晶闸管过零触发电路

合集下载

2020年维修电工高级工应知应会考试题库之多选问答

2020年维修电工高级工应知应会考试题库之多选问答

2020年维修电工高级工应知应会考试题库之多选问答多项选择题1.交流负反馈对放大电路的影响有(A B C)A、稳定放大倍数B、增大输入电阻C、改善失真D、稳定静态工作点2.以下情况(B C)有可能使得多极负反馈放大器生产高频自激。

A、两极放大器B、附加相移达到180°C、负反馈过深D、直接耦合3.消除放大器自激振荡的方法可以采用(D E)A、变压器耦合B、阻容耦合C、直接耦合D、校正耦合E、去耦电路4.运算放大器采用以下结构(ABCD)A、输入为差动放大B、恒流源偏置C、直接耦合D、射极输出E、电感波动5.运算放大器以下参数(ABE)越大越好A、开环放大倍数B、共模抑制比C、输入失调电压D、失调电压的温度漂移E、输入电阻6.运算放大器组成的积分器,电阻R=2KΩ,电容C=0.1uF,在输入电压为0.2V时,经过50ms时间后可能使输出电压(BD)A、从0V生高到5VB、从5V降低到0VC、从2V降低到-5VD、从6V降低到1V7.以下属于组合逻辑电路的有(BCDEG)A、寄存器B、全加器C、译码器D、数据选择器E、数字比较器F、RAMG、ROM8.以下属于时序逻辑电路的有(ADEF)A、寄存器B、全加器C、译码器D、计数器E、触发器F、RAMG、ROM9.具有记忆功能的电路有(BCD)A、施密特触发器B、主从触发器C、JK触发器D、D触发器E、单稳态触发器10.同或门的函数式是(AD)A、B、C、D、11.消除数字电路竞争冒险的方法有(BCD)A、采用高速集成电路B、引入封锁脉冲C、输出端接滤波电容D、修改逻辑设计12.用JK触发器可以组成(ABD)A、计数器B、寄存器C、多谐振荡器D、D触发器E、施密特触发器13.用D触发器可以组成(ABC)A、加法计数器B、减法计数器C、移位寄存器D、多谐振荡器E、D施密特触发器14.用555定时器可以组成(ABCD)A、多谐振荡器B、单稳态触发器C、施密特触发器D、整形电路E、计数器15.三相桥式可控整流电路晶闸管必须采用(BC)触发。

晶闸管触发电路原理

晶闸管触发电路原理

晶闸管触发电路原理
晶闸管触发电路是一种用来控制晶闸管导通或关断的电路。

晶闸管是一种双电极四层结构的半导体器件,当控制电压达到一定值时,晶闸管将导通,形成低电压通道,允许大电流通过。

而当控制电压低于一定值时,晶闸管会关断,形成高电压阻断状态。

晶闸管的触发电路一般由两部分组成:触发脉冲发生器和触发脉冲放大器。

触发脉冲发生器负责产生控制信号,而触发脉冲放大器则负责放大触发信号,使之能够控制晶闸管的导通或关断。

触发脉冲发生器通常是利用电容和电感等元件来形成一个振荡电路,产生临时性的高幅度脉冲信号。

这个脉冲信号可以通过电压调节器进行调节,以确保触发脉冲的幅度和宽度符合晶闸管的要求。

触发脉冲放大器接收触发脉冲发生器产生的脉冲信号,并将其放大到足以触发晶闸管的电压级别。

这个放大过程中通常会使用放大电路,如放大器或变压器等。

当触发脉冲传递到晶闸管上时,它会改变晶闸管的电特性,从而实现导通或关断。

触发脉冲的幅度、宽度和频率等参数决定了晶闸管的导通和关断速度以及电流大小。

总而言之,晶闸管触发电路是利用触发脉冲发生器和触发脉冲
放大器,通过产生和放大脉冲信号来控制晶闸管的导通或关断,实现对电流的控制。

过零触发的原理

过零触发的原理

过零触发的原理
过零触发的原理主要是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。

具体来说,过零触发是利用交流电的过零点来触发可控硅,从而实现控制。

在正负半周内,交流电必须经过零点才能从正半周切换到负半周或从负半周切换到正半周。

通过在一定时间内改变导通周波数,可以改变可控硅的平均输出功率,从而实现调节负载功率的效果。

过零触发的优点在于对用电负荷不会造成“电流冲击”,因为它是在交流电流过“0”点时完成“接通”和“断开”动作的。

这种电路适用于热惯性较大的电热负载,但对于快速响应或要求电流连续的负荷控制,如电动机类,过零触发可能并不适用。

此外,过零触发的缺点是在通断比太小时可能出现低频干扰,当电网容量不够大时可能出现照明闪烁、电表指针抖动等现象。

因此,在实际应用中,需要根据实际情况选择合适的触发方式。

晶闸管触发电路

晶闸管触发电路
晶闸管触发电路
•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。

过零触发交流稳压电源电路

过零触发交流稳压电源电路

目录1 晶闸管过零触发电路 (1)1.1过零触发电路基本原理 (1)1.2过零触发电路的结构形式 (3)2 交流稳压电源电路 (5)2.1交流稳压电源的介绍 (5)2.2交流稳压电源的基本结构 (5)3 过零触发交流稳压电源电路总体设计 (7)3.1原理分析 (7)3.2电气原理图 (8)结论 (9)心得体会 (10)参考文献 (11)1 晶闸管过零触发电路1.1过零触发电路基本原理过零触发电路工作原理示意图如图1所示。

通过改变t1的导通时间和t2的关断时间来改变可控硅的通断时间比η,使信号整周波导通与整周波关断。

控制电路把负载与电源u = U ⋅t 0 2 sinω在周期c T 时间内接通1 t 秒(通n 个周波),然后再断开2 t 秒(断m 个周波),则负载阻抗Z上的交流电压有效值为:图1中:TC为控制信号的周期,t1为导通时间,t2的关断时间。

其中U 、M I 、M P 分别为可控硅连续导通时负载获得的最大电压、电流和功率。

在本系统中我们是通过改变η来进行调压,从而改变电镦机中的加热电流。

在电压过零时给晶闸管以触发脉冲,使晶闸管工作状态始终处于全导通或全阻断,这种工作方式称为过零触发。

交流过零触发开关电路就是利用过零触发方式来控制晶闸管导通与关断。

它被用来实现在设定的周期范围内,将电路接通几个周波,然后断开几个周波,通过改变晶闸管在设定周期内通断时间的比例,达到调节负载两端交流电压,即负载功率的目的。

既能实现调压,又能保持输出正弦波波形的完整,这是过零触发电路的最初思路。

实现方法:①触发脉冲总是在电网过零点附近送出,使晶闸管在电网过零后即行输出,在整个电网周波内“完全开通”,电路输出为完整的正弦波形。

②用门限控制信号来控制晶闸管的导通时间,即控制流过晶闸管周波数的多少,当使控制信号高、低电平时间比T1:T2=1:1时,晶闸管一半时间处于关断,一半时间处于开通,电源中的完整周波有一半为晶闸管所输出,输出电压的有效值也为电源电压的一半。

可控硅模块晶闸管过零触发器触发模块 mtc mtx 触发器 接头

可控硅模块晶闸管过零触发器触发模块 mtc mtx 触发器 接头

可控硅模块晶闸管过零触发器触发模块mtc mtx触发器接头
可控硅模块晶闸管过零触发器,如KC07,能使双向可控硅的开关过程在电源电压为零或电流为零的瞬间进行触发。

这种工作方式可以减小负载的瞬态浪涌电流和射频干扰,从而提高可控硅的使用寿命。

触发器的接头用于连接电路,并实现功率、电压等输出负载的无级化调节。

此外,还有专门的MTC和MTX触发器模块,这些模块在销售平台上有多种选择,并且可以根据需要进行全球邮寄。

触发可控硅的动作不仅取决于温度、供电电压、栅极电流等不同的变量,还需要确保正确的触发信号。

例如,门触发是在使用的不同电路中最常见的一种,对于大多数应用来说,它简单、可靠、高效且易于实施。

因此,选择合适的触发器和正确的触发方法对于确保可控硅的正常工作是非常重要的。

电力电子技术 第3章 晶闸管相控触发电路

电力电子技术 第3章 晶闸管相控触发电路
W2 dt
dΦ dt
= W1A
=
W2
A
dB dt
dB dt
式中,Φ为磁路中的磁通;B为磁通密度;
A为磁路截面积
若脉宽τ内,磁路不饱和,则:

u1
=
E
=
W1 A
dB dt
∴ dB 为常数 dt
则u2为恒值,从而可把矩形电压
传输到二次侧。
相控触发电路的同步方式及输出
VW1
VD1
u1
VD2
u2 R3
VT
根据usy周期信号的性质不同,分为线性垂直移相方法和余弦交点移相方法
3.7.3 相控触发电路的同步方式及输出
一.同步方式(同步环节)
同步信号:与电网电压严格同步的基准信号。
us1
us2
u
us1 us2
ωt
阻容移相滤波电路及 电压相位关系
主电路电源电压经同步变压器降压,再经阻 容移相,便可获得符合要求的同步信号。尽管利 用同步变压器可以获得适宜相位的电压信号,为 了滤除电网电压中有影响的干扰信号,提供抗干 扰性能,同步变压器输出端通常设有如图所示的 阻容滞后移相滤波电路。
常见的触发脉冲电压波形
z脉冲列
对于并联晶闸管的大电流变流装置及串 联晶闸管的高电压装置,应采用强触发 脉冲。
对相控触发电路的基本要求
IGM
t1 t2
t3
采用强触发脉冲的目的是:
缩小晶闸管管间开通时间的差异,有利于动态 均流和均压。
t1为前沿时间;t2为强脉冲宽度;t3为脉冲持续时间; IGM为强触发脉冲幅值,是触发电流IG的5倍左右。 IG 大容量晶闸管门极触发电流要求脉冲峰值在
一般晶闸管变流电路的控制框图

晶闸管过零触发电路

晶闸管过零触发电路

晶闸管过零触发电路1、闸管过零触发电路结构及原理分析1.1触发电路和过零触发电路的比较在交流调压领域,尤其是应用于交、直流电机的电力拖动系统的交、直流调压电路,多采用移相触发电路,即使触发脉冲相对同步脉冲来说,产生一个相对延迟角,延迟量越大,晶闸管的导通角越小,输出电压越低。

电路的实质是调整或控制触发脉冲出现的时刻,若使移相触发脉冲在电网周波的“峰顶位置”出现,晶闸管在电网电压过零点后的T2、T4时刻开通,电网电压的正弦波被“削掉一半”,输出电压的有效值为电源电压的一半。

移相触发的结果,使完整的正弦波被 “部分砍掉”,形成“缺口波”,此种波形中谐波分量最大,富含奇、偶次(多种频率值的)谐波,易使电网中产生浪涌电压(电流)分量,造成对电网的污染、易对周过电气设备造成干扰。

我们可称为这种控制方式为“削波控制”,输出电压频率仍为50Hz ,电压(电流)的连续性,还算不错。

电网电压同步脉冲a、移相触发电路过零点信号移相触发脉冲移相输出电压电网电压同步脉冲b、过零触发电路(触发脉冲)门限控制信号过零输出电压T1T2T1T2T3T4图1移相触发与过零触发的波形比较即能实现调压,又能保持输出正弦波波形的完整,这是过零触发电路的最初思路。

实现方法:1)触发脉冲总是在电网过零点附近送出,使晶闸管在电网过零后即行输出,在整个电网周波内“完全开通”,电路输出为完整的正弦波形;2)用门限控制信号来控制晶闸管的导通时间,即控制流过晶闸管周波数的多少,当使控制信号高、低电平时间比T1:T2=1:1时,晶闸管一半时间处于关断,一半时间处于开通,电源中的完整周波有一半为晶闸管所输出,输出电压的有效值也为电源电压的一半。

3)过零电路的触发脉冲,是由同步脉冲,不经移相,即直接触发晶闸管的,但取得的同步脉冲往往较“窄”,需要展宽处理,才能可靠触发晶闸管。

过零触发电路,晶闸管输出波形为完整的正弦波,晶闸管从过零点开始导通,然后在过零点自生关断,晶闸管承受的电流、电压冲击较小,输出电压的谐波分量少,不污染电网和造成干扰,这是其优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
TSC 的触发电路
1.介绍晶闸管投切电容器的原理和快速过零触发要求
晶闸管投切电容器组的关键技术是必须做到电流无冲击。

晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网
当电路的谐振次数n 为2、3时,其值很大。

式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。

若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。

1. 当得到TSC 电管+高。

如果
MOC3083芯片内部有过零触发判断电路,它是为220V 电网电压设计的,芯片的双向可控硅耐压800V ,在4、6两端电压低于12V 时如果有输入触发电流,内部的双向可控硅就导通。

用在380V 电网的TSC 电路上要串联几只3083。

在2控3的TSC 电路应用如图四:
图四2控3的TSC 电路
用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。

这种触发电路随机给触发命令要出现下面的许多麻烦问题。

快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。

图五测量不正常工作的两对晶闸管的电压波形。

此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。

晶闸管导通时两端电压
为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。

测量C相停止时峰峰值电压为540V,其有效值=,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。

推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。

信息请登陆:输配电设备网图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。

电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。

信息请登陆:输配电设备网
*在初次投切时有一定的冲击。

下面是国外着名产品的首次投切的电流波形。

图六:国外公司产品的第一次触发冲击波形
记录C相晶闸管两端电压,A相电流。

电流投切冲击很大,使得电网电压都产生了变形。

信息来自:
*
*
*
*
3.
努力,
源:
切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。

新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。

用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。

由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。

A探头为电压,B探头为电流。

图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。

横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。

可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。

在连续动作中,电流没有冲击。

=1.33。

h
t
适合TSC。

相关文档
最新文档