整式乘除与因式分解计算题集锦

合集下载

整式的乘除因式分解练习题

整式的乘除因式分解练习题

练习题1、分解因式:(1)34xx (2)4282aa(3)2233m nm n(4)2224xxy y(5)225xxy x(6)2225x y xyxy(7)432462xxx(8)4234462x yx yxy(9)2232a x y b x y(10)223242a x y b y x c x y(11)224292a ba b(12)2961a ba b (13)22111439xxyy(14)222316131p x yp x y p x 2、求证:不论x 、y 为何有理数,2210845xyx y 的值均为正数。

3、若a 为整数,证明2211a 能被8整除。

4、计算:323220022200220002002200220035、已知2226100aa bb ,求a 、b 的值。

6、计算:(1)32232228a baab(2)225241x xx xx (3)11x y x y (4)33323538310ab ca ba b(5)32325223393aabb aba b(6)262132232xx x x x (7)22232394x y x y yx(8)2321223xx (9)22221112222x yx yxy(10)先化简,再求值:33222491233x y x y x y xyxyxy ,其中1,23xy7、下列运算正确的是()A 、6318aaaB 、639aaaC 、632aaaD 、639aaa8、下列运算中,正确的是()A 、236xxxB 、222235x xxC 、328x xD 、222x yxy9、下列多项式中,能够因式分解的是()A 、22xyB 、22xxy yC 、214p pD 、22mn10、分解因式2a ab 的结果是()A 、11a b bB 、21a bC 、21a bD 、11b b11、下列多项式能利用平方差公式分解的是()A 、2xyB 、22xyC 、22xyD 、22xy12、在多项式2222244,116,1,xx a xx xy y 中是完全平方式的有()A 、1个B 、2个C 、3个D 、4个13、数轴上的每一个点都表示一个()A 、无理数B 、有理数C 、实数D 、整数14、无理数是()A 、无限循环小数B 、无限不循环小数C 、不循环小数D 、有限小数15、下列说法中正确的是()A 、1的平方根是 1B 、21的平方根是1C 、2是8的立方根D 、16的平方根是 416、若12a a,则221aa的值为()A 、2B 、4C 、0D 、417、多项式22ac bc a b 分解因式的结果是()A 、a b a b cB 、a b a b cC 、a b a b cD 、a b a b c18、如果单项式423a bxy 与313a bx y是同类项,那么这两个单项式的积是()A 、64x yB 、32x yC 、3283x yD 、64x y19、若4xm,则2______xm20、2323_____12x y x y化简2222a a a 的结果是_______________。

整式乘除与因式分解及答案

整式乘除与因式分解及答案

一、选择(每小题3分,共30分)1.下列关系式中,正确的是( )A.(a-b)2=a 2-b 2 B.(a+b)(a-b)=a 2-b 2 C.(a+b)2=a 2+b 2 D.(a+b)2=a 2-2ab+b22.x5m+3n+1÷(x n )2·(-x m )2等于( )A.-x7m+n+1B.x7m+n+1C.x7m-n+1D.x3m+n+13.若36x 2-mxy+49y 2是完全平方式,则m 的值是( )A.1764 B.42 C.84 D.±844.在“2008北京奥运会”国家体育场的“鸟巢”钢结构工程施工建设中,首次用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数是( ) A.4600000 B.46000000 C.460000000 D.4600000000 5.代数式ax2-4ax+4a 分解因式,结果正确的是( )A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2) 6.已知31=-xx ,则221x x +的值是( )A.9 B.7 C.11 D.不能确定7.下列多项式中,不能用公式法因式分解的是( )A.2241y xy x +- B.222y xy x ++ C.22y x +- D.22y xy x ++8.下列计算正确的是( )A.(ab 2)3=ab 6B.(3xy)3=9x 3y 3C.(-2a 2)2=-4a 4D.(x 2y 3)2=x 4y 69.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( )A.-1 B.1 C.5 D.-3 10.(x 2+px+q)(x 2-5x+7)的展开式中,不含x 3和x 2项,则p+q 的值是( ) A.-23 B.23 C.15 D.-15 二、填空(每小题3分,共30分)11.计算:(-2mn 2)3= ,若5x=3,5y=2,则5x-2y= .12.分解因式:x 3-25x= . a(x-y)-b(y-x)+c(x-y)= . 13.(8x 5y 2-4x 2y 5)÷(-2x 2y)= .14.分解因式x 2+ax+b 时,甲看错了a 的值,分解的结果是(x+6)(x-1),乙看错了b,分解的结果是(x-2)(x+1),那么x 2+ax+b 分解因式正确的结果是 .15.若(x 2+y 2)(x 2+y 2-1)-12=0,那么x 2+y 2= .16.一个长方形的长增加了4㎝,宽减少了1㎝,面积保持不变,长减少2㎝,宽增加1㎝,面积仍保持不变,则这个长方形的面积是 .17.(-3a 2-4)2= ,(x n-1)2(x 2)n= 18.若m 2+n 2=5,m+n=3,则mn 的值是 . 19.已知x 2+4x-1=0,那么2x 4+8x 3-4x 2-8x+1的值是 . 20.若2x=8y+1,81y=9x-5,则x y= . 三、解答题(60分) 21.计算(8分)⑴(-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2⑵[(3x-2y)2-(3x+2y)2+3x 2y 2]÷2xy.因式分解(12分)⑴8a-4a 2-4 ⑵161212+-y y ⑶(x 2-5)2+8(5-x)2+1623.化简求值(8分)⑴(x 2+3x)(x-3)-x(x-2)2+(-x-y)(y-x)其中x=3 y=-2.⑵已知81,61==y x ,求代数式22)32()32(y x y x --+的值.24.已知(x+y)2=4,(x-y)2=3,试求: ⑴x 2+y 2的值. ⑵xy 的值.25.用m 2-m+1去除某一整式,得商式m 2+m+1,余式m+2,求这个整式.26.将一条20m 长的镀金彩边剪成两段,恰可以用来镶两张不同的正方形壁画的边(不计接头处),已知两张壁画面积相差10㎡,问这条彩边应剪成多长的两段?27.根据图8-C-1示,回答下列问题 ⑴大正方形的面积S 是多少?⑵梯形Ⅱ,Ⅲ的面积S Ⅱ,S Ⅲ,分别是多少? ⑶试求S Ⅱ+S Ⅲ与S-S Ⅰ的值.⑷由⑶你发现了什么?请用含a,b 的式子表示你的结论.8-C-1一、选择1.B 2.B 3.D 4.C 5.A 6.B 7.D 8.D 9.D 10.B二、填空 11.-8m 3n 6,43 12.x(x-5)(x+5),(x-y)(a+b+c)13.-4x 3y+2y4 14.(x+2)(x-3) 15.4 16.24㎝217.9a 4+24a 2+16,x 4n-2x 3n+x 2n18.2 19.-1 20.81 解答题21.⑴解:原式=4y 6-64y 6-(4y 2·9y 4) =4y 6-64y 6-36y 6=-96y 6.⑵ 解:原式=[(3x-2y+3x+2y)(3x-2y-3x-2y )+3x 2y 2]÷2xy =[6x·(-4y)+3x 2y 2]÷2xy=(-24xy+3x 2y 2)÷2xy=xy 2312+- 22.解:⑴原式=-4(a 2-2a+1)=-4(a-1)2(2)原式=161(y 2-2y+1)=161(y-1)2(3) 原式=(x 2-5+1)2=(x 2-1)2=(x+1)2(x-1)223.⑴ 解:原式=x 3-3x 2+3x 2-9x-x(x 2-4x+4)+(x 2-y 2) =x 3-9x-x 3+4x 2+x 2-y 2=5x 2-13x-y 2,当x=3,y=-2时,原式=2. ⑵ 解:原式=(2x+3y-2x+3y)(2x+3y+2x-3y) =6y ·4x=24xy 所以当81,61==y x ,原式=816124⨯⨯=21 24. 解:⑴由已知得x 2+y 2+2xy=4①:x 2+y 2-2xy=3② ①+②得2x 2+2y 2=7,故x 2+y 2=3.5 ⑵①―②得,4xy=1,xy=0.25 25. m 4+m 2+m+3解析:由题意得(m 2+m+1)(m 2-m+1)+m+2 =m 4-m 3+m 2+m 3-m 2+m+m 2-m+1+m+2 =m 4+m 2+m+326.解:设应剪成两端的长为xm ,ym (x>y )可列方程组为⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+10442022y x y x ,解之得⎩⎨⎧==614y x ,故应剪成14m 和6m的两段. 27.⑴S=a 2⑵S Ⅱ=S Ⅲ=()b a b a -+)(21⑶S Ⅱ+S Ⅲ=2×()b a b a -+)(21=(a+b)(a-b)S-S Ⅰ=a 2-b 2⑷ S Ⅱ+S Ⅲ= S-S Ⅰ, (a+b)(a-b)= a 2-b 2。

整式乘法与因式分解500题

整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10(2) (a+b)3=a 3+b 3(3) (-a+b)(-a-b)=a 2-b 2(4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.当a =-1时,代数式(a +1)2+ a (a +3)的值等于( )A.-4B.4C.-2D.23、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-15.若,则的值为 ( ) A . B .5 C .D .26、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601))((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-7、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=18.如果一个单项式与的积为,则这个单项式为( ) A. B. C. D.9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除10.已知,,则与的值分别是 ( )A. 4,1B. 2,C.5,1D. 10,二、填空题11、(1)化简:a 3·a 2b=12、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积为 。

13.已知31=-a a ,则221a a + 的值等于 。

14、有一串单项式:……,(1)第2006个单项式是 ;(2)第(n+1)个单项式是 .三、解答题。

m 9)54(2-+m m m m 234,2,3,4,x x x x --192019,20x x -15、化简(1)3x2y·(-2xy3); (2)2a2(3a2-5b);(3)(-2a2)(3a b2-5a b3). (4)(5x+2y)(3x-2y).1)2009 (5)(3y+2)(y-4)-3(y-2)(y-3);(6)(-3)2008·(316、因式分解(1)xy+a y-by; (2)3x(a-b)-2y(b-a);(3)m2-6m+9;(4) 4x2-9y2(5) x4-1; (6) x2-7x+10;17、先化简,再求值(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1 18.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.19、如图是L 形钢条截面,试写出它的面积公式。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
16.解:A、应为 2x3•3x4=6x7,故本选项错误; B、应为 3x3•4x3=12x6,故本选项错误; C、应为 2a3+3a3=5a3,故本选项错误; D、4a3•2a2=4×2×a3•a2=8a5,正确. 故选 D.
17.解:A、(a5)2=a10,故正确; B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确; C、b•b3=b4,故正确;
39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=- b2.
40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac; (4x2y-8x3)÷4x2=y-2x.
整式乘法与因式分解 500 题--基础篇解析
41.解:(am+1bn+2)•(a2n-1b2m),
5.解:①根据零指数幂的性质,得(-3)0=1,故正确; ②根据同底数的幂运算法则,得 a3+a3=2a3,故错误; ③根据负指数幂的运算法则,得 4m-4= ,故错误;
④根据幂的乘方法则,得(xy2)3=x3y6,故正确. 故选 C.
6.解:A、应为 a2•a3=a2+3=a5,故 A 错误 B、应为(2a)•(3a)=6a2,故 B 错误
23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.
24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.
整式乘法与因式分解 500 题--基础篇解析
25.解:(3x2y)(- x4y)=3×(- )x2+4y2=-4x6y2.
26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6. 27.解:(-3x2y)•( xy2)=(-3)× ×x2•x•y•y2=-x2+1•y1+2=-x3y3.

(完整版)整式的乘除与因式分解复习(附练习含答案)

(完整版)整式的乘除与因式分解复习(附练习含答案)

整式的乘除与因式分解考点归纳知识网络归纳22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆22222()():2()a b a b a b a ab b a b⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤 专题归纳专题一:基础计算【例1】 完成下列各题:1.计算:2x 3·(-3x )2__________. 2.下列运算正确的是( )A. x 3·x 4=x 12B. (-6x 6)÷(-2x 2)=3x 3C. 2a -3a =-aD. (x -2)2=x 2-43.把多项式2mx 2-4mxy +2my 2分解因式的结果是__________.4分解因式:(2a -b )2+8ab =____________.专题二:利用幂的有关运算性质和因式分解可使运算简化 【例2】用简便方法计算.(1)0. 252009×42009-8100×0. 5300. (2)4292-1712.整式的乘法专题三:简捷计算法的运用【例3】设m 2+m -2=0,求m 3+3m 2+2000的值. .专题四:化简求值【例4】化简求值:5(m+n )(m-n )–2(m+n)2–3(m-n)2,其中m=-2,n= 15.专题五:完全平方公式的运用【例5】已知()211a b +=,()25a b -=,求(1)22a b +;(2)ab例题精讲基础题【例1】填空:1. (-a b)3·(a b 2)2= ; (3x 3+3x)÷(x 2+1)= . 2. (a +b)(a -2b)= ;(a +4b)(m+n)= . 3. (-a +b+c)(a +b-c)=[b-( )][b+( )].4. 多项式x 2+kx+25是另一个多项式的平方,则k= .5. 如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 . 【例2】选择:6.从左到右的变形,是因式分解的为 ( )A.m a +mb-c=m(a +b)-cB.(a -b)(a 2+a b+b 2)=a 3-b 3C.a 2-4a b+4b 2-1=a (a -4b)+(2b+1)(2b-1) D.4x 2-25y 2=(2x+5y)(2x-5y) 7.下列多项式中能用平方差公式分解因式的是( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x8. 如图是用4个相同的小矩形与1个小正方形镶嵌而成的 正方形图案,已知该图案的面积为49,小正方形的面积 为4,若用x ,y 表示小矩形的两边长(x >y),请观察 图案,指出以下关系式中,不正确的是 ( ) A.x+y=7 B.x-y=2C.4xy+4=49D.x 2+y 2=25【例3】9计算:(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(9)(9)x y x y -++- (4)2[(34)3(34)](4)x y x x y y +-+÷-(5)22)1)2)(2(x x x x x +-+--( (6) [(x+y )2-(x -y )2]÷(2xy)中档题【例1】10.因式分解:21(1)4x x -+ (2)22(32)(23)a b a b --+(3)2x2y-8xy+8y (4)a2(x-y)-4b2(x-y)(5)2222x xy y z-+- (6)1(1)x x x+++(7)9a2(x-y)+4b2(y-x);(8)(x+y)2+2(x+y)+1 【例2】11.化简求值:(1).2)3)(3()2)(3(2-=-+-+-aaaxx其中,x=1【例3】12若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q值.【例4】13对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由能力题【例1】14下面是对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)第二步到第三步运用了因式分解的_______. A .提取公因式 B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)这次因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.【例2】已知a 、b 、c 为△ABC 的三边,且满足2220a b c ab bc ac ++---= (1)说明△ABC 的形状;(2)如图①以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,D 是y 轴上一点,连DB 、DC ,若∠ODB=60°,猜想线段 DO 、DC 、DB 之间有何数量关系,并证明你的猜想。

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档