高一数学寒假作业(一)答案
高一数学(必修一)寒假作业1Word版含答案

高一数学(必修一)寒假作业1一、选择题,每小题只有一项是正确的。
1.已知全集{}1,2,3,4U =,集合{}{}1,2,2A B == ,则∁U (A ∪B ) =( )A .{}134,,B .{}34,C . {}3D . {}4 2.已知集合A ={x|a -1≤x≤a+2},B ={x|3<x <5},则使A ⊇B 成立的实数a 的取 值范围是 ( )A.{a|3<a≤4}B.{a|3≤a≤4}C. {a|3<a <4}D.φ3.函数 的定义域为M , 的定义域为N ,则M ∩N =( )A .[-2,+∞)B .[-2,2)C .(-2,2)D .(-∞,2) 4.下列式子中成立的是 ( ) A.1122log 4log 6< B. 0.30.311()()23> C. 3.4 3.511())22<( D.32log 2log 3> 5.下列函数是偶函数的是 ( )A. 2lg y x =B. 1()2xy = C. 21y x =- ,(11]x ∈- D. 1y x -=6.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( )A .9B .19 C .9- D .19- 7.下列各个对应中,构成映射的是( )8.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间(2,6]-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( )A .1B .2C .3D .49.若函数()(1)(0x x f x k a a a -=-->且1)a ≠在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )二、填空题10.函数32,1()log 1x x f x x x ⎧≤=⎨>⎩,,则(f f =__________11.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 。
高一数学寒假作业01 集合及其运算(教师版)

高一数学寒假作业专题01集合及其运算1.给出下列表述:①联合国常任理事国;②充分接近√2的实数的全体;③方程x2+x−1=0的实数根④全国著名的高等院校.以上能构成集合的是()A.①③B.①②C.①②③D.①②③④【答案】A【解析】①联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合.②中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③方程x2+x−1=0的实数根是确定,所以能构成集合.④全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A2.设集合U={1,2,3,4,5},M={1,2},N={2,3},则∁U(M⋃N)=()A.{4,5}B.{1,2}C.{2,3}D.{1,3,4,5}【答案】A【解析】根据题意,易得M⋃N={1,2,3},故∁U(M∪N)={4,5}.故选:A.3.若集合A={x|−1<x<1},B={x|0≤x≤2},则A⋂B=()A.{x|−1<x<1}B.{x|−1<x<2}C.{x|0≤x<1}D.{x|−1<x<0}【答案】C【解析】因为A={x|−1<x<1},B={x|0≤x≤2},所以A⋂B={x|0≤x<1}.故选:C.4.已知集合A满足{1}⊆A⫋{1,2,3,4},这样的集合A有()个A.5B.6C.7D.8【答案】C【解析】由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.故选:C5.已知集合A={x|y=log2(x+1)},B={x∈Z||x−1|≤1},则A⋂B=()A.{x|−1<x<2}B.{x∈Z|0≤x≤2}C.{x|0≤x<2}D.{0,1}【答案】B【解析】因为A={x|x>−1},B={x∈Z|0≤x≤2},所以A∩B={x∈Z|0≤x≤2}故选:B.6.60名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有40名,参加乙项的学生有35名,则仅参加了一项活动的学生人数为()A.50B.35C.40D.45【答案】D【解析】用集合A表示参加甲项体育活动的学生,用集合B表示参加乙项体育活动的学生,用card(A)来表示有限集合A中的元素个数,于是有:card(A∪B)=card(A)+card(B)−card(A∩B),即:60=40+35−card(A⋂B)⇒card(A⋂B)=15,因此仅参加了一项活动的学生人数为:60−15=45,故选:D7.已知全集U=R,集合A={x|0≤x≤2},B={x|x2−x>0},则图中的阴影部分表示的集合为()A.{x|x≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x≤2}【答案】A【解析】解不等式可得B={x|x<0或x>1},由题意可知阴影部分表示的集合为∁U(A⋂B)⋂(A⋃B),且A⋂B={x|1<x≤2},A⋃B=R,∴∁U(A⋂B)={x|x≤1或x>2},所以∁U(A⋂B)⋂(A⋃B)={x|x≤1或x>2},故选:A.8.若函数f(x)=√x2−5x+6的定义域是F,g(x)=√x−2+√x−3的定义域是G,则F 和G的关系是()A .G ⊂FB .F ⊂GC .F =GD .F ∩G =∅【答案】A【解析】由题设,x 2−5x +6=(x −2)(x −3)≥0,可得F ={x|x ≤2或x ≥3},又{x −2≥0x −3≥0,可得G ={x|x ≥3},∴G ⊂F .故选:A.9.设P ={x|x ≤3},a =2√2,则下列关系中正确的是( )A .a ⊆PB .a ∈PC .{a }⊆PD .{a }∈P【答案】BC【解析】因为2√2≤3,所以2√2∈{x|x ≤3},即a ∈P ,{a }⊆P故选:BC10.如图所示的阴影部分表示的集合是( )A .M ∩(N ∩P)B .(C U M )∩(N ∩P)C .P ∩[C U (M ∪N)]D .P ∩(C U M )∩(C U N )【答案】CD【解析】A 选项表示的是图1的部分,不合题意,B选项表示的是图2的部分,不合题意CD选项表示的是题干中的阴影部分故选:CD11.已知集合M={2,4},集合M⊆N {1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}【答案】ABC【解析】因为集合M={2,4},对于A:N={2,4}满足M⊆N {1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N {1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N {1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.12.集合A ,B 是实数集R 的子集,定义A −B ={x|x ∈A,x ∉B },A ∗B =(A −B )∪(B −A )叫做集合的对称差.若集合A ={y|y =(x −1)2+1,0≤x ≤3},B ={y|y =x 2+1,1≤x ≤3},则以下说法正确的是( )A .A ={y|−1≤y ≤5}B .A −B ={y|1≤y <2}C .B −A ={y|5<y ≤10}D .A ∗B ={y|1<y ≤2}∪{y|5<y ≤10}【答案】BC【解析】A ={y|y =(x −1)2+1,0≤x ≤3}={y |1≤y ≤5},A 错误;B ={y|y =x 2+1,1≤x ≤3}={y |2≤y ≤10},A −B ={x |1≤x <2},B 正确; B −A ={y|5<y ≤10},C 正确;A ∗B =(A −B )∪(B −A )={y|1≤y <2}∪{y|5<y ≤10},D 错误.故选:BC.三、填空题13.已知集合M ={y |y =x,x ≥0},N ={x |y =lg (2x −x 2)},则M⋂N =______.【答案】(0,2)【解析】M ={y |y =x,x ≥0}={y|y ≥0},N ={x |y =lg (2x −x 2)}={x |2x −x 2⟩0}={x|x 2−2x <0}={x|0<x <2}, 所以M ∩N ={x|0<x <2}=(0,2),故答案为:(0,2).14.若集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则a =_________.【答案】0或1或0【解析】因集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则当a =0时,方程为−2x +1=0,解得x =12,即集合A ={12},则a =0,当a ≠0时,由Δ=22−4a =0,解得a =1,集合A ={1},则a =1,所以a =0或a =1.故答案为:0或115.我们将b −a 称为集合{x |a ≤x ≤b }的“长度”.若集合M ={x |m ≤x ≤m +2022},N ={x |n −2023≤x ≤n },且M ,N 都是集合{x |0≤x ≤2024}的子集,则集合M ∩N 的“长度”的最小值为______.【答案】2021【解析】由题意得,M的“长度”为2022,N的“长度”为2023,要使M∩N的“长度”最小,则M,N分别在{x|0≤x≤2024}的两端.当m=0,n=2024时,得M={x|0≤x≤2022},N={x|1≤x≤2024},则M∩N={x|1≤x≤2022},此时集合M∩N的“长度”为2022−1=2021;当m=2,n=2023时,M={x|2≤x≤2024},N={x|0≤x≤2023},则M∩N={x|2≤x≤2023},此时集合M∩N的“长度”为2023−2=2021.故M∩N的“长度”的最小值为2021.故答案为:202116.当两个集合中有一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合A={−12,12,1},B={x|ax2+1=0,a≤0},若A与B构成“全食”,或构成“偏食”,则a的取值集合为__________ _.【答案】{0,−1,−4}【解析】当A与B构成“全食”即B⊆A时,当a=0时,B=∅;当a≠0时,B={√−1a ,−√−1a},又∵B⊆A,∴a=−4;当A与B构成构成“偏食”时,A⋂B≠∅且B⊈A,∴a=−1.故a的取值为:0,−1,−4,故答案为:{0,−1,−4}17.已知集合A={x|1≤x≤4},B={x|2<x<5},C={x|a−1≤x≤a+1},且B∪C= B.(1)求实数a的取值范围;(2)若全集U=A⋃(B⋃C),求∁U B.【答案】(1)(3,4);(2)∁U B={x|1≤x≤2}.【解析】(1)由B∪C=B,可知C⊆B,又∵B={x|2<x<5},C={x|a−1≤x≤a+1},∴2<a−1<a+1<5,解得:3<a<4,∴实数a的取值范围是(3,4).(2)依题意得,U=A⋃(B⋃C)=A⋃B,又A={x|1≤x≤4},B={x|2<x<5},∴U={x|1≤x<5},∴∁U B={x|1≤x≤2}.18.设全集U=R,集合A={x|x−6x+5≤0},B={x|x2+5x−6≥0},求:(1)A∩∁U B;(2)(∁U A)∪(∁U B).【答案】(1)A⋂∁U B={x|−5<x<1};(2)(∁U A)∪(∁U B)={x|x<1或x>6}.【解析】(1)由x−6x+5≤0可得{(x−6)(x+5)≤0x+5≠0,解得:−5<x≤6,所以A={x|−5<x≤6},由x2+5x−6≥0,可得(x−1)(x+6)≥0,解得:x≤−6或x≥1,所以B={x|x≤−6或x≥1},所以∁U B={x|−6<x<1},所以A⋂∁U B={x|−5<x<1}.(2)由(1)知A={x|−5<x≤6},所以∁U A={x|x≤−5或x>6},所以(∁U A)∪(∁U B)={x|x<1或x>6}.19.已知集合A={x|log2(x+1)<4},B={x|4x>8},C={x|a−1≤x≤2a+1}.(1)计算A⋂B;(2)若C⊆(A∩B),求实数a的取值范围.【答案】(1){x∣32<x<15}(2)(−∞,−2)∪(52,7)【解析】(1)由log2(x+1)<4得log2(x+1)<log224,又函数y=log2x在(0,+∞)上单调递增,则0<x+1<24即A={x∣−1<x<15},由4x>8,得x>32,即B={x∣x>32},则A ∩B ={x ∣32<x <15}.(2)因为C ⊆(A ∩B ),当C =∅时,2a +1<a −1,即a <−2;当C ≠∅时,由C ⊆(A ∩B ),可得{2a +1⩾a −1,a −1>32,2a +1<15,即52<a <7,综上,a 的取值范围是(−∞,−2)∪(52,7).20.已知集合A ={x|a ≤x ≤a +3},B ={x|x <−6或x >1}.(1)若A⋂B =∅,求a 的取值范围;(2)若A ∪B =B ,求a 的取值范围.【答案】(1){a|−6≤a ≤−2};(2){a|a <−9或a >1}.【解析】(1)因为A⋂B =∅,所以{a ≥−6a +3≤1,解得:−6≤a ≤−2, 所以a 的取值范围是{a|−6≤a ≤−2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<−6或a >1,解得:a <−9或a >1, 所以a 的取值范围是{a|a <−9或a >1}.21.已知集合P ={x|x 2+4x =0},Q ={x|x 2−4mx −m 2+1=0}.(1)若1∈Q ,求实数m 的值;(2)若P⋃Q =P ,求实数m 的取值范围.【答案】(1)m =−2±√6.(2)−√55<m <√55或m =−1. 【解析】(1)由1∈Q 得1−4m −m 2+1=0,即m 2+4m −2=0,解得m =−2±√6;(2)因为P⋃Q =P ,所以Q ⊆P ,由P ={0,−4}知Q 可能为∅,{0},{−4},{0,−4};①当Q =∅,即x 2−4mx −m 2+1=0无解,所以Δ=16m 2+4m 2−4=20m 2−4<0, 解得−√55<m <√55;②当Q={0},即x2−4mx−m2+1=0有两个等根为0,所以依据韦达定理知{Δ=0,0=4m,0=1−m2所以m无解;③当Q={−4},即x2−4mx−m2+1=0有两个等根为−4,所以依据韦达定理知{Δ=0,−8=4m,16=1−m2所以m无解;③当Q={0,−4},即x2−4mx−m2+1=0有两个根为0,−4,所以依据韦达定理知{Δ>0,−4=4m,0=1−m2解得m=−1;综上,−√55<m<√55或m=−1.22.已知集合A={x|3−a≤x≤3+a},B={x|x2−4x≥0}.(1)当a=2时,求A⋂B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.【答案】(1)[4,5](2)0<a<1【解析】(1)x2−4x=x(x−4)≥0,解得x≤0或x≥4,所以B=(−∞,0]∪[4,+∞)a=2时,A=[1,5],所以A∩B=[4,5].(2)∁R B=(0,4),因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A是∁R B的真子集,且A≠∅;∴{3−a>03+a<4所以实数a的取值范围为:0<a<1.。
高一数学寒假作业补充练习答案

高一年级数学寒假作业一答案解析一、单项选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 U = R ,集合{}2|320A x x x =-+>,则U C A =( ) A. (1,2) B. [1,2 ] C. (-2,-1 ) D. [ -2,-1] 【答案】B ;【解析】因为A ()(),12,=-∞+∞,U = R ,所以U C A =[ 1,2] .2. 设13331log ,4,log 24a b c ===,则a ,b ,c 的大小关系为( ).A. c >a> bB. b> a> cC. c> b> aD. b> c> a 【答案】D ;【解析】0,1,01a b c <><<,所以 b> c> a .3. 如图,已知点 C 为△OAB 边AB 上一点,且AC=2CB ,若存在实数m ,n ,使得OC mOA nOB =+,则m- n 的值为( ).A.13-B. 0C.13D.23【答案】A ;【解析】由等和线定理,易得1233OC OA OB =+,所以m- n =13-.4.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则ϕ的值为( ). A.6πB.6π- C.4π- D.4π【答案】D ;【解析】由图可知,322T π=,所以223T πω==,所以()22sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,又因为328f π⎛⎫=⎪⎝⎭,所以232382k ππϕπ⨯+=+,解得()24k k Z πϕπ=+∈,因为2πϕ<,所以4πϕ=.5. 函数()2211log 113xx f x x -⎛⎫=+- ⎪+⎝⎭的定义域是 ( ) A. [1,+∞ ) B. (0,1) C. (-1,0 ] D. (−∞ −1] 【答案】C ;【解析】由对数的真数大于 0 ,与二次根式非负,得101x x ->+且21103x⎛⎫-≥ ⎪⎝⎭, 解得11x -<<且x ≤0,所以定义域为 (-1,0 ].6. 设a ,b 是实数,已知角θ的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (a ,1 ),B(-2,b ),且1sin 3θ=,则ab的值为( ). A. -4 B.-2 C. 4 D. ±4 【答案】A ;【解析】由三角函数的定义,221314a b==++,且a< 0,解得2,222b a ==-4a b=-. 7. 函数()2sin2xy x x R =∈的图象大致为( ).【答案】D ;【解析】由该函数为奇函数,排除选项 A ,B ,由2x π=时,函数值为 0,可排除选项C ,故选D .8. 若函数()()lg 12f x x =-+,则对于任意的()12,1,x x ∈+∞,()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭的大小关系是( ).A.()()122f x f x +≥122x x f +⎛⎫ ⎪⎝⎭B.()()122f x f x +≤122x x f +⎛⎫⎪⎝⎭C.()()122f x f x +=122x x f +⎛⎫⎪⎝⎭D.不确定【答案】B ;【解析】观察图象,可得函数“凹凸性”如图,故选 B .二、多项选择题:本小题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 下列计算结果为有理数的有( ).A.23log 3log 2⋅B. lg2 +lg5C.1ln22e - D.5sin6π 【答案】ABCD ;【解析】23log 3log 21⋅=;lg2+ lg5=1;1ln220e -=;51sin62π=, 故选 ABCD .10. 对于定义在 R 上的函数()f x ,下列判断错误的有( ). A.若()()22f f ->,则函数()f x 是 R 的单调增函数 B.若()()22f f -≠,则函数()f x 不是偶函数 C.若()00f =,则函数()f x 是奇函数D.函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数【答案】ACD ;【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在 x =0 处,有可能会出现右侧比左侧低的情况,故错误.11. 设 a 为实数,则直线y =a 和函数41y x =+的图象的公共点个数可以是( ). A. 0 B. 1 C. 2 D. 3 【答案】ABC ;【解析】41y x =+是偶函数,且在 [0,+∞ ) 上递增,画出草图,可知y=a 与该函数的交点个数可能为 0,1,2.12. 设函数()f x 的定义域为D ,若对于任意x ∈D ,存在y ∈D 使()()2f x f y C-=(C 为常数)成立,则称函数()f x 在D 上的“半差值”为C .下列四个函数中,满足所在定义域上“半差值”为1的函数是( ). A.()31y x x R =+∈ B. ()2x y x R =∈C. ()()ln 0,y x x =∈+∞ D. y=sin2x+1( x ∈R) 【答案】AC ;【解析】即对任意定义域中的 x ,存在 y ,使得f(y)=f(x)-2;由于AC 值域为R ,故满足;对于B ,当x=0时,函数值为1,此时不存在自变量y ,使得函数值为-1,故B 不满足;对于D ,当2x π=-时,函数值为−1,此时不存在自变量y ,使得函数值为−3,故D 不满足,所以选AC .三、填空题:本小题共4小题,每小题5分,共20分.13. 设m 为实数,若函数()22f x x mx =+-在区间 (−∞,2)上是单调减函数,则m 的取值围是. 【答案】m ≤−4;【解析】()f x 为开口向上的二次函数,对称轴为直线2mx =-,要使得函数在(−∞,2)上递减,则22m-≥,解得4m ≤-. 14. 把函数sin 23y x π⎛⎫=-⎪⎝⎭图象上每一点的横坐标变为原来的 2 倍(纵坐标不变),得到图象为1C ;再把1C 上每一点的纵坐标变为原来的2倍(横坐标不变),得到图象为2C ,则2C 对应的解析式为. 【答案】2sin 3y x π⎛⎫=-⎪⎝⎭【解析】1C :sin 3y x π⎛⎫=-⎪⎝⎭,2C :2sin 3y x π⎛⎫=-⎪⎝⎭.15. 若()()cos ,1,2cos ,2sin AB AC θθθ=-=,其中θ∈[0,π],则BC 的最大值为. 【答案】3;【解析】()cos ,2sin 1,BC AC AB θθ=-=+所以()2222cos 2sin 13sin 4sin 2,BC θθθθ=++=++因为[]0,θπ∈,令[]sin 0,1t θ=∈,所以22342,BC t t =++所以当t=1时,取最大值 9,所以BC 的最大值为 3.16. 已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,那么()()3f f =;若存在实数 a ,使得()()()f a f f a =,则a 的个数是.【答案】 1 ;4; 【解析】()()()311;ff f =-=令()f a t =,即满足()f t t =,①t=1,即a=±1时,经检验,均满足题意;②t <1,即 −1 <a <1或 a >1时,()2f t t =,由2t t =,解得t =0或1(舍去);再由()0t f a ==解得a = 0或 2 ;③t > 1,即a < − 1时,()2f t t =-,由t=2−t ,解得 t = 1 (舍去); 综上所述:共有 4 个 a .四、解答题:本小题共6小题,共70分.解答应写出应写出文字说明、证明过程或演算步骤. 17. (10 分)设 t 为实数,已知向量()()1,2,1,.a b t ==- ⑴若 t = 3,求a b +和a b -的值;⑵若向量a b +与3a b -所成角为 135° ,求 t 的值.【答案】⑴a b += 5,5a b -=;⑵ t = 2;【解析】⑴当 t = 3时,()1,3b =-,()0,5a b +=,()2,1a b -=- 所以a b += 5,5a b -=; ⑵()0,2a b t +=+,()34,23a b t -=-,()()(3223cos135232a b a b t t a b a bt +⋅-+-===-+⋅-+, 平方化简得:23440t t --=,解得1222,.3t t ==- 经检验,当23t =-时,夹角为 45° 舍去,故 t = 2. 18. (12 分)设实数 x 满足 sinx+ cos x= c ,其中 c 为常数. ⑴ 当时,求44sin cos x x +的数值;⑵ 求值:()33443cos cos 2sin cos x x x xππ⎛⎫+++ ⎪⎝⎭-(用含 c 的式子表示). 【答案】⑴12;⑵212c c +;【解析】⑴,平方得: 1+ 2sinx cosx = 2,所以sinx cosx=12; ()24422221sin cos sin cos 2sin cos 2x x x x x x +=+-=; (2)()()()33334422223cos cos sin cos 1sin cos 2sin cos sin cos sin cos sin cos x x x x x x x x x xx x x x ππ⎛⎫+++ ⎪-+⎝⎭==-+-+ 由sinx+ cos x= c ,所以平方得:1+ 2sinx cosx = 2c ,sinx cosx =212c -所以原式=221122c c c c++=. 19. (12 分)设 a 为正实数.如图,一个水轮的半径为a m ,水轮圆心 O 距离水面2am ,已知水轮每分钟逆时针转动 5 圈.当水轮上的点 P 从水中浮现时(即图中点0P )开始计算时间.⑴ 将点 P 距离水面的高度 h(m )表示为时间 t(s)的函数; ⑵ 点 P 第一次达到最高点需要多少时间.【答案】⑴sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 4s ;【解析】⑴ 如图,以水轮圆心 O 为原点,与水面平行的直线为 x 轴建立直 角坐标系.当t= 0时,点 P 的坐标为3,2a ⎫-⎪⎪⎝⎭,角度为6π-;根据水轮每分钟逆时针转动 5 圈,可知水轮转动的角速度为6πrad / s,所以 t 时刻,角度为66t ππ-;根据三角函数定义,可得sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 当32a h =时,sin 166t ππ⎛⎫-= ⎪⎝⎭,所以2662t k ππππ-=+,解得t=4+12k ()k N ∈,所以当k= 0时, t = 4,即第一次达到最高点时需要 4s . 20. (12 分)设向量()11,a x y =,()22,b x y =,其中0a ≠. ⑴ 若//a b ,求证:12210x y x y -=; ⑵ 若12210x y x y -=,求证://a b .【解析】()11,a x y =,()22,b x y =,其中0a ≠,所以11,x y 不全为 0,不妨设10x ≠; ⑴ 如果//a b ,则存在实数λ,使得b a λ= ,即()()()221111,,,x y x y x y λλλ==,所以2121x x y y λλ=⎧⎨=⎩,则()()122111110x y x y x y x y λλ-=-=⑵ 反之,如果12210x y x y -=,因为10x ≠,所以()()22221222111111,,,,x xx y y x y x y x y x x x ⎛⎫=== ⎪⎝⎭ , 令21x x λ=,则b a λ=,所以//a b . 21. (12 分)⑴ 运用函数单调性定义,证明:函数()31f x x x=-在区间 (0,+∞)上是单调减函数;⑵ 设 a 为实数, 0 <a < 1 ,若 0 <x < y ,试比较33y x a a -和4334x y x y a a ++-的大小,并说明理由.【答案】⑴ 答案见解析;⑵33y x a a -<4334x y x y a a ++- 【解析】⑴ 对任意的()12,0,x x ∈+∞,且12x x <,()()()()()222121211212213333121211x x x x x x f x f x x x x x x x x x -++⎛⎫⎛⎫-=---=+- ⎪ ⎪⎝⎭⎝⎭因为210,x x ->22332121120,0x x x x x x ++>>,所以()()120f x f x ->,即()()12f x f x > ,所以函数()f x 在区间 (0,+∞) 上是单调减函数;⑵ 因为 0<a<1,所以()x g x a =在R 上是单调减函数, 因为 0< x< y ,所以 0<3x<3y , 0< 4x+ 3y<3x+4y , 所以()()33330y x g y g x a a <⇒-< ,且()()4334g x y g x y +>+⇒43340x y x y a a ++->, 所以33y x a a -<4334x y x y a a ++-. 22. (12 分) ⑴ 已知函数()()11,1x f x x x R x -=≠-∈+,试判断函数()f x 的单调性,并说明理由;⑵ 已知函数()()1lg1,1x g x x x R x -=≠±∈+. (i )判断()g x 的奇偶性,并说明理由;(ii )求证:对于任意的x ,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1都有()()1x y g x g y g xy ⎛⎫++= ⎪+⎝⎭①.【答案】⑴()f x 在(−∞,−1)和(-1,+∞)上单调递增;⑵答案见解析; 【解析】⑴ 对任意的()12,,1x x ∈-∞-,且12x x <, 则()()()()()12121212122111111x x x x f x f x x x x x ----=-=++++, 因为()()12120,110x x x x -<++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间(−∞,−1)上是单调递增,同理可得()f x 在区间(-1,+∞)上单调递增;⑵(i )()g x 的定义域为()()(),11,11,-∞--+∞,对任意的()()(),11,11,x ∈-∞--+∞,有()()(),11,11,x -∈-∞--+∞,且()()1111lglg lg lg101111x x x x g x g x x x x x ⎛⎫------+-=+=⋅== ⎪+-++-+⎝⎭, 所以()g x 为奇函数,又()()22g g ≠-,所以()g x 不是偶函数; (ii )对于任意的x,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1,因为()()111111lg lg lg lg 111111x y x y x y g x g y x y x y x y ⎛⎫------+=+=⋅=⋅ ⎪++++++⎝⎭, 所以111lg lg lg 1111x yx y x y xy xyg x y xy x y xy xy+-⎛⎫++--+=== ⎪+++++⎝⎭++()()1111x y g x g y x y --⋅=+++; 高一年级数学寒假作业二答案解析一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
高一数学(必修一)寒假作业

高一数学(必修一)寒假作业一、选择题:(每题5分,满分60分) 1、下列四个集合中,是空集的是( )A }33|{=+x xB },,|),{(22R y x x y y x ∈-=C },01|{2R x x x x ∈=+-D }0|{2≤x x2.设A={a ,b},集合B={a+1,5},若A∩B={2},则A ∪B= ( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3.函数21)(--=x x x f 的定义域为 ( )A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞) 4.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下):则与)]1([g f 相同的是 ( ) A .)]3([f gB .)]2([f gC .)]4([f gD .)]1([f g5、下图是指数函数○1x a y =、○2 x b y =、○3 x c y =、○4 x d y =的图象,则d c b a ,,,与1的大小关系是( )A .b a d c <<<<1B .a b c d <<<<1C .a b d c <<<<1D .b a d c <<<<16.函数y= | lg (x-1)| 的图象是 ( )7. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( ) A 、c b a >> B 、c a b >> C 、a c b >> D 、a b c >>8.函数y=ax 2+bx+3在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则 ( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A 、21 B 、2 C 、4 D 、41表1 映射f 的对应法则 原像 1 2 3 4 像 3 4 2 1表2 映射g 的对应法则原像 1 2 3 4 像 4 3 1 210.设⎭⎬⎫⎩⎨⎧----∈3,2,1,21,31,21,1,2,3α,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A 、1B 、2C 、3D 、411.已知实数00a b ≥≥,且1a b +=,则2211a b +++()()的取值范围为 ( )A .9[5]2,; B .9[2∞,+); C .9[0]2,; D .[05],。
高一数学寒假作业详细答案

高一数学寒假作业1参考答案(1)集合与函数1~9. D D C C B A D B B 10. 1; 11.4x x --. 12.12; 13.4231,,,c c c c 14.52a b -= 15.解:由AB B =,得B A ⊆.当B =∅时,有:231m m -≥+,解得14m ≤. 当B ≠∅时,如右图数轴所示,则23121317m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得124m <≤.综上可知,实数m 的取值范围为2m ≤. 16.解:(Ⅰ)当a =0时,函数2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数. 当a ≠0时,2()1f a a =+,2()2||1f a a a -=++,()()f a f a -≠.此时函数f (x )为非奇非偶函数.(Ⅱ)当x ≥a 时,函数2213()1()24f x x x a x a =+-+=+-+.若a ≤-12,则函数()f x 在[,)a +∞上的最小值为13()24f a -=-.若a >-12,则函数()f x 在[,)a +∞上单调递增,从而,函数()f x 在[,)a +∞上的最小值为f (a )=a 2+1.综上,当a ≤-12时,函数f (x )的最小值是34-a . 当a >-12时,函数f (x )的最小值是a 2+1.17.解:(Ⅰ)x =234时,22121133236242424211log log log 4log 4log 2log 442369x x ---===-⨯=-. (Ⅱ)122242224111log log (log log 4)(log log 2)(2)()(32)42222x x y x x t t t t ==--=--=-+.∵ 2≤x ≤4, ∴ 222log 2log log 4x ≤≤,即[1,2]t ∈.∴ 21(32),[1,2]2y t t t =-+∈.18.解:(1)∵ f (-x )=-f (x ),∴111222111log log log 111ax ax x x x ax +--=-=----. ∴1111ax x x ax+-=---,即(1)(1)(1)(1)ax ax x x +-=-+-,∴a =-1. (2)由(1)可知f (x )=121log 1x x +-122log (1)1x =+-(x >1) 记u (x )=1+21x -,由定义可证明u (x )在(1,)+∞上为减函数, ∴ f (x )=121log 1x x +-在(1,)+∞上为增函数.(3)设g (x )=121log 1x x +--1()2x .则g (x )在[3,4]上为增函数. ∴g (x )>m 对x ∈[3,4]恒成立,∴m <g (3)=-98.高一寒假作业2——函数的应用答案一、 选择题BAADC DDAC 二、 填空题10. (16,)+∞ 11. 1 12. 3 13. ⎪⎭⎫⎢⎣⎡+∞,23lg 14. 7- 三、 解答题15.证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21ba-<<-. (II )抛物线2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--, 在21b a -<<-的两边乘以13-,得12333b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b ac acf a a+--=-< 所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别有一实根.故方程()0f x =在(0,1)内有两个实根.16.解:设水塔进水量选择第n 级,在t 时刻水塔中的水容量y 等于水塔中的存水量100吨加进水量nt 10吨,减去生产用水t 10吨,在减去工业用水t W 100=吨,即t t nt y 1001010100--+=(160≤<t );若水塔中的水量既能保证该厂用水,又不会使水溢出,则一定有3000≤<y .即30010010101000≤--+<t t nt , 所以1102011010++≤<++-tt n t t 对一切(]16,0∈t 恒成立. 因为272721110110102≤+⎪⎪⎭⎫ ⎝⎛--=++-t t t , 4194141120110202≥-⎪⎪⎭⎫ ⎝⎛+=++t t t ,所以41927≤≤n ,即4=n . 即进水选择4级.高一寒假作业3——必修1综合一、选择题 DADAB DC二、填空题8.21.09 9.14元 10.-1 11.三.解答题12.(1)a=3,b=1 (2) [2,14] 13.解:(1)∵f(t)=34+a ·2-t ×100%(t 为学习时间),且f(2)=60%,则34+a ·2-2×100%=60%,可解得a =4. ∴f(t)=34+a ·2-t ×100%=34(1+2-t )×100%(t ≥0),∴f(0)=34(1+1)×100%=38=37.5%.f(0)表示某项学习任务在开始学习时已掌握的程度为37.5%. (2)令学习效率指数1()2t f t y -=,t ∈(1,2), 即1()322(21)t t f t y -==+,因32(21)ty =+在(0,+∞)上为减函数. t ∈(1,2) ∴31,102y ⎛⎫∈ ⎪⎝⎭.故所求学习效率指数的取值范围是31,102⎛⎫ ⎪⎝⎭14.15.(3)f(x)=x 2-ax +2,x ∈[a ,a +1],其对称轴为x =a 2.①当a 2≤a ,即a ≥0时,函数f(x)min =f(a)=a 2-a 2+2=2.若函数f(x)具有“DK ”性质,则有2≤a 总成立,即a ≥2. ②当a<a2<a +1,即-2<a<0时,f(x )min =f(a 2)=-a24+2.若函数f(x)具有“DK ”性质,则有-a24+2≤a 总成立,解得a ∈∅.③当a2≥a +1,即a ≤-2时,函数f(x)的最小值为f(a +1)=a +3.若函数f(x)具有“D K ”性质,则有a +3≤a ,解得a ∈∅.综上所述,若f(x)在[a ,a +1]上具有“DK ”性质,则a 的取值范围为[2,+∞).高一数学寒假作业(4)——立体几何答案1. 解析:选B. 由正视图与俯视图可知小正方体最多有7块,故体积最多为7 cm3 2.解析:选D.设直观图中梯形的上底为x ,下底为y ,高为h .则原梯形的上底为x ,下底为y ,高为22h ,故原梯形的面积为4.3.解析:选D.设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a ,∴V D -ABC =13·12a 2·22a =212a 3.4.解析:选B.有2条:A 1B 和A 1C 1,故选B.5.解析:选D.在A 图中分别连接PS 、QR ,易证PS ∥QR ,∴P 、S 、R 、Q 共面;在C 图中分别连接PQ 、RS ,易证PQ ∥RS ,∴P 、Q 、R 、S 共面.如图,在B 图中过P 、Q 、R 、S 可作一正六边形,故四点共面,D 图中PS 与RQ 为异面直线,∴四点不共面,故选D.6.解析:选B.如图所示,连结AC 交BD 于O 点,易证AC ⊥平面DD 1B 1B ,连结B 1O ,则∠CB 1O 即为B 1C 与对角面所成的角,设正方体棱长为a ,则B 1C =2a ,CO =22a ,∴sin ∠CB 1O =12.∴∠CB 1O =30°.7.答案:①或③ 解析:根据直线与平面平行的性质和平面与平面平行的性质知①③满足条件,在条件②下,m ,n 可能平行,也可能异面.8.答案:3∶1解析:设圆锥底面半径为r ,则母线长为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3.9.答案:9π2解析:由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边.所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半,V =43πR 3=9π2.10.答案:①解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确; a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确; 当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 11. 解:(1)证明:因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.(2)设BC 1交B 1C 于点E ,连结DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.因为A 1B ∥平面B 1CD ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D ∶DC 1=1.12. 解:(1)证明:连接BD ,∵ABCD 为正方形,∴BD ⊥AC ,又SD ⊥底面ABCD ,∴SD ⊥AC ,∵BD ∩SD =D , ∴AC ⊥平面SDB ,∵BP ⊂平面SDB ,∴AC ⊥BP .(2)当P 为SD 的中点时,连接PN ,则PN ∥DC 且PN =12DC .∵底面ABCD 为正方形,∴AM ∥DC 且AM =12DC ,∴四边形AMNP 为平行四边形,∴AP ∥MN . 又AP ⊄平面SMC ,∴AP ∥平面SMC .(3)V B -NMC =V N -MBC =13S △MBC ·12SD =13·12·BC ·MB ·12SD =16×1×12×12×2=112. 高一数学寒假作业(5)参考答案1、B 2.A 3.B 4. C 5、B 6、A 7、①④ 8、13:9、(1)(2)(4) 10、2+611、(1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC . 又∵BC ⊥AC ,B 1D ∩BC =D , ∴AC ⊥平面BB 1C 1C .(2)⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C ,∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C , ∴A 1C ∥平面AB 1D . 12、(1)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故PA AB ⊥. 又AB AD ⊥,PAAD A =,从而AB ⊥平面PAD .故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在Rt PAB △中,AB PA =,故45APB =∠.所以PB 和平面PAD 所成的角的大小为45.(2)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥. 由条件CD AC ⊥,PAAC A =,CD ∴⊥面PAC .又AE ⊂面PAC ,AE CD ∴⊥.由PA AB BC ==,60ABC =∠,可得AC PA =.E 是PC 的中点,AE PC ∴⊥,A BCDPE MPC CD C ∴=.综上得AE ⊥平面PCD .(3)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.(三垂线定理)因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD =∠.设AC a =,得PA a =,3AD a =,3PD a =,2AE a =. 在Rt ADP △中,AM PD ⊥,AD PA PD AM ⋅=⋅∴,则a a aa PDAD PA AM 772321332=⋅=⋅=.在Rt AEM △中,414sin ==∠AM AE AME . 高一数学寒假作业(6)——直线与圆答案1——6 C C D D B B7. [-2,2] 8. ①⑤ 9. (-∞,4)10.3+11.[解析]∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直,∴直线AD 的斜率为-43. 又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0. 由⎩⎨⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心.而|MA |=⎝ ⎛⎭⎪⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝ ⎛⎭⎪⎫x -122+y 2=54.12.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2, ∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30),此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1=2.在AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53. ∴当x >40时,k =-53. 又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎪⎨⎪⎧2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.高一数学期末复习答案1--8 DDCBC ADB 9. (3,1) ; 10. 3 ; 11. 370x y --=和1x = 12. 5 ; 13. -314.解:(1)由四边形ABCD 为平行四边形知,AC 中点与BD 中点重合.∵ BD 中点为(11),, ∴ 点C 的坐标(33),. (2)由(11)A --,、(22)B -,知,直线AB 方程为340x y ++=,AB =又点(04)D ,到直线AB 的距离d ==∴ 平行四边形ABCD 的面积16S == 15.解:(1)由内角ABC ∠的平分线所在直线方程为2100x y -+=知,点B 在直线2100x y -+=上,设(210)B m m +,,则AB 中点D 的坐标为2214()22m m ++,. 由AB 边上的中线所在直线方程为250x y +-=知,点D 在直线250x y +-=上, ∴221425022m m +++⨯-= ,解得4m =-. ∴ 点B 的坐标为(42)-,. (2)设点()E a b ,与点(24)A ,关于直线2100x y -+=对称,则AE 中点在直线2100x y -+=上,且直线AE 与直线2100x y -+=垂直.∴ 242100224212a b b a ++⎧⨯-+=⎪⎪⎨-⎪⨯=-⎪-⎩,即220210a b a b -=-⎧⎨+=⎩,解得68a b =-⎧⎨=⎩. ∴ 点E 的坐标为(68)-,.由直线2100x y -+=为内角ABC ∠的平分线所在直线,知点E 在直线BC 上.∴ 直线BC 方程为822(4)6(4)y x --=+---,即3100x y ++=.16.解:因为V 半球=V 圆锥=因为V 半球<V 圆锥所以,冰淇淋融化了,不会溢出杯子.17. 解:(1)证明:设AC 和BD 交于点O ,连PO ,由P ,O 分别是DD 1,BD 的中点,故PO ∥BD 1,∵PO ⊂平面PAC ,BD 1⊄平面PAC ,所以,直线BD 1∥平面PAC .(2)长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,底面ABCD 是正方形,则AC ⊥BD ,又DD 1⊥面ABCD ,则DD 1⊥AC .∵BD ⊂平面BDD 1B 1,D 1D ⊂平面BDD 1B 1,BD ∩D 1D=D ,∴AC ⊥面BDD 1B 1.∵AC ⊂平面PAC ,∴平面PAC ⊥平面BDD 1B 1 .(3)由(2)已证:AC ⊥面BDD 1B 1,∴CP 在平面BDD 1B 1内的射影为OP ,∴∠CPO是CP 与平面BDD 1B 1所成的角. 依题意得,,在Rt △CPO 中,,∴∠CPO=30°∴CP 与平面BDD 1B 1所成的角为30°.18.解:(1)由()0f x ≤的解集为区间[]02,知,0a >,且()(2)f x ax x =-.又2()(2)(1)f x ax x a x a =-=--,0a >,且()f x 在在区间[]03,上的最大值为3, ∴ (3)33f a ==,1a =. ∴ 2()2f x x x =-.(2)① 20m -<≤或94m =-;924m -<≤-. ② 3 (3)设2()()(1)1(1)1g x f x x x x x x =--=--=--,0x 是方程()1f x x =-在区间0313()28x ∈,内的解. 由331()10222g =⨯-<,13135()10888g =⨯->,25259()10161616g =⨯-<知, 02513()168x ∈,.∵ 132510.181616-=<,∴ 方程()1f x x =-在区间0313()28x ∈,内的一个近似解为2516.友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
边城高级中学高一数学寒假作业(新教材)答案

湖南省边城高级中学高一年级数学寒假作业(一)答案1.解:由题意,令4628xxy y ⎧=⎨=⨯-⎩,消去y ,得4628x x =⨯-,解得1x =或2x =; 当1x =时,4y =;当2x =时,16y =; 所以集合{(1,4)AB =,(2,16)}.故答案为:{(1,2),(2,16)}.2.解:当121a a +>-,即2a <时,集合A 为空集,满足题意, 当集合A 非空,即2a 时,由于集合{|25}B x x =-, 此时应满足:12215a a +-⎧⎨-⎩,即33a a -⎧⎨⎩,据此可得:23a -.综上可得,实数a 的取值范围是{|3}a a .故答案为:{|3}a a . 3.解:若AB A =,则B A ⊆,B =∅时,0a =, B ≠∅时,1{|}B x x a==,而2{|230}{3A x x x =--==,1}-, 故13a =或11a=-,解得:13a =或1a =-, 综上:a 是取值集合是{0,1-,1}3,故答案为:{0,1-,1}3.4.解:由题意,224{|log 4log 10}{|14}x x a x x x -+⊆ 令2log t x =,[0t ∈,2],则β即2210(*)t at -+,显然0t =不满足(*)式,于是原问题可转化为11|()(0,2]2t a t t ⎧⎫+⊆⎨⎬⎩⎭,即水平直线y a =位于11()2y t t=+图象上方(含重合)时对应的t 的取值集合为(0,2]的子集,数形结合可得实数a 的取值范围是5(,]4-∞.故答案为:(-∞,5]4.5.解:(1){|36}A x x =<,{|29}B x x =<<, {|36}AB x x ∴=<,{|2UB x x =或9}x ,(){|2U B A x x =或36x <或9}x ;(2)C B ⊆,∴219a a ⎧⎨+⎩,解得28a ,a ∴的取值构成的集合为:[2,8].6.解:(1)211x x <-,即211011x x x x +-=<--,有(1)(1)0x x -+<,解得11x -<<,故(1,1)B =-, 因为p 是q 的充要条件,所以A B =,故2|()()0x a x a --<的解集也为(1,1)-,所以211a a =-⎧⎨=⎩,即1a =-;(2)因为p 是q 的充分不必要条件,所以A 是B 的真子集, ①当A =∅,此时2a a =即1a =或0,符合题意,②当A ≠∅时,当0a <或1a >时,2a a >,即2(,)A a a =,此时21a ,解得10a -<, 由当1a =-时,(1,1)A B =-=,不合题意,所以10a -<<当01a <<时,2a a <,即2(A a =,)a ,此时1a ,解得01a <<, 综上所述a 的取值范围为(1-,1].7.解:由2{|212}x m x m m --≠∅,得:2212m m m --,解得:1m 或12m , 由2{|230}x x x --,得:13x -,故满足q 的集合{|13}B x x =-, 由p ⌝是q ⌝的必要不充分条件,即q 是p 的必要不充分条件, 故[21m -,22][1m m --,3],即221123m m m --⎧⎨-⎩,解得:302m ,而1m 或12m, 故m 的取值范围是[0,1][12,3]2.8.解:(1)不等式513x --,即203x x +-,解得2x -或3x >, (A ∴=-∞,2](3,)-+∞;(2)0a >,1b =,则22(2)10ax a x +--<,即(21)(1)0x ax -+<,解得112x a -<<, 即1(B a =-,1)2;(3)x A ∈是x B ∈的充分条件,则A B ⊆,由22(2)0ax ab x b +--<可得(1)(2)0ax x b +-<, 当0a =时,20x b -<,解得2bx <,不满足A B ⊆, 当0a >时,1(B a =-,)2b 或(2b ,1)a -或∅,不满足A B ⊆,当0a <时,(1)(2)0ax x b +-<可化为1()()02bx x a +->,由于A B ⊆, 103a∴<-且232b -<, 即13a -且46b -<,综上所述存在实数a ,b 满足13a -且46b -<时,使得x A ∈是x B ∈的充分条件.湖南省边城高级中学高一年级数学寒假作业(二)答案1.解:2291x xy y -+=,222291296x y xy x y xy ∴+=+=,即15xy,当且仅当3x y =,即x =,y =时,等号成立,222112(3)69171755x y x xy y xy ∴+=++=++⨯=,∴21535x y+,3x y ∴+2.解:因为0a >,0b >,()lga lgb lg a b +=+, 所以()()lg ab lg a b =+即ab a b =+,所以01ba b =>-,故1b >,同理1a >,所以(1)(1)1a b --=,则1414441444248111111(1)(b b a b a b a b a -++=+=++=-------, 当且仅当1411a b =--且(1)(1)1a b --=即32a =,3b =时取等号, 故答案为:8.3.解:由于1x >,所以1x ->所以444(1)12(1)15111x x x x x x +=-++-+=---,当且仅当3x =时,等号成立.故答案为:54.解:因为22240x xy y z -+-=,所以22241x xy y z z z-+=,且22224442x y x y xy z z z z z +=,则421xy xy z z -,即12xy z , 当且仅当224x y z z=,即2x y =,24z y =时,等号成立, 则222112111(4)444x y z y y y+-=-=--+, 当且仅当14y =,12x =,14z =时,取得最大值:4.故答案为4. 5.解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R , 即210x ax ++>解集为R , 可得△0<,即240a -<, 解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax -对任意[1x ∈,3]恒成立,()26f x ax ∴-,即2326x ax ax +--对任意[1x ∈,3]恒成立,即230x ax -+对任意[1x ∈,3]恒成立,3()min a x x ∴+,[1x ∈,3];332x x x x+⨯=当且仅当3x x=,即x =23a ∴故a 的取值范围是(-∞,.6.解:(1)由不等式()0f x >的解集为(1,3)-可得:2(2)3ax b x +-+的两根为1-,3且0a <, 由根与系数的关系可得:213313b aa -⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩.可得1a =-,4b =,(2)若f (1)232a b =+-+=,则1a b +=,0a >,10b +>, ∴1[(1)]12a b ++=, ∴41141141149[(1)]()[5]121212a b b a a b ab a a b a b a b +++=+=+++=++++++,当且仅23a =,13b =时式中等号成立,∴41a b ab a +++的最小值为92.7.解:(1)根据题意,可得△21616(2)0m m =-+>, 解得:1m <-或2m >;(2)由题意,2()4420f x x mx m =-++=的两个根为1x ,2x ,12x x m ∴+=,1224m x x +=, 222221212122117()2()2416m x x x x x x m m +∴+=+-=-=--1m <-或2m >,令2117()()416h m m =--,故()h m 在(,1)-∞-递减,在(2,)+∞递增,故(){(1)min h m min h >-或h (2)},由1517(1)24444--=<-=,故7()(1)16min h m h =-=;2212716x x ∴+>;(3)若()f x 在(-∞,1]上是减函数,则对称轴12mx =,故2m ①,由11022m m m +-=+>,故212mm -<<+,故()f x 在[2-,)2m 递减,在(2m,1]m +递增,故2()()22min mf x f m m ==-++,而(2)918f m -=+,(1)56f m m +=+,故(2)(1)f f m ->+,故()(2)918max f x f m =-=+,若对任意的1x ,2[2x ∈-,1]m +,总有12|()()|64f x f x -成立, 故只需()()64max min f x f x -即可,即2918(2)64m m m +--++,即28480m m +-,解得:124m -②, 由(1)()0f x =有2个根,2m >③, 综合①②③得:24m <.8.解:(1)由题意可得2()4f x ax bx x =+-=有两个根1-和4 即2(1)40ax b x +--=的根为1-,4, 所以114414b a a-⎧-=-+⎪⎪⎨⎪-=-⨯⎪⎩,解得,1a =,2b =-, 所以2()24f x x x =--;(2)2()24f x x x =--的对称轴1x =,开口向上,当11t +即0t 时,函数在[t ,1]t +上单调递减,2()(1)5g t f t t =+=-, 当1t 时,函数在[t ,1]t +上单调递增,2()()24g t f t t t ==--, 当01t <<时,函数在[t ,1]t +上先减后增,()g t f =(1)5=-,故225,0()5,0124,1t t g t t t t t ⎧-⎪=-<<⎨⎪--⎩.(3)由(2)知()g t 的图象如图所示,函数的图象关于12x =对称, 由1(2)()02g x g x +->可得1(2)()2g x g x +>,故111|2|||222x x +->-,即1|2|||2x x >-,解可得,12212266x +-+-<<.湖南省边城高级中学高一年级数学寒假作业(三)答案1.解:根据题意,10,()2,0x f x x x -<<=⎪⎩其定义域为(1,)-+∞,则函数()f x 在(1,0)-和区间[0,)+∞上都是增函数, 当1a 时,有22(1)a a =-,无解; 当10a -<<时,无解;若实数a 满足f (a )(1)f a =-,必有110a -<-<且10a >>,且有2a =解可得14a =,则1()f f a =(4)8=,故1()8f a=,故答案为:8.2.解:因为()f x 为偶函数,且当0x 时,()21f x x =-单调递增,根据偶函数的对称性可知,当0x >时,函数单调递减,距离对称轴越远,函数值越小, 则由不等式()(21)f x f x >-可得|||21|x x <-,两边平方可得,22441x x x <-+, 整理可得,(31)(1)0x x -->,解可得,1x >或13x <.故答案为:{|1x x >或1}3x <3.解:(3)2()f x f x +=,()2(3)f x f x ∴=-,(3)2(6)f x f x -=-,()4(6)f x f x ∴=-,且[1x ∈-,1]时,2()f x x x =+, 设[5x ∈,7],则6[1x -∈-,1],2211()4(6)4[(6)6]4()12f x f x x x x ∴=-=-+-=--,且[5x ∈,7],∴112x =时,()f x 取最小值1-;7x =时,()f x 取最大值8,()f x ∴的值域是[1-,8]. 故答案为:[1-,8].4.解:函数225222020()(0)tx x t x f x t x t +++=>+, 即有42(22020)()x f x t x t +=++, 设42(22020)()x g x t x t+=++,则()()g x g x -=-, 可得()g x 为奇函数,即有()g x 的最大值S 和最小值s 互为相反数, ()()4M N S t s t +=+++=, 即有24t =,解得2t =, 故答案为:2.5.解:幂函数()f x 经过点,∴21()2m m -+=,即211()222m m -+=22m m ∴+=.解得1m =或2m =-. 又*m N ∈,1m ∴=.12()f x x ∴=,则函数的定义域为[0,)+∞,并且在定义域上为增函数.由(2)(1)f a f a ->-得201021a a a a -⎧⎪-⎨⎪->-⎩解得312a <.a ∴的取值范围为[1,3)2.6.解:(1)生产此药的月生产成本为41923422433x x x x ++⨯+=++(万元), 月利润为2923492344617(3)4317150%33333x x x x x x x W x x x x x x ++++-++=⨯--=-=+++++(万元). (2)令3t x =+,则3(3)x t t =->.所以月利润为22431749121121()493x x t t W t x t t-++-+-===-+++;因为121212122t t +=,所以121()49224927W t t =-++-+=,当且仅当121t t=,即11t =时,W 有最大值为27,此时,38x t =-=.所以月广告费投入8万元时,药厂月利润最大.7.解:(1)121()log 1axf x x -=-的图象关于原点对称,则()f x 为奇函数,()()0f x f x +-=,得1211()()011ax axlog x x -+=---,222110a x x -+-=,22(1)0x a -=, 所以1(1a a =-=舍弃), 所以112212()log log (1)11x f x x x +==+--,定义域为(-∞,1)(1-⋃,)+∞;所以()f x 在(,1)-∞-和(1,)+∞上是单调增函数;(2)关于x 的方程12()log ()f x x k =+在[2,3]上有解,即11221log log ()1x x k x +=+-在[2,3]上有解; 即11x x k x +=+-,得11x k x x +=--; 设1()1x y f x x x +==--,[2x ∈,3];则2()11f x x x =+--在[2x ∈,3]上单调递减,且f (2)1=,f (3)1=-,所以k 的取值范围是[1-,1].8.解:(1)2||0x ->,22x ∴-<<,024x ∴<+<,∴(2||)()ln x f x x-=,∴函数()f x 定义域为(2-,0)(0⋃,2),关于原点对称.又对任意{|20x x x ∈-<<或02}x <<有(2||)(2||)()ln x ln x f x x x----==--, ()()f x f x ∴-=-,∴函数()f x 为奇函数.(2)据(1)求解知,()()2(2002)ln x f x x x x-=-<<<<或.讨论:当20x -<<时,若()0f x ,则(2||)0ln x x-,(2||)0ln x ∴-,02||1x ∴<-,02()1x ∴<--,21x ∴-<-;当02x <<时,若()0f x ,则(2||)0ln x x-,(2||)0ln x ∴-,2||1x ∴-,21x ∴-,01x ∴<. 综上.所求实数x 的取值范围是(2-,1](0-⋃,1].湖南省边城高级中学高一年级数学寒假作业(四)答案1.解:函数()|21|x f x =-的图象如下图所示: 若a b <,且f (a )f =(b ),|21||21|a b ∴-=-,则1221a b -=-, 即222222222a b abab++=>=,即221a b+<, 即02a b +<则即a b +的取值范围为:(,0)-∞, 故答案为:(,0)-∞2.解:函数21()21x x f x -=+,2121()()2121x x x x f x f x -----==-=-++,因为212()12121x x xf x -==-++, 所以()f x 是单调增函数. (1)(12)0f m f m ++->, (1)(12)f m f m ∴+>--等价于:(1)(21)f m f m +>-, 121m m ∴+>-,解得2m <, 不等式的解集为:(,2)-∞.3.解:函数(0)()38(0)x a x f x ax a x ⎧>=⎨+-⎩是(,)-∞+∞上的增函数,1a ∴>且038a a -,解得13a <,故实数a 的取值范围是(1,3],故答案为(1,3].4.解:对于函数11(0x y a a +=+>且1)a ≠,令10x +=,求得1x =-,2y =,可得它的图象经过定点(1,2)-. 函数的图象恒过点(,)P m n ,则1m =-,2n =.令1()2x t =,则当[1x ∈-,2]时,1[4t ∈,2],故函数11()()()142x x f x =-+ 在[m ,]n 上,即在区间[1-,2]上的最小值,即2()1g t t t =-+ 在1[4,2]上的最小值,故当12t =时,函数()g t 取得最小值为34,故答案为:34.5.1)1010()()1010x xx xf x f x ----==-+,()f x ∴为奇函数 (2)2221012()1101101xx xf x -==-++ 在(,)-∞+∞上任取1x ,2x ,且12x x >12211222122222222(1010)()()101101(101)(101)x x x x x x f x f x -∴-=-=++++, 而10x y =在R 上为增函数,∴12221010x x >,即12()()f x f x > ()f x ∴在R 上为增函数.(3)21101x y y +=-,而2100x >,即101yy+>-,11y ∴-<<.所以()f x 的值域是(1,1)-.6.解:(1)函数()(0,1)x f x a b a a =+>≠,其中a ,b 均为实数,函数()f x 的图象经过点(0,2)A ,(1,3)B ,∴123b a b +=⎧⎨+=⎩,∴21a b =⎧⎨=⎩,∴函数()211x f x =+>,函数111()21x y f x ==<+.又110()21x f x =>+,故函数1()y f x =的值域为(0,1). (2)如果函数()f x 的定义域和值域都是[1-,0],若1a >,函数()xf x a b =+为增函数,∴1110b a b ⎧+=-⎪⎨⎪+=⎩,求得a 、b 无解.若01a <<,函数()xf x a b =+为减函数,∴1011b a b ⎧+=⎪⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩,32a b ∴+=-.7.解:(Ⅰ)对于函数4()1(0,1)2x f x a a a a =->≠+,由4(0)102f a =-=+,求得2a =,故42()1122221x xf x =-=-++. (Ⅱ)若函数()(21)()21221xx x g x f x k k k =++=+-+=-+ 有零点,则函数2x y =的图象和直线1y k =-有交点,10k ∴->,求得1k <.(Ⅲ)当(0,1)x ∈时,()22x f x m >-恒成立,即212221x x m ->-+恒成立.令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++. 由于121t t ++ 在(1,2)∈上单调递减,∴1212712216t t +>+=++,76m∴. 8.解:(1)()(0x xf x ka a a -=->且1)a ≠是奇函数.(0)0f ∴=,即10k -=,解得1k =. (2)()(0x x f x a a a -=->且1)a ≠, 当1a >时,()f x 在R 上递增.理由如下:设m n <,则()()()m m n n f m f n a a a a ---=---1()()()(1)m n n m m n m n a a a a a a a a--=-+-=-+,由于m n <,则0m n a a <<,即0m n a a -<, ()()0f m f n -<,即()()f m f n <, 则当1a >时,()f x 在R 上递增.(3)f (1)83=,183a a ∴-=,即23830a a --=,解得3a =或13a =-(舍去).222()332(33)(33)2(33)2x x x x x x x x g x m m ----∴=+--=---+, 令33x x t -=-,1x ,t f ∴(1)83=,222(33)2(33)2()2x x x x m t m m --∴---+=-+-,当83m 时,222m -=-,解得2m =,不成立舍去.当83m <时,288()22233m -⨯+=-,解得2512m =,满足条件,2512m ∴=.湖南省边城高级中学高一年级数学寒假作业(五)答案1.解:函数log (7)2a y x =-+恒过点(,)A m n ,令71x -=,求得8x =,2y =, 可得函数的图象经过定点(8,2).若函数log (7)2a y x =-+恒过点(,)A m n ,则8m =,2n =,则11221()()24n m --==,故答案为:2. 2.解:由题意可知:方程22log (95)2log (32)x x-=+-化为:22log (95)log 4(32)x x -=-即95438x x -=⨯- 解得0x =或1x =;0x =时方程无意义,所以方程的解为1x =.故答案为1.3.解:方程22log (22)2ax x -+=在1[,2]2内有解,则2220ax x --=在1[,2]2内有解,即在1[,2]2内有值使222a x x =+成立,设22221112()22u x x x =+=+-,当1[,2]2x ∈时,3[,12]2u ∈,∴3[,12]2a ∈,a ∴的取值范围是3122a .故答案为:3[,12]24.解:令2()1(0,1)g x x ax a a =-+>≠, ①当1a >时,log a y x =在R +上单调递增,∴要使2log (1)a y x ax =-+有最小值,必须()0min g x >,∴△0<,解得22a -<< 12a ∴<<;②当01a <<时,2()1g x x ax =-+没有最大值,从而不能使得函数2log (1)a y x ax =-+有最小值,不符合题意.综上所述:12a <<;故答案为:12a <<.5.解:5()2log f x x =+,[1x ∈,25],22()[()]()g x f x f x =+.(1)由题意可得,2125125x x ⎧⎨⎩,解可得,15x ,即函数()g x 的定义域[1,5]; (2)5()2log f x x =+,[1x ∈,25],222255()[()]()(2)2g x f x f x log x log x ∴=+=+++ 255()66log x log x =++ 令5log t x =,则[0t ∈,1],而2()66g t t t =++在[0,1]单调递增, 当1t =即5x =时,函数有最大值13.6.解:(1)函数2()log a xf x a x-=+,若2()13f -=,则223log 123a a +=-,∴23223a a +=-,解得2a =; (2)由(1)知,22()log 2xf x x -=+,定义域为(2,2)-;又关于x 的方程2()log ()f x x t =-有实数根,等价于(2,2)x ∃∈-,使22xx t x-=-+成立; 即(2,2)x ∃∈-,使22xt x x-=-+成立; 设2()2x g x x x -=-+,(2,2)x ∈-;则4()(2)12g x x x =+--+,(2,2)x ∈-;设2x m +=,则(0,4)m ∈,∴函数4()1g m m m=--在(0,4)m ∈时单调递增,()(g m ∴∈-∞,2),从而可得(,2)t ∈-∞, 即实数t 的取值范围是(,2)-∞.7.解:(Ⅰ)函数24()log (21)x f x mx =++的图象经过点3(2p ,23log 3)4-+,则32433log 3log (21)42m -+=++,12m =-;⋯(3分)所以241()log (21)2x f x x =+-,且定义域为R ,244414111()log (21)log log (41)()2422x xx x f x x x x f x -+∴-=++=+=+-=,则()f x 是偶函数;⋯(7分)()II 根据()()f x g x =,得4441log (41)log (41)log 22x xx +-=+-441log 2x x x +=,⋯(9分)则方程化为4441log (2)log 2x x x x a +++=,得41202x x x x a +++=>,化为1()2x a x =-,且在[2x ∈-,2]上单调递减,⋯(12分)所以使方程有唯一解时a 的范围是764a -.⋯(15分)8.解:(1)函数121()log 1axf x x -=-的图象关于原点对称,()()0f x f x ∴+-=,即112211log log 011ax axx x -++=---,∴1211()011ax ax log x x -+⨯=---,∴11111ax axx x -+⨯=---恒成立,即22211a x x -=-,即22(1)0a x -=恒成立,所以210a -=,解得1a =±,又1a =时,121()log 1axf x x -=-无意义,故1a =-;(2)(1,)x ∈+∞时,12()log (1)f x x m +-<恒成立,即11221log log (1)1xx m x ++-<-, ∴12log (1)x m +<在(1,)+∞恒成立,由于12log (1)y x =+是减函数,故当1x =,函数取到最大值1-,1m ∴-,即实数m 的取值范围是1m -;(3)121()log 1xf x x +=-在[2,3]上是增函数,12()log ()g x x k =+在[2,3]上是减函数,∴只需要(2)(2)(3)(3)f g f g ⎧⎨⎩即可保证关于x 的方程12()log ()f x x k =+在[2,3]上有解,下解此不等式组.代入函数解析式得112211223(2)2(3)log log k log log k +⎧⎪⎨+⎪⎩,解得11k -,即当11k -时关于x 的方程12()log ()f x x k =+在[2,3]上有解.湖南省边城高级中学高一年级数学寒假作业(六)答案1.解:函数的零点满足0.51|log |()4x x =,则零点的个数即函数0.5|log |y x =与1()4x y = 交点的个数,绘制函数图象如图所示,观察可得,交点个数为2,故函数零点的个数为2. 故答案为:2.2.解:由题意可知2|1||1|x x a x --=+,显然1x =-不是方程的实数根, 则2|1|1|(1)3||1|1x x a x x x --==++-++,故关于x 的方程()|1|f x a x =+恰有两个实数根,等价于y a =与1|(1)3|1y x x =++-+的图象恰有两个不同的交点,画出1|(1)3|1y x x =++-+的大致图象,如图所示,由图象可得实数a 的取值范围(1,5){0}.故答案为:(1,5){0}.3.解:函数22()(21)f x x k x k =-++的图象是开口向上的抛物线, 若函数22()(21)f x x k x k =-++有两个零点且一个大于1,一个小于1,则f (1)21(21)0k k =-++<,即220k k -<,得02k <<. ∴实数k 的取值范围是(0,2), 故答案为:(0,2).4.解:定义在R 上的函数()f x 满足()()0f x f x --=,(4)()f x f x +=, ∴函数是偶函数,且周期为4,又(0)0f =,当(0x ∈,2]时,1()2f x x=-.作出函数()y f x =与2sin()34y x π=的图象如图:函数2()()sin()34g x f x x π=-在区间[6-,2]上的零点,即函数()y f x =与2sin()34y x π=的图象的交点的横坐标,由图可知,两函数在[6-,2]上有6个交点,且关于直线2x =-对称,则函数2()()sin()34g x f x x π=-在区间[6-,2]上所有的零点之和为2612-⨯=-.故答案为:12-.5.解:(1)当1m =时,1()1f x x x =+-,由()1(1)f x f x +>+,得11()1(1)1x x x x++>++-,即111x x>-,解得0x <或1x >. ∴不等式()1(1)f x f x +>+的解集为(-∞,0)(1⋃,)+∞;(2)函数()3y f x =+在[3,4]上存在零点⇔方程()30f x +=在[3,4]上有解,即方程301mx x ++=-在[3,4]上有解,即2(1)4m x =-++在[3,4]上有解,函数2(1)4y x =-++在[3,4]上是减函数 则[21y ∈-,12]-,从而,实数m 的取值范围是[21-,12]-.6.解:(1)根据题意,函数()121x af x =+-,则有210x -≠,解可得0x ≠,即函数()f x 的定义域为(-∞,0)(0⋃,)+∞,根据奇函数的定义,对于(x ∀∈-∞,0)(0⋃,)+∞,则有()()0f x f x -+=,即1102121x x a a-+++=--,化简得:20a -=即2a =;(2)若函数()g x 有零点,则直线2log y k =与曲线()y f x =有交点,又由21(1,)x -∈-+∞,那么2(,2)(0,)21x ∈-∞-+∞-,则()f x 的值域为(-∞,1)(1-⋃,)+∞;故由2log (k ∈-∞,1)(1-⋃,)+∞,解得:1(0,)(2,)2k ∈+∞,即k 的取值范围为:(0,1)(22⋃,)+∞.7.解:(1)根据题意,当5a =时,21()log (5)f x x =+,若()0f x >,即21log (5)0x+>,变形可得140x x +>,解可得0x >或14x <-,即不等式的解集为{|0x x >或1}4x <-,(2)根据题意,若函数2()()2log g x f x x =+只有一个零点,即方程221log ()2log 0a x x++=有且只有一个根,方程221log ()2log 0a x x++=,变形可得22log ()0ax x +=,即210ax x +-=,则原问题等价于方程210ax x +-=有且只有一个正根, 分3种情况讨论:当0a =时,方程为10x -=,有一个正根1,符合题意,当0a >时,△140a =+>,故210ax x +-=有两解1x ,2x ,且1210x x a=-<,必为一正一负的两根,符合题意,当0a <时,令△140a =+=解得14a =-,此时方程210ax x +-=的根为2,符合题意,综合可得:a 的取值范围为:{|0a a 或1}4a =-.8.解:(1)函数(1)y g x =+是偶函数,∴二次函数2()21g x x ax =-+的图象关于1x =对称, ∴212a--=,即1a =, 2()21g x x x ∴=-+,∴()1()2g x f x x x x==+-. (2)不等式()0f x mx -可化为212()1m x x-+,∴不等式212()1m x x -+在区间[1,2]上有解,令1t x=,则1[,1]2t ∈,记2()21h t t t =-+,1[,1]2t ∈,对称轴1t =,∴函数()h t 在1[,1]2上单调递减,11()()24max h t h ∴==,14m ∴, 即实数m 的取值范围为(-∞,1]4.(3)方程2(|21|)20|21|x x f k -+-=-,即12|21|220|21||21|x x x k -+-+-=--,化简得2|21|4|21|120x x k ---++=,令|21|(0)x r r =->,则24120r r k -++=,若方程2(|21|)20|21|x x f k -+-=-有三个不同的实数根,则方程24120r r k -++=,必须有两个不相等的实数根1r ,2r , 且101r <<,21r >或101r <<,21r =, 令2()412h r r r k =-++,当101r <<,21r >时,则(0)120(1)220h k h k =+>⎧⎨=-+<⎩,即112k -<<,当21r =时,2()43h r r r =-+,13r =舍去,综上所述,实数k 的取值范围是1(2-,1).湖南省边城高级中学高一年级数学寒假作业(七)答案1.解:由12sin2cos2αα-=,得1cos22sin2αα-=, 即22sin 4sin cos ααα=; 又(0,)απ∈,所以sin 0α≠, 所以sin 2cos 0αα=>;由22222sin cos (2cos )cos 5cos 1ααααα+=+==,解得cos α=.2.解:2cos2sin 12sin sin 0x x x x -=--=, 即22sin sin 10x x +-=, 故(2sin 1)(sin 1)0x x -+=, 由于[0x ∈,]π解得:56x =或56π.所以566πππ+=.故答案为:π.3.解:原方程右边21sin 21cos 2223sin 2333cos 2x x sin xx x +-=+==,故原方程可化为:222sin 3sin xx -=,即22sin 3sin 20x x +-=,解得()122sinx sinx ==-或舍,故[]1,0,22sinx x π=∈又,∴566x ππ=或.故答案为:566ππ或.4.解:当x θ=时,函数()sin 3cos )f x x x x x =+= 取得最大值,cos θ∴=,sin θ=,sin 3cos θθ∴+=则cos()sin 4πθθθ-=+=. 5.解:(1)函数2()cos 2sin()224x x x f x x x x π=+=+,当[0x ∈,]π,[44xππ+∈,5]4π,sin()[4x π+∈1],故()2sin()4f x x π=+的值域为[2].(2)方程()0)f x ωω=>在区间[0,]π上至少有两个不同的解,即sin()4x πω+=在区间[0,]π上至少有两个不同的解.[44x ππω+∈,]4πωπ+,sin 3π=,2sin 3π=, 243ππωπ∴+,解得512ω.6.解:(1)因为a 所以函数()sin 2cos(22)1f x a x x π=+-+2cos212sin(2)16x x x π=++=++,令2[2,2]622x k k k Z πππππ+∈-+∈,解得[,]36x k k k Z ππππ∈-+∈, 所以函数的单调递增区间为[,]36k k k Z ππππ-+∈,函数是频率212f ππ==; (2)因为函数是偶函数,则()()f x f x -=,即sin(2)cos(22)1sin 2cos(22)1a x x a x x ππ-+++=+-+, 即sin2cos2sin2cos2a x x a x x -+=+,所以0a =, 所以()cos21f x x =+,当x R ∈时,cos2[1x ∈-,1], 所以cos21[0x +∈,2],故函数()f x 的值域为[0,2].7.解:(1)函数2()cos 2cos 1cos 2sin()2226x x x f x x x x π=-+=-=-,所以函数()f x 的最小正周期为2π.(2)将函数()f x 图象上所有点的横坐标都缩短为原来的12倍(纵坐标不变),得到()2sin(2)6h x x π=-的图象,再向左移动6π个单位得()2sin(2)2sin(2)366g x x x πππ=+-=+的图象,令222262k x k πππππ-++,求得36k x k ππππ-+,可得函数()g x 的单调增区间为[3k ππ-,]6k ππ+,k Z ∈.8.解:(Ⅰ)由①可得,22ππωω=⇒=.由②得:6226k k πωπππωϕπϕπ+=+⇒=+-,k Z ∈.由③得,44m m πωπωϕπϕπ+=⇒=-,m Z ∈,220322633Tπππππωω-=⇒⇒<. 若①②成立,则2ω=,6πϕ=,()sin(2)6f x x π=+. 若①③成立,则42m m πωπϕππ=-=-,m Z ∈,不合题意.若②③成立,则12()66264k m m k ππωπωππω+-=-⇒=--,k Z ∈与③中的03ω<矛盾,所以②③不成立.所以,只有①②成立,()sin(2)6f x x π=+.(Ⅱ)由题意得,5102()136662x x f x ππππ⇒+⇒,所以,当6x π=时,函数()f x 取得最大值1; 当0x =或3x π=时,函数()f x 取得最小值12.9.解:(1)由图可知2A =,35346124T πππ=-=, 解得T π=,所以22T πω==,所以()2cos(2)f x x ϕ=+;因为()f x 的图象过点5(6π,2),所以52cos(2)26πϕ⨯+=,解得523k πϕπ=-,k Z ∈; 因为0ϕπ<<,所以3πϕ=,所以()2cos(2)3f x x π=+;(2)由(1)可得()2cos(2)cos(2)136g x x x ππ=++-+2cos(2))133x x ππ=++++4sin(2)136x ππ=+++4cos21x =+;设()t g x =,因为1cos21x -,所以3()5g x -;又因为不等式2()(32)()230g x m g x m -+--恒成立, 即2()(32)230h t t m t m =-+--在[3-,5]上恒成立, 则(3)0(5)0h h -⎧⎨⎩,即93(32)230255(32)230m m m m ++--⎧⎨-+--⎩,解得112m -,所以m 的取值范围是1[2-,1].10.解:因为()2sin cos )cos()44f x x x x x ππ=+-+sin 2)cos()sin 2)442x x x x x πππ=+++=+sin 22sin(2)3x x x π==+,(1)令32[2,2]322x k k k Z πππππ+∈++∈,解得7[,]1212x k k k Z ππππ∈++∈,故函数()f x 的单调递减区间为7[,]1212k k k Z ππππ++∈;(2)函数()g x 在区间7[,]1212ππ上有唯一零点,等价于方程()0g x =即()2(2sin 2)f x k x =+在7[,]1212ππ上有唯一实数根,所以12sin(2)sin 2sin 2cos(2)326k x x x x x ππ=+-=-+=+,设()cos(2)6h x x π=+,7[,]1212x ππ∈,则42[,]633x πππ+∈,根据函数()h x 在7[,]1212x ππ∈上的图象,要满足2y k =与()y h x =有唯一交点,只需11222k -<或21k =-,解得1144k -<或12k =-,故实数k 的取值范围为111(,]{}442--.湖南省边城高级中学高一年级数学寒假作业(八)答案1.解:12log_32493(0.064)-++-1392430.4-=⨯+⨯-30=30=30 2.解:函数()log (1)(0a f x x a =-+>且1)a ≠在[2-,0]上的值域是[1-,0],而(0)0f =,(2)log 31a f ∴-==-,13a ∴=,即函数13()log (1)f x x =-+.若函数1()()33x m g x +=-的图象不经过第一象限,令()0g x =,求得1x m =--,则10m --,求得1m -,故答案为:[1-,)+∞.3.解:锐角α满足4cos21sin2αα=+,24(cos sin )(cos sin )(cos sin )αααααα∴+-=+, 整理可得3cos 5sin αα=,即sin 3tan cos 5ααα==,再根据22sin cos 1αα+=,求得cos α 4.解:由题意知,函数()sin()f x x ωϕ=+的最小正周期为2T π=,所以21T πω==,且2tan 12ϕ-==-,由||2πϕ<,解得4πϕ=-,所以()sin()4f x x π=-, 所以221cos(2)112[()]sin ()sin 24222x y f x x x ππ--==-==-,所以2111|||[()]()||sin ||sin(2)|2223MN f g πθθθθθ=-=-=-+,因为0θπ,所以72333πππθ+; 所以当sin(2)13πθ+=-,即712πθ=时,||MN 取得最大值为32.5.解:(1){|36}A x x =-,0m =时,{|32}B x x =-, {|3R B x x ∴=<-或2}x >,(){|26}R AB x x =<;(2){|3RA x x =<-或6}x >,且()R BA =∅,∴①B =∅时,232m m ->+,解得5m >;②B ≠∅时,523326m m m ⎧⎪--⎨⎪+⎩,解得04m ,综上得,实数m 的取值范围为{|04m m 或5}m >. 6.解:(1)幂函数223()()mm f x x m Z -++=∈是奇函数,且f (1)f <(2).223m m ∴-++是正奇数,且m Z ∈, 0m ∴=,3()f x x =.(2)2233212122log ()log [2()](2)y f x f x log x log x =+=+2321122(3log )log 2log x x =++2229(log )3log 1x x =--22159(log )64x =--,1[,2]2x ∈,21log 1x ∴-,∴当21log 6x =时,y 取最小值54-,当2log 1x =-时,y 取最大值11.2212log ()log [2()]y f x f x ∴=+,1[,2]2x ∈的值域为5[4-,11]. 7.解:(1)函数2()cos 2sin()224x x x f x x x x π=+=+,当[0x ∈,]π,[44xππ+∈,5]4π,sin()[4x π+∈1],故()2sin()4fx x π=+的值域为[2].(2)方程()0)f x ωω=>在区间[0,]π上至少有两个不同的解,即sin()4xπω+=在区间[0,]π上至少有两个不同的解.[44x ππω+∈,]4πωπ+,sin 3π=,2sin 3π=, 243ππωπ∴+,解得512ω. 8.解:(1)()f x 是定义在[4-,4]上的奇函数, (0)10f a ∴=+=, 1a ∴=-,11()43x x f x =-,设[0x ∈,4], [4x ∴-∈-,0],∴11()()[]3443x x x x f x f x --=--=--=-,[0x ∴∈,4]时,()34x x f x =-(2)[2x ∈-,1]-,11()23x x m f x --,即11114323x x x x m ---即12432x x xm +,[2x ∈-,1]-时恒成立, 20x >,∴12()2()23x x m +,12()()2()23x x g x =+在R 上单调递减,[2x ∴∈-,1]-时,12()()2()23x x g x =+的最小值为1112(1)()2()523g ---=+=, 5m ∴.9.解:(1),化简得:. (2)①当时,, 当且仅当即时,等号成立, 所以当时,取得最大值43,②当时,,2316(4)3,051()1621116()3,581616x x x L x w x x x x x x ⎧--⎪⎪+=--=⎨⎪-++-<⎪⎩248643,05()1131,58x x L x x x x x ⎧--⎪=+⎨⎪-++<⎩05x 4848()64367[3(1)]6724311L x x x x x x =--=-++-++483(1)1x x =++3x =3x =()L x 58x <2()131L x x x =-++所以当时,取得最大值,最大值为, 综上所述,当时,取得最大值,故当投入的肥料费用为6.5百元时,该水蜜桃树获得的利润最大,最大利润是百元. 10.解:(1)若()f x 为奇函数,则()()0f x f x +-=, 即2244log ()log ()022a a x x +++=---.44()()122a a x x ∴++=---,∴2222(24)14a a x x -+-=-,∴221(24)4a a ⎧=⎨-+=⎩,解得1a =, (2)由题意,得224log ()log [(21)75]2a a x a x +=-+--, 4(21)752a a x a x +=-+--,∴4(21)2(21)52a x a a a x ----+=+-, 整理可得4(21)(2)2142a x a x --=-+--,设21a m -=,2x y -=,则原方程可化为44my m y=+-,即2(4)4(4)(1)0my m y my y ---=+-=,当0m =,即12a =时,原方程可化为1457222x +=--,不存在两个不等实根,0m ∴≠,(4)(1)0my y ∴+-=的两根为14y m=-,21y =, 即14221x a =--,23x =, 若原方程有两个不等实根,则42321a -≠-,解得32a ≠-且12a ≠,又402a x +>-,(21)750a x a -+->,∴40324042221a a a ⎧+>⎪-⎪⎨+>⎪--⎪-⎩且3(21)7504(2)(21)7501a a a a a -+->⎧⎪⎨--+->⎪-⎩,41a ∴-<<, a ∴的取值范围为3311(4,)(,)(,1)2222---.(3)由题意,得224log ()log (|2|1)2a x a x +>-+-对任意[3x ∈,6]恒成立,∴4|2|12a x a x +>-+-,即41|2|2a x a x -+>--,∴4412122a x a a x x --<-<-+--, 由4122a x a x --<--,得4412122a x x x x <+-=-++--,当[3x ∈,6]时,4(21)22152min x x -++=++=-(当4x =时取最小值),5a ∴<, 由4212x a a x -<-+-,得4312a x x >+--,当[3x ∈,6]时,4(1)7162max x x +-=-=-(当6x =时取最大值),36a ∴>,即2a >, 综上,a 的取值范围为(2,5).132x =()L x 13173()24L =132x =()L x 17341734湖南省边城高级中学高一年级数学寒假作业(九)答案1.解:令t ==1()2t y ∴=,302t ,12x -,故t 的减区间为1[2,2],∴函数y 的增区间为1[2,2].2.解:0a >,0b >,21a b +=,5105a b ∴+=, (34)2(3)5a b a b ∴+++=, 即1[(34)2(3)]15a b a b +++= 11112(3)34322()[(34)2(3)](3)343553435a b a b ab a b a b a b a b a b +++∴+⨯+++=++++++∴343)a b a b +=+3.解:由于(0,)2πα∈,sin α=,所以cos α=(,)2πβπ∈--,cos β=,所以sin β==sin tan 7cos ααα==,sin 1tan cos 2βββ==, 由于(0,)2πα∈,(,)2πβπ∈--,所以2(2,)2παβπ+∈--,47tan tan 23tan(2)141tan tan 2173αβαβαβ+-+===---⨯,所以524παβ+=-. 4.解:①21()()||x f x lg f x x +-==,∴函数()f x 是偶函数,()f x 的图象关于y 轴对称,故①正确;②211||2||||x x x x +=+,21()2||x f x lg lg x +∴=,()f x ∴的最小值是2lg ,故②不正确;③函数211()||||||x g x x x x +==+在(,1)-∞-,(0,1)上是减函数,在(1,0)-,(1,)+∞上是增函数,故函数21()||x f x lgx +=在(,1)-∞-,(0,1)上是减函数,在(1,0)-,(1,)+∞上是增函数,故③不正确; ④由③知,()f x 没有最大值,故④正确 故答案为:①④5.解:(1)幂函数223()()mm f x x m Z -++=∈为偶函数,且在(0,)+∞上是增函数.∴2223230m m m m ⎧-++⎨-++>⎩为偶数,解得1m =,此时2()f x x =. (2)由(1)可知:2()()(0,1)a g x log x ax a a =->≠.20x ax ->,()0x x a ∴->,0x ∴>或x a >,∴函数()g x 的定义域为{|x a x <或0}x <,且22()[()]24a a a g x log x =--.①当1a >时,()log a g u u =在区间(0,)+∞上单调递增, 已知函数()g x 在区间[2,3]上为增函数,且函数22()24a a y x =--在区间(,)2aa 上单调递增,∴22a ,4a ∴, 1a >,14a ∴<.②当01a <<时,()log a g u u =在区间(0,)+∞上单调递减, 已知函数()g x 在区间[2,3]上为增函数,当满足函数22()24a a y x =--在区间(0,)2a上单调递减时适合要求,∴32a ,解得6a ,而01a <<,故无解.综上可知:实数a 的取值集合是{|14}a a <.6.解:(Ⅰ)由1()sin 12(sin )12sin()123f x x x x x x π=++=+=++,由()2sin()113f παα=++=,得sin()03πα+=,又[0α∈,2]π,得23απ=或53π.(Ⅱ)由题知,2()(2())(2)2sin(2)1633g x f x f x x πππ=+=+=++,由()2g x ,得21sin(2)32x π+,∴72222,636k x k k Z πππππ-+++∈,22x ππ-,252333x πππ-+, ∴22336x πππ-+,或5252633x πππ+, ∴24x ππ--,或122xππ,即所求x 的集合为{|24x x ππ--,或}122xππ.7.(1)证明:22()211x f x x x ==-++, 设1x ,2x 是(0,)+∞上的任意两个数,且12x x <,⋯(2分)则12121212122()2222()()(2)(2)1111(1)(1)x x f x f x x x x x x x --=---=-+=⋯++++++(4分)12x x <,120x x ∴-<,∴12122()0(1)(1)x x x x -<++,即12()()f x f x < ()f x ∴在(0,)+∞上为增函数,⋯(6分)(2)解:22()211x f x x x ==-++, 因为0x >,所以11x +>,所以2021x <<+,即0()2f x <<⋯(8分)又因为0x >时,()f x 单调递增,2log y t =单调递增,所以2log ()y f x =单调递增,所以()g x 值域为(,1)-∞⋯(10分) (3)解:由(2)可知|()|y g x =大致图象如图所示,设|()|g x t =,则2|()||()|230g x m g x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根,且一个在(0,1)上,一个在[1,)+∞上,(0t =时,只有一个交点,舍去) 设2()23h t t mt m =+++⋯(12分)①当有一个根为1时,h (1)21230m m =+++=,43m =-,此时另一根为13适合题意;⋯(13分)。
【高一】高一数学上册寒假作业题(附答案)

【高一】高一数学上册寒假作业题(附答案)四川省成都七中11-12学年高一上学期数学寒假作业(一)1、 :1.集合{}的子集有()a、 3 B.6 c.7 d.82.已知是第二象限角,那么是()a、第一象限角B.第二象限角C.第二或第四象限角D.第一或第三象限角 3.下列各式中成立的一项是()a、不列颠哥伦比亚省。
4.是第二象限角,为其终边上一点,,则的值为()a、不列颠哥伦比亚省。
5.函数的定义域是()a、不列颠哥伦比亚省。
6.点a(2,0),b(4,2),若ab=2ac,则点c坐标为()a、(1,-1)B.(1,-1)或(5,-1)C.(1,-1)或(3,1)d7.若函数是函数的反函数,其图像经过点,然后()a.b.c.d.8.图中显示了该功能的一些图像所示,则函数解析式为().a、 b。
c.d.9.以下哪个函数是幂函数()a.b.c.d.10.在下列主张中:①∥存在唯一的实数,使得;② 如果为“”,则单位为“”,单位为“?;③;④与共线,与共线,则与共线;⑤若正确命题的序列号为()a.①⑤b.②③④c.②③d.①④⑤11.设p为内点△ ABC,然后()a.b.c.d.12.如图所示,半圆AB=6的直径,O是圆的中心,C是半圆上与a和B不同的任何点。
如果P是半径OC上的移动点,最小值为()a.;b.9;c.;d.-9;二、问题:13.设集合,,且,则实数的取值范围是。
14.设向量满足,,若,则的值是_________;15.已知,上定义的函数的图像关于坐标原点和直线都是对称的,此时的值为________;16.已知定义域为r的函数对任意实数x、y满足得出以下结论:① ② 是一个奇怪的函数③ 是一个周期函数④内单调递增,其中正确的结论序号是________________;三、答复:17.已知集合,(1)如果有两个元素,找出实数的取值范围;(2)若中至多有一个元素,求实数的取值范围.18.当值已知时,(1)与垂直?(2)平行于?当它们平行时,它们是在同一个方向上还是在相反的方向上?19.对于函数,若存在实数,使=成立,则称为的不动点.(1)那时,寻找生命的固定点;(2)若对于任意实数,函数恒有两个不相同的不动点,求的取值范围.20.(1)如果已知它是奇数函数,求常数M的值;(2)画出函数的图象,并利用图象回答:k为何值时,方程无解?有一解?有两解?21.让函数同时具有,以及何时,,。
高一数学寒假作业答案01—07

2022届高一数学寒假作业01答案一、填空题 1、1-;2、[2,1)[4,6]-⋃;3、[2,3)(,1]⋃-∞;4、()0,∞-5、(,3][3,)-∞-⋃+∞;6、2;7、4;8、(1)-;9、3(,)2+∞; 10、(,1][3,4]-∞⋃; 11、(2);12、(,6]-∞二、选择题 13、C ; 14、A ; 15、B ; 16、C三、解答题17、(1)2-≤a (2)4≥a18、2-=x y 向左平移2各单位,向上一个单位,图略。
性质,定义域{}2-≠x x ,值域()+∞,1,在()2,-∞-递增,在()+∞-,2递减,关于2-=x 对称19、解:2184xy x +=得84xy x =-(0x << 31622(1)2l x y x x=++=+≥此时8 2.343x =-≈, 2.828y =≈用料最省 20、(1)解:(,2]A =-∞,令2()6g x x x p =-+,则由题意()0g x <得12(,)B x x =,且12x < 即(2)0g <,得(,8)p ∈-∞ (2)22112(2)(2)022t t t t t m -+-≥对[1,2]t ∈恒成立 即22(21)(21)0tt m -++≥,又[1,2]t ∈时2213t -≥ 则2210t m ++≥即2(21)tm ≥-+恒成立 则5m ≥-21、(1)略 (2)111121x x -≤+<≤-得3[,1)2x ∈-- (3)2min ()(1)121f x f t at ==-≥--即220t at -≤对所有[1,1]a ∈-均成立设2()2h a at t =-+ [1,1]a ∈-则由题意得(1)0(1)0h h ≤⎧⎨-≤⎩得0t =2022届高一数学寒假作业02答案一、填空题(1~6题每题4分,7~12每题5分,共54分)1. 22. [6,4)-3. 已知,a b R ∈,若2a ≤或2b ≤,则4a b +≤4.185.10)y x =-<≤6. 17. (,)b a+∞ 8. 9.5 10. 80 11. 2 12.32二、选择题(每小题5分,4题,共20分)13. A, 14.B 15.C 16.D三、解答题(本大题有5小题,共76分,14+14+14+16+18)17.(1)2232(2)()0x ax a x a x a -+=--<---------------------------------1分 当2a a >即0a >时,(,2)B a a =---------------------------------3分 当2a a =即0a =时,B =∅---------------------------------5分 当2a a <即0a <时,(2,)B a a =---------------------------------6分 (2)[2,4)A =---------------------------------8分当2a a >即0a >时,(,2)B a a =,(,2)[2,4)a a ⊆-,224a a ≥-⎧⎨≤⎩,所以(0,2]a ∈----------------10分当2a a =即0a =时,B =∅,B A ⊆符合---------------------------------11分 当2a a <即0a <时,(2,)B a a =-,(2,)[2,4)a a ⊆-,224a a ≥-⎧⎨≤⎩,所以[1,0)a ∈------------------13分所以[1,2]a ∈----------------------------------14分18、(1)函数2222()42(2)42f x x x m m x m m =--+=---+的对称轴为2x =. …1分①当22m >+,即0m <时,)(x f y =在]2,1[+-m m 上单调递减,min ()()(2)24g m f x f m m ==+=-; …3分②当122m m -≤≤+,即03m ≤≤时,此时顶点是函数图像的最低点,2min ()()(2)24g m f x f m m ===-+-; ……5分1-○3当12m ->,即3m >时,)(x f y =在]2,1[+-m m 上单调递增,min ()()(1)45g m f x f m m ==-=-+; …7分综上,有224(0)()24(03)45(3)m m g m m m m m m -<⎧⎪=-+-≤≤⎨⎪-+>⎩. ……8分(2) 当0m <时,()4g m <-; …10分 当03m ≤≤时,2()(1)3g m m =---,max ()(1)3g m g ==- ;…12分 当3m >时,()7g m <- ; …13分 因此,函数)(m g 的最大值是-3. …14分19.设函数xxx f 2323)(+-=R)(∈x . (1)求函数)(x f y =的值域和零点;(2)请判断函数)(x f y =的奇偶性和单调性,并给予证明.(1)xx x x f 23612323)(++-=+-=,02>x ,∴3+2x >3⇒0<132x +<13⇒0<632x+<2, 1)(1<<-∴x f ,故)(x f y =的值域为()1,1-;----------------------------------------4分令f(x)=0,即6132x=+,解得2log 3x =, ∴()y f x =的零点为.3log 2=x ----------------------------------------6分 (2)对任意的x ∈R ,)1(51752323)1(11f f ±=±≠=+-=---, 故)(x f y =是非奇非偶函数. ------10分 所以,对任意的12,x x ∈R ,21x x <,)23)(23()22(6236236)()(21122121x x x x x x x f x f ++-=+-+=-.-------------------------------12分 因为022,023,0231221>->+>+xx x x , 所以)()(21x f x f >.故()y f x =在定义域R 上是减函数. ----------------------------------------14分20、(1)证明:1,1x y ==令()()()()11110f f f f =+∴=则--------------------------------------2分()()()111,1,y f f x f f f x x x x ⎛⎫⎛⎫==+∴=- ⎪ ⎪⎝⎭⎝⎭令则 ----------------------------------------4分 (2)证明:任取1212,+R x x x x ∈<,且()()2211x f x f x f x ⎛⎫∴-= ⎪⎝⎭---------------------------------------6分()()()()221211210,1,000+x x x x f x x f x f x f x ⎛⎫<<∴>∴< ⎪⎝⎭∴-<∴∞又在,上单调递减---------------------------------------9分(3)猜测:()()()()1111121212,.x x y f x f x x f x f x ----=+=⋅在的定义域内,有恒等式--------------------11分证明:设()()111122,fx y f x y --== ,()12,0,y y ∈+∞ ()()1122,f y x f y x ∴==()()()121212f y y f y f y x x ∴⋅=+=+()()()111121212,f x x y y f x f x ---∴+=⋅=⋅即证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
句容市第三中学高一年级第一学期寒假作业(一) 编者:吕金勇 2010-02-06
高一数学寒假作业(一)答案
一、填空题:本大题共14小题.
1.1 2.[2,)+∞ 3.}0|{>y y 4.-3或6 5.{1,2,3} 6.⎭⎬⎫
⎩⎨⎧21
7.3≤p 8.1)(2+=x x f 9.偶 10.32p q + 11.(0,1) 12.lg 5 13.1
2 14.(,1)(3,)-∞-⋃+∞ 15.1 16.1 17.
3 18.[23
,3]
19.②③④ 20.9
二、解答题:本大题共6小题,解答应写出必要的文字说明步骤.
1.解:(1)A=()[),23,-∞-+∞
. (2)由题意,可知:a>0, B=1,,2a a ⎛
⎫⎛⎫-∞-
+∞ ⎪ ⎪⎝⎭⎝⎭ ,a 的范围为()1,6,02⎡⎫-∞⎪⎢⎣⎭ .
2.解:(1)由题意得,集合A =B ,而集合B ={2,3},
故2,3是方程x 2-ax +a 2-19=0的根,代入求得a =5.
(2)⎪⎩⎪⎨⎧>+=<-=.
0 ,2,0 ,0,
0 ,2)(22x x x x x x x x f
3.解:(1)由题意得1
35
a a ≥-⎧⎨+≤⎩得12a -≤≤; 所以实数a 的值构成的集合为{|12a a -≤≤} (2)由题意得1
35a a ≤-⎧⎨+≥⎩得1
2a a ≤-⎧⎨≥⎩; 这样得实数a 不存在,所以实数a 的值构成的集合为φ
(3)因为A B B = 所以A B ⊆;所以有315a a +<->或;
所以实数a 的值构成的集合为{|45a a a <->或}.
4.解:(1)2-13
++x x ≥0, 得11
+-x x ≥0,即x <-1或x ≥1
即A =(-∞,-1)∪[1,+ ∞)
(2) 由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0.
∵a <1,∴a +1>2a , ∴B =(2a ,a +1).
∵B ⊆A , ∴2a ≥1或a +1≤-1, 即a ≥
21或a ≤-2, 而a <1, ∴
21
≤a <1或a ≤-2, 故当B ⊆A 时, 实数a 的取值范围是(-∞,-2)∪[21,1] .
5.解:(1)由题意得:(1)(1)0x x +⋅-≥ 即(][),11,A =-∞-⋃+∞
由(1)(2)0x a a x --⋅->, 得(1)(2)0x a x a --⋅-<.
∵1a <,∴12a a +>, ∴(2,1)B a a =+.
(2)∵B A ⊆, ∴21a ≥或11a +≤-, 即a ≥
21或2a ≤- 而1a <,∴21
1a ≤<或2a ≤-,
故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[
21
,1).
6.解:(1)因为 ()f x 是R 上的偶函数,所以()()f x f x -= 对任意x R ∈都成立. 即2222(1)(1)1(1)(1)1a x a x a x a x +--+=++-+
得22(1)0a x -=对任意x R ∈都成立
所以有210a -=,解得1a =± 又因为()f x 是二次函数
所以10a +≠,即1a ≠- 综上可得1a =.
(2)由(1)知2
()21f x x =+,可得()f x 在区间[1,0]-上单调递减,在区间[0,2]上单调递增. 所以当0x =时,()f x 最小,(0)1f =
所以当2x =时,()f x 最大,(2)9f = 所以()f x 的值域为[1,9].
(3)若()f x x =,则有221x x +=,得2210x x -+=.
1870∆=-=-< 所以方程无解, 所以函数()f x 无不动点.。