是 .
10.分解因式:22(21)a a --= .
11.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=_________. 12.如图,一个正方形纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2,使得按虚线折成的正方体后,相对面上的两个数互为相反数,则A 处应填 .
13. 计算:323()a a •= .
14.当分式242+-x x 的值为0时,x 的值是 _. 15.已知2x y -=3,则代数式624x y -+的值为 .
16.观察下列等式:
111122=-⨯,1112323=-⨯,1113434
=-⨯, 将以上三个等式两边分别相加得:
1111111113111223342233444
++=-+-+-=-=⨯⨯⨯. 那么,计算111112233420142015++++⨯⨯⨯⨯L 的结果是
.
三、解答题(本大题共8个小题,满分52分).
17.(本题4分)3422(75)÷-⨯-+
18.(本题4分)计算:()21-︒-45sin 4+0)3(π+-+8
19.(本题6分)实数a b ,在轴上的位置如图,且a >|b|.化简2a a b -+.
20.(本题6分)
先化简,再求值:(1)(1)(2)a a a a +-+-,其中12
a =
.
21.(本题6分) 先化简,再求值:2413(1)12
x x x -•---, 其中x =2.
22.(本题8分)
定义新运算:对于任意实数a b 、,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算.
比如:42⊕=4⨯(4-2)+1
=4⨯2+1
=8+1
=9
⑴..(3分)求(2)(3)-⊕-的值
⑵..(5分)若3x ⊕的值小于13,求x 的取值范围,并在数轴上表示出来.
23.(本题8分)
对x ,y 定义一种新运算T ,规定:(,)2ax by T x y x y +=
+(其中a 、b 均为非零常数),这里等式右边是通常的四则运算. 例如:01(0,1)201
a b T b ⨯+⨯==⨯+. ⑴.(3分)已知T (1,-1)=-2,T (4,2)=1.试求a ,b 的值;
⑵.(5分)若()()T x y T y x =,,对任意实数x ,y 都成立(这里T (x ,y )和T (y ,x )均有意义),则a ,b 应满足怎样的关系式?
24. (本题10分)社会的信息化程度越来越高, 计算机网络已进入普通百姓家, 某市电信局对计算机拨号上网用户提供三种付费方式供用户选择( 每个用户只能选择其中一种付费方式 );甲种方式是按实际用时付费,每小时付信息费4元, 另加付电话费每小时1元2角;乙种方式是月包制, 每月付信息费100元, 同样加付电话费每小时1元2角;丙种方式也是月包制, 每月付信息费250元,但不必再另付电话话费.
⑴.(3分)设某户某月上网时间为t 小时,试用t 的代数式表示三种付费公式y ;
⑵.(3分)试判断:在上网时间t在多少小时内,乙种方式最优惠;
⑶.(4分)小王为选择合适的付费方式,连续记录了7天中每天上网所花的时间(单位:分
钟) :
根据以上结论,你认为小王应选哪种方式付费比较合适?(每月按30天计算)并说明理由:细心观察,认真分析,然后解答问题:
数与式
1~8: DBBA DAAC ; 9. 2-; 10.(1)(31)a a --; 11.83.510⨯;12.2-;13. 9a ;
14. 2; 15. 0; 16. 20142015
;17.10 ;18. 2 ; 19.b ; 20.原式120a =-=。

21.原式53x =-+=;
22.⑴.1-;⑵. x >1-,数轴表示略; 23.⑴.13a b ==,, ⑵.2a b =;
24. ⑴ 5.2y t =甲,100 1.2y t =+乙,250y =丙⑵.当25125t <<小时时,乙最优惠;⑶小王7天中每天上网所花的时间的平均值是0.9小时,以此估计一月上网所花的时间为27小时,因此选乙种方式.。

相关文档
最新文档