《应用一元一次方程——打折销售》
应用一元一次方程——打折销售

6.林涛去文具店买练习本,营业员告诉他:如果超过 10 本,
那么超过 10 本的部分打七折.林涛买了 20 本,结果便宜了 1.8 元,
则原来每本练习本的价格是
元.
7.(2020·山西改编)2020 年 5 月份,太原开展了“活力太原·乐 购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满 600 元立减 128 元(每次只能使用一张).某品牌电饭煲按进价提高 50%后 标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家 电消费券后,又付现金 568 元.求该电饭煲的进价.
应用一元一次方程 ——打折销售
知识点 利用一元一次方程解决打折销售问题
1.一件标价为 300 元的棉袄,按七折销售仍可获利 20 元.设
这件棉袄的成本价为 x 元,下面所列方程正确的是( B )
A.300×7-x=20
B.300×0.7-x=20
C.300×0.7=x-20
D.300×7=x-20
B.盈利 20 元
C.盈利 10 元
D.亏损 20 元
10.为配合“我读书,我快乐”读书节活动,某书店推出一种
优惠卡:每张优惠卡售价为 20 元,凭优惠卡购书可享受八折优惠.小
慧同学到该书店购书,她先买优惠卡再凭优惠卡付款,结果节省了
10 元.若此次小慧同学不买优惠卡直接购书,则她需付( B )
A.140 元
解:设该电饭煲的进价为 x 元,
则该电饭煲的标价为
元,
该电饭煲的实际售价为
元.
由此,列出方程: 80%×(1+50%)x-128=568 .
解得 x= 580 .
80%×(1+50%)x
答:该电饭煲的进价为 580 元.
8.(2021·陕西)一家商店在销售某种服装(每件的标价相同)时, 按这种服装每件标价的八折销售 10 件的销售额,与按这种服装每件 的标价降低 30 元销售 11 件的销售额相等.求这种服装每件的标价.
七年级数学上册第5章一元一次方程4应用一元一次方程—打折销售全国公开课一等奖百校联赛微课赛课特等奖P

20.某百货商场 10 月 1 日搞促销活动,购物不超过 200 元,不给优惠;超 过 200 元而不超过 500 元的优惠 10%;超过 500 元的,其中 500 元按 9 折 优惠,超过部分按 8 折优惠,某人两次购物分别用了 134 元和 466 元.问: (1)此人两次购买的物品不打折时分别值多少钱? (2)在此次活动中他节省了多少钱? (3)若此人将这两次购买的物品合起来一次性购买是不是更合算?说明你的 理由.
60 ,利润率 20% .
2/13
1.一件衣服的标价是 132 元,若以 9 折出售,仍可获利 10%,则这件衣服
的进价是( D )
A.106 元
B.105 元
C.118 元
D.108 元
2.某人以 8 折的价格买下了一套服装,节省了 25 元,那么此人买这套服装
实际用了( D )
A.31.25 元
B.盈利 14 元
C.不亏不盈
D.盈利 20 元
7/13
12.如图是某超市中“飘柔”洗发水的价格标签,一售货员不小心将墨水滴 在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是( D )
A.15.36 元 C.23.04 元
B.16 元 D.24 元
8/13
13.某商场将彩电先按原价提高 40%,然后在广告中写上“大酬宾,八折
12/13
解:(1)设售价为 x 元,500×0.9+(x-500)×0.8=466,x=520,∴不打折 时分别值 134 元或 520 元; (2)节省(134+520)-(134+466)=54 元; (3)是更合算.理由:654 元的商品优惠价为 500×0.9+(654-500)×0.8= 573.2<600,∴一次性购买更合算.
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)

北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)例1:一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?解析:本题的关键在于第一问,求出其他问题就解决。
由题意可知如下相等关系:加工后的蔬菜重量×加工后的蔬菜单价=1568元。
而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程。
解答:设不加工每千克可卖x元,依题意,得1000(1-20%)(1+40%)x=1568.解方程得:x=1.4.所以1000x=1400,1568-1400=168.答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元。
例2:某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?解析:由已知可得如下相等关系:调整成本前的销售利润=调整成本后的销售利润。
若设该产品每件的成本价应降低x 元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售价为510(1-4%),调整后的成本价为400-x。
调整后的销售数量m(1+10%),所以调整后的销售利润是:[510(1-4%)-(400-x)]×(1+10%)m,由相等关系可得方程:[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
解答:设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
《应用一元一次方程—打折销售》一元一次方程PPT课件

综合能力提升练
拓展探究突破练
-3-
3.小明和小丽需购买同一本经典名著书,小明到书店买打九折,小丽在网店买打八折,但需要
另外花10元的快递费,结果小丽比小明少花了2元钱,求这本经典名著的定价是多少?若设这
本经典名著的定价为x元,则可列方程为 0.9x-2=0.8x+10 .
第五章
5.4 应用一元一次方程——打折销售
答:小红购买跳绳11根.
第五章
5.4 应用一元一次方程——打折销售
知识要点基础练
综合能力提升练
拓展探究突破练
-13-
14.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:
①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500
元的,其中500元部分打9折,超过500元部分打8折.
知识要点基础练
综合能力提升练
拓展探究突破练
解:( 1 )200×0.9=180( 元 ).
( 2 )因为500×0.9=450( 元 ),490>450,所以第2次购物超过500元.
设第2次购物商品的总价是x元.依题意,得
500×0.9+0.8( x-500 )=490,
解得x=550,则550-490=60.
第五章 一元一次方程
应用一元一次方程——打折销售
第五章
5.4 应用一元一次方程——打折销售
知识要点基础练
综合能力提升练
拓展探究突破练
-2-
知识点1 销售中的盈亏问题
1.某商店出售一批服装,每件售价为150元,可获利20%,求这种服装的成本价.设这种服装的
成本价为x元,则可得方程为( C )
应用一元一次方程——打折销售

本溪市树人教育学校七年级数学(上)5.4应用一元一次方程——打折销售一、思考问题引入概念1.思考问题(1)500元的9折价是______元,x折是_______元.(2)某商品的每件销售利润是72元,进价是120,则售价是____元. (3)某商品利润率13﹪,进价为50元,则利润是 ________元.2.概念:(1)利润 = 售价-进价(2)利润率=利润/进价(3)打x 折的售价= 原价×(x/10)3.例题0:王洁做服装生意。
她进了一批运动衫,每件进价90元,卖出时每件100元。
请问一件运动衫利润是多少元?利润率又是多少?中秋节店庆,全部商品打6折,那么运动衫的价格是多少?4.小练习:(1)进价为50元的商品,以60元的价格出售,其中的利润是__元. (2)某商品每件销售利润是72元,进价是120元,则售价是___元. (3)某商品进价为500元,标价是800元,若打8折出售,则售价是____元,利润是________元,利润率是____.(4)一件商品,进价是200元,提高40﹪标价,则标价是________元,再以8.5折出售,则售价是________元,利润是________元,利润率是________.二、题型讲解例题1:一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?[分析]:若设每件衣服的成本价为x元, 那么:那么每件衣服标价为__________元;每件衣服的实际售价为______________元;每件衣服的利润为__________________元。
由此,列出的方_____________________解方程,得x=______因此每件服装的成本____元。
变型题1:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?例题2:商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1800元。
北师大版数学七年级上册5.4 《应用一元一次方程——打折销售》优质课件

4.某件商品现在的售价为 34 元,比原价降低了 15%,则原来的
售价是( D )
A.51 元 B.28.9 元 C.35 元 D.40 元
5.某超市进了一批商品,每件进价为 a 元,若要获利 25%,则
每件商品的零售价应定为( C )
A.25%a B.(1-25%)a C.(1+25%)a
a D.1+25%
17.某商场将一款空调按标价的八折出售,仍可获利10%, 若该空调的进价为2000元,则标价为___2_7_5_0__元.
18.购买一本书,打八折比打九折少花2元钱,那么这本书 的原价是__2_0_____元.
19.某个体户进了40套服装,以高出进价40元的售价卖出 了30套,后因换季,剩下的10套服装以原售价的六折售出, 结果40套服装共收款4320元,问:每套服装的进价是多少元? 这位个体户是赚了还是赔了?赚了或赔了多少元?
19.设 每套衣服的进价为x元, 依题意得:30(x+40)+10(x+40)×0.6=4320, 解得:x=80,4320-80×40=1120元.
答:每套服装的进价是80元,这位个体户,赚了1120元
20.甲、乙两件服装的成本共500元,商店老板为获取利润, 决定将甲服装按50%的利润定价,乙服装按40%的利润定 价.在实际出售时,应顾客要求,两件服装均按9折出售, 这样商店共获利157元,求甲、乙两件服装的成本各是多少 元?
5.4 应用一元一次方程——打折销售
商品销售和利润问题中的关系式: (1)商品利润=商品售价___-_____商品成本价(商品进价);
商品利润
商品利润率=_商__品__成__本_×100%; 商品销售额=商品销售价×商品销售量; 商品的销售利润=(销售价-成本)×销售量.
2024秋七年级数学上册第5章一元一次方程5.4应用一元一次方程——打折销售教案(新版)北师大版

1. 拓展阅读材料:
- 《数学与生活》:介绍数学在日常生活中的应用,包括购物打折、银行利息等实际问题。
- 《趣味数学》:通过有趣的故事和实例,引导学生了解一元一次方程在其他方法》:讲解一元一次方程的起源、发展及其在数学体系中的地位,培养学生对数学学科的兴趣。
- 引导学生探索一元二次方程、多元一次方程组等更高级的数学问题。
(3)数学思维方法的拓展:
- 培养学生运用分类讨论、归纳总结等数学思维方法解决问题。
- 引导学生学会用数学建模的方法,将实际问题抽象为数学模型,并运用一元一次方程进行求解。
板书设计
①条理清楚、重点突出、简洁明了:
1. 重点知识点:一元一次方程的定义、性质、求解方法。
2. 自主设计问题批改:评估学生是否能将所学知识应用到实际问题中,问题设计是否合理,解答过程是否清晰。
3. 调查报告批改:检查学生是否能正确收集和分析数据,报告撰写是否规范,分析是否深入。
4. 针对作业中出现的问题,及时给予反馈,指出学生存在的问题,并提供改进建议。
5. 鼓励学生在作业中展现自己的思考和创造力,对优秀作业进行表扬和展示,激发学生的学习积极性。
(4)项目导向学习:设置与打折销售相关的项目任务,引导学生自主探究,培养学生的自主学习能力和实践能力。
2. 教学活动设计:
(1)角色扮演:让学生扮演商家和消费者,模拟真实的购物场景,运用一元一次方程解决打折销售问题。
(2)实验:设计数学实验,让学生通过实际操作,感受一元一次方程在解决实际问题中的应用。
2. 课后自主学习和探究:
- 让学生尝试寻找生活中的其他一元一次方程问题,如票价计算、电话费结算等,并运用所学知识进行求解。
- 鼓励学生利用网络资源、图书馆书籍等途径,了解一元一次方程在其他学科领域的应用,如物理、化学、经济学等。
七年级数学上册教学课件《应用一元一次方程——打折销售》

分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
5.4 应用一元一次方程——打折销售
某商场将某种商品按原价的八折出售,此时商品的
利润率是10%.已知这种商品的进价为1800元,那么这种
商品的原价是多少?
解:设商品的原价是x元,根据题意,得
80%1x8−001800×100%=10% 解这个方程,得x=2475.
等量关系:
(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
探究新知
5.4 应用一元一次方程——打折销售
归纳总结
1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果.
则由题意得: x (1+25%)=135.
解这个方程, 得: x=108.
则第一件衣服盈利: 135-108=27(元).
设第二件衣服的成本价是y元,
由题意得: y(1-25%)=135.
解这个方程, 得: y=180.
则第二件衣服亏损: 180-135=45(元),
总体上约亏损了: 45-27=18 (元).
利润=售价-成本价 利润率:利润占成本的百分比. 利润率=利润÷成本×100% =(售价-成本) ÷成本×100%
探究新知
5.4 应用一元一次方程——打折销售
交流思考
①一个篮球成本是80元,售价是100元,则这个篮球的利润
是_2_0__元,利润率是_2_5_%__.
售价是120元呢?
利润=售价-成本价
连接中考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与销售有关的几个概念:
进价(成本): 购进商品时的价格。 售价: 在销售商品时的售出价。 标价: 在销售商品时标出的价格。(有时也称原价) 利润: 在销售商品过程中的纯收入。
进价、售价、利润和利润率之间的关系是: 利润 = 售价 – 进价
商品利润 商品利润率 商品进价
利润率 =
售价 – 进价 进价
打折是怎么回事? 所谓打折,就是商品以标价为基础,按 一定的比例降价出售,它是商家们的一 种促销行为。 例如: 一个滑板标价200元,若以九折出售, 则实际售价为 200 ×0.9 = 180(元), 若打七折,则实际售价为200 × 0.7 = 140(元)。
算一算:
本节课你有什么收获
课堂小结 1.通过对打折销售问题的探讨研究,我
们知道成本、标价、售价、打折、利润、利 润率,等概念的含义. 2.用一元一次方程解决实际问题的关键: (1)仔细审题. (2)找等量关系. (3)解方程并验证结果. 3.明确了用一元一次方程解决实际问题的 一般步骤是什么.
作业布置 课本习题5.7, 问题解决:2,3题
算一算?
解:
设第一件衣服的成本价是X元,
则由题意得:X · (1+25%)=135 解这个方程,得:X=108。 则第一件衣服赢利:135-108=27。
设第二件衣服的成本价是y元, 由题意得:y · (1-25%)=135 解这个方程,得:y=180。 则第二件衣服亏损:180-135=45 总体上约亏损了:45-27=18(元) 因此,总体上约亏损了:18元。
(1)原价100元的商品打8折后价格为 元 80 ; 元 (2)原价100元的商品提价40%后的价 格为 140 元; (3)进价100元的商品以150元卖出,利 50 润是 元,利润率是 ; 50 %
(4)原价X元的商品打8折后价格为 元 算一算 0.8X 元; (5)原价X元的商品提价40%后的价格 X 为 1.4 元; (6)原价100元的商品提价P %后的价 格为 100(1+P 元; %) (7)进价A元的商品以B元卖出, 利润是 (B- 元, A) 利润率是 B-A ×100% 。 A
解方程,得x=______ 125
125 元。 因此每件服装的成本价是____
练一练
一件夹克按成本价提高50%后标价,后因 季节关系按标价的8折出售,每件以60元 卖出,这批夹克每件的成本价是多少元?
解:设每件夹克的成本价是x元, 由题意得: (1+50%) · x· 80%=60 解之得: x=50 答:这批夹克每件的成本价是50元。
思维拓展
商店对某种商品作调价,按原价的8折出售,此 时商品的利润率是10%,此商品的进价为1800元。 商品的原价是多少? 解:设此商品的原价为x元
由题意得:
X· 80%- 1800 1800
= 10%
解之得:x =2475 答:商品的原价是2475.
议一议
1、某服装商店以135元的价格售出两 件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这 两件衣服总体上是赚了,还是亏了? 这二件衣服的成本价会一样吗?
老板,这样卖能赚钱吗?
我是按成本价提高40%后标 的价,你按8折销售,我已算 过了,每件可赚15元。 这种服装每件的成本价是多少呢?
[分析]:Байду номын сангаас设每件衣服的成本价为x元,
(1+40%)x 元; 那么每件衣服标价为__________ (1+40%) · x· 80% 每件衣服的实际售价为___________ ___元; (1+40%) · x· 80%-x 元。 每件衣服的利润为__________________ (1+40%) · x· 80%-x=15 由此,列出的方程:_____________________