人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件
合集下载
分式方程(共第三课时分式方程的增根与无解)(共17张PPT)数学八年级上册

解:
(1)确定增根,让最简 公分母为零
(2)化分式方程为整式方程
(3)把增根代入整式方 程求出字母m的值
含有参数的分式方程有增根方法总结:1.确定增根。2.化为整式方程。(方程可以不整理)3.把增根代入整式方程求出字母的值。
2.已知关于 的方程 . (1)有增根2,求 的值; (2)有增根,求 的值.
第三课时 分式方程的增根与无解
一:学习目标
1、理解分式方程有增根与无解的意义
2、会根据分式方程有增根或无解确定字母系数的值。
分式方程
整式方程
a是分式方程的解
X=a
a不是分式方程的解
去分母
解整式方程
检验
最简公分母不为0
最简公分母为0
a就是分式方程的增根
解分式方程的一般步骤
知识回顾:
例1 解方程:
得m=- 或m=5
∴m=- ,m=5分式方程无解
①分式方程有增根
整理整式方程 x+4+m(x-4)=m+3
得:(m+1)x=5m-1
关于x的方程ax=b,当a=0,b≠0 时, 方程无解
∴当m+1=0时
∴当m=-1时分式方程无解
综上① ②所述,当m=- ,m=5,m=-1时原分式方程无解
即当m=-1时整式方程无解
②整式方程无解
分式方程无解
①分式方程有增根
②分式方程转化为整式方程,整式方程无解
整式方程无解即把整式方程整理成ax=b形式,当a=0,b≠0 时,方程无解
归纳小结:
已知关于x的方程 无解,求m的值.
应用升华
二、含参数的分式方程无解
解方程:
整式方程无解
∴原分式方程无解
(1)确定增根,让最简 公分母为零
(2)化分式方程为整式方程
(3)把增根代入整式方 程求出字母m的值
含有参数的分式方程有增根方法总结:1.确定增根。2.化为整式方程。(方程可以不整理)3.把增根代入整式方程求出字母的值。
2.已知关于 的方程 . (1)有增根2,求 的值; (2)有增根,求 的值.
第三课时 分式方程的增根与无解
一:学习目标
1、理解分式方程有增根与无解的意义
2、会根据分式方程有增根或无解确定字母系数的值。
分式方程
整式方程
a是分式方程的解
X=a
a不是分式方程的解
去分母
解整式方程
检验
最简公分母不为0
最简公分母为0
a就是分式方程的增根
解分式方程的一般步骤
知识回顾:
例1 解方程:
得m=- 或m=5
∴m=- ,m=5分式方程无解
①分式方程有增根
整理整式方程 x+4+m(x-4)=m+3
得:(m+1)x=5m-1
关于x的方程ax=b,当a=0,b≠0 时, 方程无解
∴当m+1=0时
∴当m=-1时分式方程无解
综上① ②所述,当m=- ,m=5,m=-1时原分式方程无解
即当m=-1时整式方程无解
②整式方程无解
分式方程无解
①分式方程有增根
②分式方程转化为整式方程,整式方程无解
整式方程无解即把整式方程整理成ax=b形式,当a=0,b≠0 时,方程无解
归纳小结:
已知关于x的方程 无解,求m的值.
应用升华
二、含参数的分式方程无解
解方程:
整式方程无解
∴原分式方程无解
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
人教版八年级数学上册课件:15.3--分式方程(共31张PPT)

当x=4时,(20+x)(20-x)≠0
分式两边同乘了不为0的式子,所得整式方程的解与
将分整式式方方程程的的解解相代同入. 最简公分母,
= 如果1最简公1分0母的两值边不同乘为(x0+5),(x-5则)
整式x-方5 程的x解2-2是5原当分x=式5时方, 程(x+5的)(x解-5)=,0
x+5=10
答:这个分式方程产生增根,则增根一定是使 方程中的分式的分母为零时的未知数的值,即 x=2。 问:当x=2时,这个分式方程产生增根怎样利用 这个条件求出k值?
答:把含字母k的分式方程转化成含k的整式方 程,求出的解是含k的代数式,当这个代数式等 于2时可求出k值。
例2:k为何值时,方程
k 3 1 x 产生增根? x2 2x
分式无意义。所以x=5不是原分式方程的解。
∴原分式方程无解。
增根的定义
增根:由去分母后所得的整式方程解出的, 使分·母·为·零·的·根·.
使最简公分母值为零的根 产生的原因:
解分式方程时,去分母后所得整式方程的解有可能 使原方程的分母为0,所以分式方程的解必须检验.
复习巩固 1.解下列方程:
复习巩固 1.解下列方程:
解:方程两边都乘以x-2,约去分母,得
k+3(x-2)=x-1
把x=2代入以上方程得: K=1
所以当k=1时,方程 k 3 1 x 产生增根。 x2 2x
拓展延伸
1、求分式方程 x 2 m2 产生增根时
m的值。
x-3 x-3
2、当K为何值时,方程 x 4 k
无解?
x2
x2
例3:
k为何值时,分式方程 有增根?
x k x 0 x 1 x 1 x 1
分式两边同乘了不为0的式子,所得整式方程的解与
将分整式式方方程程的的解解相代同入. 最简公分母,
= 如果1最简公1分0母的两值边不同乘为(x0+5),(x-5则)
整式x-方5 程的x解2-2是5原当分x=式5时方, 程(x+5的)(x解-5)=,0
x+5=10
答:这个分式方程产生增根,则增根一定是使 方程中的分式的分母为零时的未知数的值,即 x=2。 问:当x=2时,这个分式方程产生增根怎样利用 这个条件求出k值?
答:把含字母k的分式方程转化成含k的整式方 程,求出的解是含k的代数式,当这个代数式等 于2时可求出k值。
例2:k为何值时,方程
k 3 1 x 产生增根? x2 2x
分式无意义。所以x=5不是原分式方程的解。
∴原分式方程无解。
增根的定义
增根:由去分母后所得的整式方程解出的, 使分·母·为·零·的·根·.
使最简公分母值为零的根 产生的原因:
解分式方程时,去分母后所得整式方程的解有可能 使原方程的分母为0,所以分式方程的解必须检验.
复习巩固 1.解下列方程:
复习巩固 1.解下列方程:
解:方程两边都乘以x-2,约去分母,得
k+3(x-2)=x-1
把x=2代入以上方程得: K=1
所以当k=1时,方程 k 3 1 x 产生增根。 x2 2x
拓展延伸
1、求分式方程 x 2 m2 产生增根时
m的值。
x-3 x-3
2、当K为何值时,方程 x 4 k
无解?
x2
x2
例3:
k为何值时,分式方程 有增根?
x k x 0 x 1 x 1 x 1
分式方程的增根与无解PPT共27页

23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基来自谢谢!分式方程的增根与无解
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
25、学习是劳动,是充满思想的劳动。——乌申斯基来自谢谢!分式方程的增根与无解
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
人教版八年级上册数学课件:15.3 分式方程

名师解读 一般步骤可简化为“一去”,即去分母化分式方程为整式 方程;“二解”,即解整式方程;“三验”,即验根;“四答”,即写出答案.
知识点一 知识点二 知识点三
知识点三 分式方程的应用 列分式方程解应用题的基本思路. (1)审:了解已知量与未知量各是什么; (2)设:设出未知数; (3)找:找出相等关系,列出分式方程; (4)解:解这个分式方程; (5)验:检验,看方程的解是否满足方程和符合题意; (6)答:写出答案. 名师解读 列分式方程解应用题的关键是用分式表示一些基本的 数量关系,列分式方程解应用题一定要验根,还要保证其结果符合 实际意义.
15.3 分式方程
知识点一 知识点二 知识点三
知识点一 分式方程的定义 分母中含未知数的方程叫做分式方程. 名师解读 理解分式方程要注意,所给的式子必须具备三个特 征:(1)含有分母;(2)分母中含有未知数;(3)是方程.
知识点一 知识点二 知识点三
知识点二 分式方程的解法 (1)解分式方程的基本思路是将分式方程化为整式方程,具体做法 是“去分母”,即方程两边乘最简公分母,这也是解分式方程的一般方 法. (2)解分式方程的一般步骤:
拓展点一 拓展点二 拓展点三 拓展点四
解两边分别通分,得(������-45)-(������������-3) = (������-25)-(������������-1). 当分子为零,即 5-x=0 时, 解得 x=5; 当分子不为零,而分母相等时,得 (x-4)(x-3)=(x-2)(x-1),解得 x=52, 检验:x=5,x=52时,各分母都不为 0. 故 x=5,x=52都是原分式方程的解.
C.m>-94
D.m>-94且 m≠-34
解析:去分母得 x+m-3m=3x-9,整理得 2x=-2m+9,解得 x=-2���2���+9.
知识点一 知识点二 知识点三
知识点三 分式方程的应用 列分式方程解应用题的基本思路. (1)审:了解已知量与未知量各是什么; (2)设:设出未知数; (3)找:找出相等关系,列出分式方程; (4)解:解这个分式方程; (5)验:检验,看方程的解是否满足方程和符合题意; (6)答:写出答案. 名师解读 列分式方程解应用题的关键是用分式表示一些基本的 数量关系,列分式方程解应用题一定要验根,还要保证其结果符合 实际意义.
15.3 分式方程
知识点一 知识点二 知识点三
知识点一 分式方程的定义 分母中含未知数的方程叫做分式方程. 名师解读 理解分式方程要注意,所给的式子必须具备三个特 征:(1)含有分母;(2)分母中含有未知数;(3)是方程.
知识点一 知识点二 知识点三
知识点二 分式方程的解法 (1)解分式方程的基本思路是将分式方程化为整式方程,具体做法 是“去分母”,即方程两边乘最简公分母,这也是解分式方程的一般方 法. (2)解分式方程的一般步骤:
拓展点一 拓展点二 拓展点三 拓展点四
解两边分别通分,得(������-45)-(������������-3) = (������-25)-(������������-1). 当分子为零,即 5-x=0 时, 解得 x=5; 当分子不为零,而分母相等时,得 (x-4)(x-3)=(x-2)(x-1),解得 x=52, 检验:x=5,x=52时,各分母都不为 0. 故 x=5,x=52都是原分式方程的解.
C.m>-94
D.m>-94且 m≠-34
解析:去分母得 x+m-3m=3x-9,整理得 2x=-2m+9,解得 x=-2���2���+9.
新人教版初二数学八年级上册15.3 分式方程 ppt课件

1 10 2 x 5 x 25
分式方程中各分母的最简公分母是: (x+5)(x-5) 方程两边同乘 (x+5)(x-5) ,得: x+5=10 解得: x=5 检验:将x=5代入原方程中,分母x-5和 x2-25的值 都为0,分式无意义. 所以,此分式方程无解.
100 60 上面两个分式方程中,为什么 20 v 20 v
思考:
去分母后所得整式方程的解就是它的解, 而 1 10 去分母后所得整式方程的 x 5 x 2 25 解就不是它的解呢?
一般地,解分式方程时,去分母后所得整式方程的 解有可能使原方程中分母为0,因此应如下检验: 将整式方程的解代入最简公分母,如果最简公分母 的值不为0,则整式方程的解是原分式方程的解;否 则,这个解不是原分式方程的解.
• 解:设提速前这次列车的平均速度为x千米/小时, s • 则提速前它行驶s千米所用的时间为 x 小时,提速后列车 的平均速度为(x+v)千米/时,提速后它行驶(s+50)千米 所用的时间为 s 50小时 。
xv
• • • • • 根据行驶时间的等量关系得 sv 解分式方程得x=
s s 50 x xv
例1:
2 3 解方程 : x 3 x
解:方程两边同乘x(x-3) ,得: 2x=3x-9 解得: x=9 检验:将x=9时x(x-3) ≠0 因此 9是分式方程的解.
例2:
x 3 解方程 : 1 x 1 ( x 1)(x 2)
解:方程两边同乘 (x+2)(x-1) ,得: x (x+2)-(x+2)(x-1) =3 解得: x=1 检验:x=1时(x+2)(x-1) =0 ,1不是原 分式方程的解,原分式方程无解.
《分式方程》分式PPT

B. 2(x–8)+5x=8
C. 2(x–8)–5x=16(x–7)
D. 2(x–8)–5x=8
解析:原方程可以变形为
x 8
5x
8,两边都乘以2(x–7)得
x 7 2( x 7)
2(x–8)+5x=8×2(x–7),即2(x–8)+5x=16(x–7).
巩固练习
方法点拨
易错易混点拨:
x 2 3 x 2
x 5 3 x 5
x 8
1 1
1
3x 8
x 11
1
1
3x 3
24
得
1 1
1
1 1
1
3x 1
x 11
3 x 1 8
解得x=–3,
经检验:x=–3是原方程的根.
课堂小结
分式方程Βιβλιοθήκη 巩固练习下列式子中,属于分式方程的是 (2)(3) ,属于整式方
程的是 (1) (填序号).
x x-1
2
4
(1) +
=1; (2) =
;
2
3
2
1-x 1-x
1
2
1
(3) + 2 =1; (4) >5.
3x x
x
探究新知
知识点 2
问题1:
解分式方程
90
60
=
你能试着解分式方程 30+v 30-v
吗?
3.了解解分式方程根需要进行检验的原因.
2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思
C. 2(x–8)–5x=16(x–7)
D. 2(x–8)–5x=8
解析:原方程可以变形为
x 8
5x
8,两边都乘以2(x–7)得
x 7 2( x 7)
2(x–8)+5x=8×2(x–7),即2(x–8)+5x=16(x–7).
巩固练习
方法点拨
易错易混点拨:
x 2 3 x 2
x 5 3 x 5
x 8
1 1
1
3x 8
x 11
1
1
3x 3
24
得
1 1
1
1 1
1
3x 1
x 11
3 x 1 8
解得x=–3,
经检验:x=–3是原方程的根.
课堂小结
分式方程Βιβλιοθήκη 巩固练习下列式子中,属于分式方程的是 (2)(3) ,属于整式方
程的是 (1) (填序号).
x x-1
2
4
(1) +
=1; (2) =
;
2
3
2
1-x 1-x
1
2
1
(3) + 2 =1; (4) >5.
3x x
x
探究新知
知识点 2
问题1:
解分式方程
90
60
=
你能试着解分式方程 30+v 30-v
吗?
3.了解解分式方程根需要进行检验的原因.
2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思
人教版数学八年级上册 15.3 分式方程 课件(共26张PPT)

这种数学思想方法把它叫做 “转化” 数学思想。
今
日 课本P154习题15.3 作 第1题。
业
15.3.分式方程(第2课时)
下面我们再讨论一个分式方程:
1 10
x 5 x2 25
解:方程②两边同乘(x+5)(x-5),得
x+5=10, 解得 x=5.
x=5是原分式方 程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,
15.3分式方程(第1课时)
一艘轮船在静水中的最大航速为30千米/时, 它沿江以最大航速顺流航行90千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
90 60 30 v 30 v
分母中含未知数的 方程叫做?.
90 60 30 v 30 v
)D
A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2)
2. 解分式方程
x 8 5x 8 时,去分母后得
x 7 14 2x
到的整式方程是( A )
A.2(x-8)+5x=16(x-7)
B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
4.写出原方程的根. 简记为:“一化二解三检验”.
尝试应用
1、关x的方程 axx1 =4
的解是x=
1 2
,
则a= 2 .
2、如果
1 x2
3
1 x 2x
有
增根,那么增根为 x=2 .
温馨提示:使最简公分母的值为零解叫做增根
3、若分式方程
a 4 0 x2 x24
今
日 课本P154习题15.3 作 第1题。
业
15.3.分式方程(第2课时)
下面我们再讨论一个分式方程:
1 10
x 5 x2 25
解:方程②两边同乘(x+5)(x-5),得
x+5=10, 解得 x=5.
x=5是原分式方 程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,
15.3分式方程(第1课时)
一艘轮船在静水中的最大航速为30千米/时, 它沿江以最大航速顺流航行90千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,根据题意,得
90 60 30 v 30 v
分母中含未知数的 方程叫做?.
90 60 30 v 30 v
)D
A. 3y-6 B. 3y C. 3 (3y-6) D. 3y (y-2)
2. 解分式方程
x 8 5x 8 时,去分母后得
x 7 14 2x
到的整式方程是( A )
A.2(x-8)+5x=16(x-7)
B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
4.写出原方程的根. 简记为:“一化二解三检验”.
尝试应用
1、关x的方程 axx1 =4
的解是x=
1 2
,
则a= 2 .
2、如果
1 x2
3
1 x 2x
有
增根,那么增根为 x=2 .
温馨提示:使最简公分母的值为零解叫做增根
3、若分式方程
a 4 0 x2 x24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.
练习:已知关于x的方程 求m的值。
分式方程的应用(复习课
1.解分式方程的思路是:
分式方 程
去分母 转化
整式方程
2.解分式方程的一般步骤:
用框图的方式总结为: 分式方程 整式方程 x =a
x =a是分式 方程的解
x =a 否 最简公分母是
否为零?
去分母 解整式方程 检验
是 x =a不是分式 方程的解
分式方程的应用(复习课
学习目标: 1.利用分式方程解的情况确定所含字母的取值。 2.在解题过程中,深化对数学思想的认识。 3.培养学生分析问题解决问题能力和团队精神。
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
练习:关于x的方程
x 2 m x3 有 x3
一个正数解,求 m的取值范围。
练习:已知关于的方程 有负数解,求m的取值范围。
x 2 m
x 3
3 x
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.
练习:已知关于x的方程 求m的值。
分式方程的应用(复习课
1.解分式方程的思路是:
分式方 程
去分母 转化
整式方程
2.解分式方程的一般步骤:
用框图的方式总结为: 分式方程 整式方程 x =a
x =a是分式 方程的解
x =a 否 最简公分母是
否为零?
去分母 解整式方程 检验
是 x =a不是分式 方程的解
分式方程的应用(复习课
学习目标: 1.利用分式方程解的情况确定所含字母的取值。 2.在解题过程中,深化对数学思想的认识。 3.培养学生分析问题解决问题能力和团队精神。
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
练习:关于x的方程
x 2 m x3 有 x3
一个正数解,求 m的取值范围。
练习:已知关于的方程 有负数解,求m的取值范围。
x 2 m
x 3
3 x
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?