2012年普通高等学校招生全国统一考试(湖北卷)理科数学答案解析(正式版)
2012年高考真题——理科数学(全国卷)Word版含答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年普通高等学校招生全国统一考试(全国卷)(理科数学)(必修+选修II)

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
完整版2012年湖北省高考数学试卷理科答案及解析

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2+6x+13=0的一个根是(湖北)方程x)1.(2012? A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i,∈Q”的否定是(“?x∈CQ)2.(2012?湖北)命题R0,?CQQQ ∈D.?xQ,?Q C.?x?CQ∈,C A.?x?Q.,∈Q B?x∈C R0R0RR003.(2012?湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为().. C AD.B.4.(2012?湖北)已知某几何体的三视图如图所示,则该集合体的体积为().D.6π.B.3πAC2012+a能被13整除,则a=()51Z(2012?湖北)设a∈,且0≤a≤13,若5.A.0 B.1 C.11 D.12222222,则=()x=10,+y+zax+by+cz=20=40,azyxcba?(6.2012湖北)设,,,,,是正数,且+b+cCBA ....D1}a),{f(f(0,+∞)上的函数(x),如果对于任意给定的等比数列{a}.7(2012?湖北)定义在(﹣∞,0)∪nn)x①f(+.现有定义在(﹣∞,0)∪(0,∞)上的如下函数:f仍是等比数列,则称(x)为“保等比数列函数”x2)=ln|x|).则其中是“保等比数列函数”的f(=2;②f(x)x;③f(x))的序号为(=;④f(x=x D.②④B.③④C.①③.A①②内随机为直径作两个半圆.在扇形OAB(2012?湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB8.)取一点,则此点取自阴影部分的概率是(.D﹣A.1C﹣B..2)在区间[0,4]上的零点个数为(湖北)函数9.(2012?f(x)=xcosx7 .5 C.6 D.A.4 B曰:置积尺数,以十六乘之,九而一,所得开立方2012?湖北)我国古代数学名著《九章算术》中“开立圆术”(10..人们还用过一≈的一个近似公式,求其直径dd除之,即立圆径,“开立圆术”相当于给出了已知球的体积V )判断,下列近似公式中最精确的一个是(些类似的近似公式.根据x=3.14159…..≈≈C.d.≈Dd A.d≈B.d分.请将答案5分,共25二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.,则角_________C=.cb所对的边分别是a,,c.若(a+b﹣)(a+b+c)=ab,,△201211.(?湖北)设ABC的内角AB,C_________.(2012?湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=12.位回2等.显然,3443,942492213.(2012?湖北)回文数是指从左到右与从右到左读都一样的正整数.如,,11 999,.则:191,202,…,个:,22,,33…99.3位回文数有90101,111121,…,119文数有个:_________位回文数有个;Ⅰ()4(Ⅱ)2n+1(n∈N)位回文数有_________个.+2,,两焦点为F.(2012?B湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A,A,虚轴两端点为,B1411122 D为直径的圆内切于菱形F.若以AAFBFB,切点分别为A,B,C,.则:2112221;(Ⅰ)双曲线的离心率_________e=(Ⅱ)菱形FBFB的面积S与矩形ABCD的面积S的比值=_________.212211二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(2012?湖北)(选修4﹣1:几何证明选讲)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_________.16.(2012?湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线_________.来两点,则线段AB的中点的直角坐标为(t为参数)相较于A,B75分.解答应写出文字说明、证明过程或演算步骤.三、解答题:本大题共6小题,共λ?+)f(x=,设函数cos,(﹣=cosωx﹣sinωx2ωx)xxx=(17.2012?湖北)已知向量(cos ω﹣sinω,sinω),,1)(λπ∈(xR)的图象关于直线x=对称,其中ω,为常数,且ω∈)的最小正周期;f(1)求函数(x上的取值范围.,)在区间(,)的图象经过点(0)求函数fx[0]xy=f2()若(18.(2012?湖北)已知等差数列{a}前三项的和为﹣3,前三项的积为8.n(1)求等差数列{a}的通项公式;n 3项和.|}的前naa,,a成等比数列,求数列{|a(2)若n213,AB上且异于点B,连接⊥BC,垂足D在线段BC1,∠ACB=45°,BC=3,过动点A作AD(19.2012?湖北)如图,(如图2所示)ABD折起,使∠BDC=90°沿AD将△的体积最大;A﹣BCD(1)当BD的长为多少时,三棱锥,BMEN⊥CD上确定一点N,使得设点E,M分别为棱BC,AC 的中点,试在棱(2)当三棱锥A﹣BCD的体积最大时,所成角的大小.与平面BMN并求EN20.(2012?湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:X≥900 降水量X X<300 300≤X<700 700≤X<900工期延误天数Y 02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.22=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i湖北)设21.(2012?A是单位圆x与+yx轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x=rxf湖北).22(2012?(I)已知函数(x)﹣x)的最小值;b1b2≤ab+aab;a+b为正有理数,若b≥≥I(II)试用()的结果证明如下命题:设a0,a0,,bb=1,则222121121112(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求r1﹣αα.α道公式(x)=x42012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?湖北)考点:复数相等的充要条件。
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)

绝密★启用前2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔吧答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3. 第Ⅰ卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:(1)复数=++-ii 131 (A )i +2 (B )i -2 (C) i 21+ (D) i 21-(2)已知集合},3,1{m A =,},1{m B =,A B A = ,则m = (A )30或 (B )30或 (C) 31或 (D) 31或(3)椭圆的中心在原点,焦距为4,一条准线为4-=x ,则该椭圆的方程为(A )1121622=+y x (B )181222=+y x (C) 14822=+y x (D) 141222=+y x (4)已知正四棱柱1111D C B A ABCD -中,2=AB ,221=CC ,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B )3 (C) 2 (D) 1(5)已知等差数列}{n a 的前n 项和为n S ,55=a ,155=S ,则数列⎭⎬⎫⎩⎨⎧+11n n a a 的前100项和为 (A )101100 (B )10199 (C) 10099 (D) 100101 (6)ABC ∆中,AB 边的高为CD .若a =,b =,0=⋅b a ,1||=a ,2||=b ,则=(A )b a 3131- (B )b a 3232- (C) b a 5353- (D) b a 5454- (7)已知α为第二象限角,33cos sin =+αα,则=α2cos (A )35- (B )95- (C) 95 (D) 35 (8)已知1F 、2F 为双曲线C :222=-y x 的左、右焦点,点P 在C 上,||2||21PF PF =,则=∠21cos PF F(A )41 (B )53 (C) 43 (D) 54 (9)已知πln =x ,2log 5=y ,21-=e z ,则(A )z y x << (B )y x z << (C) x y z << (D) x z y <<(10)已知函数c x x y +-=33的图像与x 恰有两个交点,则=c(A )22或- (B )39或- (C) 11或- (D) 13或-(11)将字母c c b b a a ,,,,,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )种12 (B )种18 (C) 种42 (D) 种63(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,73==BF AE ,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为(A )16 (B )14 (C) 12 (D) 10绝密★启用前2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
2012年高考理科数学全国卷1(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题: 1:||2p z =;22:2i p z =;3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x y a b a b +=>>的左、右焦点,P 为直线32ax =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2B . 22C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是 ( ) A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A . 26B . 36C . 23D . 2212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A . 1ln2-B . 2(1ln 2)-C . 1ln2+D .2(1ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|10-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为_________.16. 数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △的面积为3,求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为42,求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e(0)2x f x f f x x -'=-+.(Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =; (Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PB PC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.FGDE AB C2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12naa a,,,中最大的数和最小的数其中A为12naa a,,,中最大的数,B为12naa a,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12na a a,,中最大的数和最小的数.【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3;,12ω>∴,验证三角函数的角的范围,排除选项,得到结的范围即可.的部分图象确定其解析式.22222(2)44|a b|a b a a b b-=-=-+224||4||||cos45||a ab b=-︒+24|||10b b=-+=,解得||32b=【提示】由已知可得,2||||cos45||2ba ab b=︒=,代入2222(2)44a b|ab a a b b-=-=-+242||||10b b=-+=可求【考点】平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角.14.【答案】[]3,3-【解析】画出可行域,易知当直线2z x y=-经过点(1,2)时,z取最小值z x=-经过点(3,0)时,60(a++-(1117++=315959(()a a a a=++++奇177********S S=+=+⨯=奇偶141n nb a++=142242n na a++++++--{}na的前60sin0C>,0πA<<,由余弦定理可得222a b caab+-,22a b+-cos1A=,0πA<<ππ66=A∴(2)ABCS=△,2a A=,222a b c∴=+-.解得b c=【提示】(Ⅰ)由正弦定理及两角和的正弦公式可得sin cos sin sin cosA C A C++整理可求AX 的数学期望()550.1650.2750.16850.5476.4E X =⨯+⨯+⨯+⨯=,因为76.4>76,所以,直三棱柱,又1DC BD ⊥1DC D =2AB a =BDC ,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =Rt ABD △3,90a AD =AB ∴2AC BC +AC BC ∴⊥1BDA ,连结30. 30.轴,CB 为建立空间直角坐标系1(,0,2,0)(,0,A a a D a ,(,,DB a a =--1(,0,DC a =-11(,n x y =111100n DB ax az n DC ax ⎧=--=⎪⎨=-=⎪⎩,不妨令,故可取1(1,2,1)n =同理,可求得平面1DBA 的一个法向量2(1,1,0)n =设1n 与2n 的夹角为θ,则1212cos ||||6n n n n =⨯30.由图可知,二面角的大小为锐角,故二面角1A -.【提示】(Ⅰ)证明只需证明1DC DC ⊥⊥,(Ⅱ)证明BC ⊥BC AC ⊥取A 重合且C DO ∠()e h x '=x →-∞时,(2)当a (3)当a ()0f x '>10a +>CF ABCF AD,=∴=CD AF∥CF AB(Ⅱ)由(Ⅰ)知,BCD∴△∽△【提示】(Ⅰ)角,即可得到结论;(Ⅱ)证明两组对应角相等,即可证得。
2012年高考试题(全国新课标)数学(理科)试卷及答案

2012年普通高等学校招生全国统一考试(新课标全国卷)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为(A )3 (B )6 (C )8 (D )102、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C )9种 (D )8种 3、下面是关于复数z=21i-+的四个命题 P1:z =2 P2: 2z =2i P3:z 的共轭复数为1+i P4 :z 的虚部为-1 其中真命题为(A ). P2 ,P3 (B ) P1 ,P2 (C )P2,P4 (D )P3,P44、设F1,F2是椭圆E:22x a +22yb=1 (a >b >0)的左、右焦点 ,P 为直线32a x =上的一点,12PF F △是底角为30°的等腰三角形,则E 的离心率为 (A )12 (B )23 (C ) 34 (D )455、已知{n a }为等比数列,214=+a a ,865-=⋅a a ,则=+101a a(A )7 (B )5 (C )-5 (D )-76、如果执行右边的程序图,输入正整数)2(≥N N 和实数n a a a ⋯,,21,输入A ,B ,则(A )A+B 为的n a a a ⋯,,21和 (B )2A B+为n a a a ⋯,,21的算式平均数 (C )A 和B 分别是n a a a ⋯,,21中最大的数和最小的数 (D )A 和B 分别是n a a a ⋯,,21中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9 (C )12 (D )188、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34=AB ,则C 的实轴长为(A )2 (B ) 22 (C ) 4 (D )89、已知w >0,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是(A )]45,21[ (B )]43,21[ (C )]21,0( (D )(0,2]10、已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为O O O O 11111111xyxy xy xy)(A )(B11、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为O 的直径,且SC=2,则此棱锥的体积为(A )26 (B )36 (C )23 (D )2212、设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则|PQ|的最小值为 (A )2ln 1- (B ))2ln 1(2- (C )2ln 1+ (D ))2ln 1(2+第Ⅱ卷本卷包括必考题和选考题两部分。
2012年湖北省高考数学试卷(理科)答案与解析

2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2,知=3,,∉3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()B轴所围图形的面积为)+1﹣=4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()B=32012+6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()Bx y ax+by+cz 当且仅当=7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;,①②≠③8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()﹣﹣的面积为﹣∴此点取自阴影部分的概率是.210.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..≈≈,表示出V=,解得设选项中的常数为,则==3.375=3=3.14=3.142857二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.cosC==.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N+)位回文数有9×10n个.14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.到直线的距离为,根据以,到直线的距离为,∴,==故答案为:二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).=,曲线三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.•2)=+,又()的最小正周期为(××﹣)(﹣)﹣,x∈,x),x)﹣=f﹣﹣,,18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.,由题意可得,,根据等差数列的求和公式可求或=综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.××××(=((,且,则=,•=0,+=,DN=的一个法向量为,由及,,取==(﹣,﹣,>|=|=20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率..21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.|y|上,可得,从而可得可得在圆上运动,∴的方程为()上,∴可得,∴,∴,使得在其对应的椭圆上,对任意22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.,a中令a+≤+a•。
2012年理数高考试题答案及解析湖北

....2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.方程x 26 x 13 0 的一个根是 A . 3 2iB . 3 2iC . 2 3iD . 2 3i 考点分析: 本题考察复数的一元二次方程求根 .难易度 : ★ 解析: 根据复数求根公式: x 6 6213 4 3 2i ,所以方程的一个根为2 答案为 A.2.命题“ x 0 e R Q , x 03 Q ”的否定是 A . x0 eR Q , x0 3 B . x0 eR Q , x03 Q Q C . x e R Q , x 3 Q D . x e R Q , x 3 Q 考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度 :★解析: 根据对命题的否定知,是把谓词取否定, 然后把结论否定。
因此选 D 3.已知二次函数 y f ( x) 的图象如图所示,则它与 x 轴所围图形的面积为 A . 2πB . 45 3C . 3 πD . 2 2 考点分析: 本题考察利用定积分求面积 .难易度 :★解析: 根据图像可得: y f ( x)x 2 1,再由定积分的几何意 2 1 1 x 34 4义,可求得面积为x 2 1)dx ( x)1 2S( 14.已知某几何体的三视图如图所示,则该几 何体的体积为 A . 8π B .π 3....3 2iy111 O 1 x1第 3 题图142侧视图第 4 题图C .10πD . 6π 3 考点分析: 本题考察空间几何体的三视图 .难易度:★解析: 显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为 6,则知所求几何体体积为原体积的一半为 .选 B. 3π 5.设 a Z ,且 0a 13 ,若 512012 a 能被 13 整除,则 aA .0 B .1 C .11D . 12 考点分析: 本题考察二项展开式的系数 .难易度:★解析:由于51=52-1 , (52 1)2012C 20120 522012 C 20121 522011 ... C 20122011521 1 , 又由于 13|52,所以只需 13|1+a , 0≤ a<13, 所以a=12 选 D.6.设 a,b, c, x, y, z 是正数,且 a 2b2 c 210 , x 2 y 2 z 240 , ax by cz 20 ,则 a b c x y zA . 1B . 14 3 C . 1 D . 32 4考点分析: 本题主要考察了柯西不等式的使用以及其取等条件.难易度: ★★解析: 由于 ( a 2b 2 2 )( x 2 y 2 z 2 ) ( ax by cz)2c等号成立当且仅当a b c t , 则 a=t x b=t y c=t z , t 2( x 2 y 2 z 2 ) 10 x y z所以由题知 t1/ 2 , 又 a b c a b c , 所以 a b c t 1/ 2,答案选 C.x y z x y z x y z7.定义在 ( ,0) (0, ) 上的函数 f ( x) ,如果对于任意给定的等比数列{ a n}, { f(a n )} 仍是等比数列,则称f ( x) 为“保等比数列函数”. 现有定义在( ,0) (0,) 上的如下函数:① f( x) x2;② f ( x) 2x;③ f ( x)| x | ;④ f (x) ln | x | .第 2 页共 15 页则其中是“保等比数列函数”的 f ( x) 的序号为A .① ②B .③ ④C.① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质, a n a n a n21,①f a n f a n 2 a n2a n22 a n22f 2 a n 1;2 12a n2a n2 2a n a n2 22a n 1 f 2 an 1;③ f a n f a n 222 an 1;② f a n f a n 2a n a n 2a n 1 f④ f a n f a n 2ln a n ln a n 22f 2 an 1.选 C ln a n 18.如图,在圆心角为直角的扇形OAB 中,分别以 OA,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .1 2 B .11π 2 πC.2D.1ππ考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S1,围成 OC 为 S2,作对称轴 OD ,则过 C 点。