三角恒等变换复习知识汇总
三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。
在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。
这些等式在解决各种三角函数问题时起到了重要的作用。
1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。
例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。
通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。
2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。
例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。
通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。
3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。
根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。
例如,sin²(x) + cos²(x) = 1就是一个平方和关系。
通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。
4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。
例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。
通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。
5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。
第四章 三角恒等变换(知识点总结梳理)-高中数学北师大版(2019)必修第二册

2019新教材北师大版数学必修第二册第四章知识点清单目录第四章三角恒等变换§1 同角三角函数的基本关系§2 两角和与差的三角函数公式§3 二倍角的三角函数公式第四章 三角恒等变换 §1 同角三角函数的基本关系一、同角三角函数的基本关系式 1. 平方关系:sin 2α+cos 2α=1. 2. 商数关系:tan α= sin αcos α.3. 公式的常见变形(1)sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)sin α=±√1−cos 2α;cos α=±√1−sin 2α. (3)cos αtan α=sin α.(4)(sin α+cos α)2=1+2sin αcos α;(sin α-cos α)2=1-2sin αcos α. (5)1+tan 2α=1cos 2α;1+1tan 2α=1sin 2α二、由一个三角函数值求其他三角函数值1. 已知角的正弦、余弦、正切中的一个值,利用同角三角函数的基本关系式可以“知一求二”.2. 若题目中没有指出角终边所在的象限,则必须根据条件推断该角可能是第几象限角,再分情况加以讨论.三、利用同角三角函数的基本关系化简、求值、证明 1. 利用同角三角函数的基本关系化简或证明时常用的方法(1)化切为弦,即把正切函数化成正弦、余弦函数,从而达到化简的目的. (2)对于含有根号的三角函数式,常把根号下的式子化成完全平方式,然后去根号,达到化简的目的.(3)对于含高次的三角函数式,往往借助因式分解,或构造出“sin 2α+cos 2α”的形式,以降低次数,达到化简的目的.四、关于sin α,cos α的齐次式的求值问题1. 关于sin α,cos α的齐次式是指式子中的每一项都是关于sin α或cos α的式子,且每一项的次数相等,通常为一次齐次式、二次齐次式.2. 当齐次式为分式时,可将分子与分母同除以cos α的n(n为齐次式的次数)次幂,此时分式的分子与分母都可化为关于tan α的式子,代入tan α的值即可求得式子的值.3. 当二次齐次式为整式时,可将其视为分母为1的式子,然后将分母1用sin2α+cos2α替换,这时再将式子的分子与分母同时除以cos2α,即可化为关于tan α的式子,代入tan α的值即可求得式子的值.五、利用sin α±cos α与sin αcos α之间的关系求值1. 若已知sin α±cos α,sin αcos α 中的一个,则可以利用方程思想进一步求得sin α, cos α 的值,从而解决相关问题. 常涉及的三角恒等式有:(1)(sin α+cos α)2=1+2sin αcos α;(2)(sin α-cos α)2=1-2sin αcos α;(3)(sin α+cos α)2+(sin α-cos α)2=2;(4)(sin α-cos α)2=(sin α+cos α)2-4sin α·cos α.2. 求sin α+cos α,sin α-cos α,sin αcos α的值时,要注意结合角的范围进行符号判断.§2 两角和与差的三角函数公式一、两角和与差的三角函数公式二、知识拓展 1. 公式的记忆方法:(1)公式C α+β,C α-β可记为“同名相乘,符号反”. (2)公式S α+β,S α-β可记为“异名相乘,符号同”.(3)公式T α+β,T α-β的结构特征可记为“分子为正切的和或差,分母为1与正切的积的差或和”,符号规律可记为“分子同,分母反”.2. 两角和与差的正切公式的变形:(1)tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β). (2)1-tan αtan β=tan α+tan βtan(α+β),1+tan αtan β=tan α−tan βtan(α−β).(3)1+tan α1−tan α=tan π4+tan α1−tan π4⋅tan α=tan (π4+α),1−tan α1+tan α=tan π4−tan α1+tan π4⋅tan α=tan (π4−α).以上式子中各角应保证各式有意义.三、三角函数的叠加公式1:asin α+bcos α=√a 2+b 2sin(α+φ),其中sin φ=√a 2+b2,cos φ=√a 2+b 2,a ,b不同时为0.公式2:asin α+bcos α=√a 2+b 2cos(α-φ),其中sin φ=√a 2+b 2,cos φ=√a 2+b 2,a ,b不同时为0.四、积化和差与差化积公式 1. 积化和差公式(1)cos αcos β=12 [cos(α+β)+cos(α-β)].(2)sin αsin β=-12 [cos(α+β)-cos(α-β)]. (3)sin αcos β=12 [sin(α+β)+sin(α-β)].(4)cos αsin β=12 [sin(α+β)-sin(α-β)].2. 和差化积公式 (1)sin x+sin y=2sinx+y 2cos x−y 2.(2)sin x-sin y=2cosx+y 2sinx−y2.(3)cos x+cos y=2cosx+y 2cos x−y2.(4)cos x-cos y=-2sinx+y 2sinx−y 2.五、利用公式解决给角求值问题利用公式解决给角求值问题的关键是通过公式的合理运用,使所求式中的非特殊角转化为特殊角,或使式中出现可以正负抵消的项,或使式中出现分子、分母能约分的项,从而达到化简求值的目的. 具体注意以下几点:(1)看角:把角尽量向特殊角或可化简或可求出值的角转化,合理拆角,化异为同; (2)看名称:把式子中的三角函数的名称尽量化成同一名称,例如可以把正切函数化为正、余弦函数,或把正、余弦函数转化为正切函数,再解决问题;(3)看式子:看式子是否满足两角和与差的正弦、余弦、正切公式,准确选择公式求解.六、利用公式解决给值求值问题给值求值,即由给出的某些角的三角函数值,求另外一些角的三角函数值,其关键在于“变角”,即使“所求角”变为“已知角”,常见的技巧如下:(1)当“已知角”有两个时,“所求角”一般表示为两个已知角的和或差的形式;(2)当“已知角”有一个时,应注意“已知角”与“所求角”的关系,通过诱导公式或引入特殊角,将“所求角”变成“已知角”;(3)配角技巧:①2α=(α+β)+(α-β),②α=(α+β)-β=β-(β-α),③α=(α+π4)-π4=(α−π4)+π4,④α−β2=(α+β2)-(α2+β).七、利用公式解决给值求角问题1. 解决给值求角问题的一般步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角.2. 通过求角的某个三角函数值来求角,选取函数是关键,一般遵循以下原则:(1)已知正切函数值,选取正切函数.(2)已知正弦、余弦函数值,选取正弦函数或余弦函数;若角的范围是(0,π2),选正弦函数、余弦函数均可;若角的范围是(0,π),选余弦函数较好;若角的范围是(−π2,π2),选正弦函数较好.八、利用三角函数的叠加研究函数的性质1. 公式的作用:利用三角函数的叠加公式可将形如asin α+bcos α(a,b不同时为0)的三角函数式转化为Asin(α+φ)或Acos(α+φ)的形式,从而达到化简或求值的目的,也有利于研究函数的图象和性质.2. 形式选择:化为正弦还是余弦的形式,要由具体条件而定,一般要求变形后角α的系数为正,这样更有利于研究函数的性质.§3 二倍角的三角函数公式一、二倍角公式二、半角公式1. 半角的正弦公式:sinα2=±√1−cos α2.2. 半角的余弦公式:cosα2=±√1+cos α2.3. 半角的正切公式:tanα2=±√1−cos α1+cosα=sin α1+cosα=1−cos αsinα.三、知识拓展 二倍角公式的变形1. 降幂公式:sin αcos α=12sin 2α;sin 2α=1−cos 2α2;cos 2α=1+cos 2α2.2. 升幂公式:1±sin 2α=(sin α±cos α)2;1+cos 2α=2cos 2α;1-cos 2α=2sin 2α.3. 万能公式:sin 2α=2tan α1+tan 2α;cos 2α=1−tan 2α1+tan 2α.四、半角公式的应用利用半角公式求值的思路(1)看角:看已知角与待求角的二倍关系.(2)明范围:求出相应半角的范围,为定符号做准备. (3)选公式:涉及正切时,常利用tan α2=sin α1+cos α=1−cos αsin α进行计算;涉及正弦、余弦时,常利用sin 2α2=1−cos α2,cos 2α2=1+cos α2进行计算.(4)下结论:结合(2)求值. 五、三角函数公式的综合应用三角函数公式在三角函数式的化简、求值以及研究与三角函数有关函数的图象与性质等方面具有重要作用,尤其是研究与三角函数有关函数的图象与性质时,需要先对函数解析式进行化简,化简的过程就是运用公式的过程. 通常情况下,需要先对解析式降幂,变为一次式,再利用三角函数的叠加公式将函数解析式化为y=Asin(ωx+φ)+k 或y=Acos(ωx+φ)+k 的形式,最后研究函数的图象与性质.。
三角恒等变换 知识点总结

三角恒等变换 知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=-. 4、⇒(后两个不用判断符号,更加好用)5、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的B x A y ++=)sin(ϕϖ形式。
()sin cos αααϕA +B =+,其中tan ϕB =A. 6、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的αα半角公式2t an 2cos :==2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②2304560304515ooo o o o =-=-=; ③ββαα-+=)(;④)4(24αππαπ--=+; ⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
高中数学必修4第三章_三角恒等变换知识点

111高中数学必修4第三章三角恒等变换知识点⑴商的关系: ① tan y sin x cos ②cotx cos y sin ③sin y cos ta n④cosx .r r⑵倒数关系: tan cot 1⑶平方关系: sin 2 cos 212、两角和与差的正弦、 余弦和正切公式:⑴cos cos cos sin sin:⑵ cos cos cos ⑶sin sin cos cos sin :⑷ sinsin cos ⑸ta ntan tan(tan tantan 1 1 tan tan ⑹ta n tan tan (tan tantan 11 tan tan1、同角关系: cos sintan tan 余弦和正切公式: 3、二倍角的正弦、 sin sin tan tan⑴ si n2 2sin cos 1 sin 2 sin 2 cos 22si n cos (sincos )2⑵ cos2 2 cos.2 sin 2cos 21 1 2si n 2升幕公式 cos 降幕公式 cos 2c 22cos — 2 cos2 1 1 cos 2sinsin 221 cos2⑶tan2羊1 tan 24、万能公式: ① sin 22 ta n 1 tan 2② cos2ta n 2 tan 2 ③ tan 22ta n 1 tan 2④ si n 2tan 21 tan 2⑤ cos 2_____1 tan 25、半角公式cos—2sin —2cos tan2 cossin 1 cos1 cos sin(后两个不用判断符号,更加好用)6、asin bcos . a2b2sin((其中辅助角与点(a,b)在同一象限,且tanb-)a2。
必修4-第三章三角恒等变换-知识点详解

必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
三角恒等变换知识点总结

三角恒等变换专题-、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴ cos : - : = cos : cos 1 sin : sin ::⑵ cos : 二 cos : cos ; -sin : sin :;⑶ sin : - - =sin : cos ; -cos : sin : ;(4) sin : : =sin : cos : cos : sin :;⑸ tan —J an -tan〔1 +tanot tan P形式―曲氏。
…,2 Sin :「,其中聞「迁(tan : - tan : = tan : - - 1 tan : tan :);⑹tan :—旦匹1 -tan 。
tan P(tan 二 1 tan :二 tani* T"; ]1「tan : tan :).2、二倍角的正弦、余弦和正切公式:⑴ sin2: =2sin : cos :.= 仁sin2:2 2 2=si n : cos ;二 2si n _:〉cos 「 - (s in :二⑵ cos2:二 cos :「sin 2 : = 2cos 2 < -1 二 1「2sin 2: 2 :' =升幕公式 1 cos : - 2cos ,1 - cos : =2sin 2cos2-:i }12 :'=■降幕公式cos2:■21 一:⑶tan2,西二1 -ta n «万能公式半角公式a cos -21 cos a sintan -21 - cos a-1 cos a. a;sin 2sin a 1 cos a1「cos a sin a4、合一变形=把两个三角函数的和或差化为"一个三角函数, a2 tan2 ;cos2a(后两个不用判断符号,更加好用) 2atan —2 tan 2 a2一个角,一次方”的y = A sin() B5. (1)积化和差公式1 sin 用 cos - = [sin (-:匚 + - )+sin (二--)]2 1cos -:: cos ,,-'= [cos (:+ - )+cos (-:i --)]2(2)和差化积公式ct + P a - P sin 、’+sin - = 2 sin ---------------- COS ------1cos/ sin - = [sin (二I + - )-sin (-:i --)]2 1sin -:: sin= -[cos (二i + - )-cos (二i -a + P a - Psin 、’ - sin = 2 COS ----- s in --------21 cos2:cos -■二 ------------2 sin c os 、£ =1 sin2-f27、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公 式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1 )角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差, 倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①2是〉的二倍;4是2'的二倍;:-是 '的二倍;2 '是一的二倍;24② 15° =45° -30°30ooo=60 - 45.问: sin —二:cos —21212—―TTTT^TT③〉=(二:亠「)_ _ :④ _ . = 一 _(一 _:.).4 2 4'⑤ 2:二(黒亠卩)()=(_:)_(_-:).等等(2) 函数名称变换:三角变形中,常常需要变函数名称为同名函数。
三角函数概念及三角恒等变换知识点总结-高三数学一轮复习

知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。
3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。
本文将总结常用的三角恒等变换公式,并介绍其应用技巧。
一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换复习知识汇总
一、两角和与差、二倍角公式应掌握的要点
1.正、余弦函数的两角和与差、二倍角公式中的αβ,是任意角,即对任意角αβ,来说公式都成立.要注意正切函数自身的定义域对正切函数的两角和与差公式及二倍角公式中αβ,的范围的限制.
2.当αβ,中有一个角是
π2
的整数倍时,利用正、余弦函数的诱导公式比较简便,和(差)角公式可以看成是诱导公式的推广,诱导公式可以看成是和(差)角公式的特例.
3.二倍角公式的推导过程充分体现了由一般到特殊的化归思想,使二倍角三角函数能够用它的简单三角函数表示.
4.要注意两角和与差以及二倍角的相对性,熟悉“角的演变”规律,如2()()ααβαβ=++-;()()ααββαββ=+-=-+; (2)()22αβ
αβ
βαβαβ+-=-=+-+;2()()ααβαβ=++-;
()()αβαγγβ-=-+-,154530=-;
πππ424αα⎛⎫+=-- ⎪⎝⎭, 3πππ()442
βααβ⎛⎫⎛⎫+--=++ ⎪ ⎪⎝⎭⎝⎭;还有α有2α的倍角,3α是32α的倍角等.三角函数式中往往出现较多的差异角,注意观察角与角之间的和、差、倍、半、互补、互余等关系,运用角的变换,化复角为单角或想方设法减少未知角的数目,沟通条件角与结论角的联系,使问题顺利获解.
二、几个常见的三角变换
1.函数名称变换:三角变换中,常常需要变换函数.若能把所给式子中的三角函数都化成同名的三角函数,减少函数种类,就能达到变换的目的.则此三角函数式的化简,实质上是代数式的变形.
2.常数的变换:在三角函数运算、求值、证明中,有时需要将常数转化为三角函数值,尤其要重视常数“1”的各种变形,这样,就增加了多种可用的工具.常见的代换有:221sin cos αα=+,1tan 45=等,在具体的三角变换过程中,可以添加在任意位置,往往能起到意想不到的效果.
3.公式变换:三角公式作为恒等式,在运用时,不能仅局限于它的正用,还应熟悉公式的逆用和变形应用.比如对于公式tan tan tan()1tan tan αβαβαβ
++=-,应注意其两种变形:tan tan tan()(1tan tan )βααβαβ+=+-·和tan tan 1tan tan tan()
αβαβαβ-=++·,这些都是在解题中经常用到的.
4.结构变换:在三角变换中,常常对条件、结论的结构施行调整,或重新分组,或移项,或变乘为除,或求差等等,在形式上需要分解因式、配方等.
三、三角变换的三个常见用途
1.三角函数式的化简问题
(1)三角函数式的化简原则:①项数尽量少;②三角函数种类尽量少;③次数尽量低;④分母尽量不含三角函数;⑤根号下尽量不含三角函数;⑥能求值的求出值来.
(2)化简三角函数式的一般要求是:①异角化同角;②异次化同次;③异名化同名;④特殊值与特殊角的三角函数互化;⑤弦、切互化;⑥升幂、降幂.
2.三角函数求值问题
三角函数的求值问题的思考程序是:将角化为特殊角或将三角函数化为同角、同名函数进行合并与化简,最后求出三角函数值来.在求值过程中,要注意差异分析法的有效运用. (1)给角求值
一般所给出的角都是非特殊角,但若仔细观察,非特殊角与特殊角总有一定关系,解题时要利用观察得到的关系,将非特殊角转化为特殊角并且求出特殊角的三角函数值而得解.但应注意的是,要重视角的范围对三角函数值的影响,因此还要注意角的范围的讨论. (2)给值求值
给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使已知角与所求角具有某种关系.
解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化,进而推出结论.其中“凑角法”是解决此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这种关系来选择公式.
(3)给式求值
解此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件.
主要方法有:①消元法;②解方程组法;③应用比例性质.
(4)给值求角
解决“给值求角”问题是由两个关键步骤构成:一把所求角用含已知角的式子表示,二由所得的函数值结合该函数的单调区间求得角.
对于通过变形转化为已知三角函数值求角的问题,关键又在于对角的范围的讨论,必要时可根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过其三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律.若(0π)α∈,,则求cos α;若ππ22
α⎛⎫∈- ⎪⎝⎭
,,则求sin α等. 3.三角恒等式的证明问题
三角恒等式的结构一般由角、三角函数符号及运算符号三种元素组成.三角恒等式的证明实质就是由一种结构形式转化为另一种结构形式.因此,在证明三角恒等式时必须仔细观察等式两边结构上的差异,然后分析这些差异和联系,最后从解决差异入手,施行适当的变换,直至消除差异,完成三角恒等式的证明.具体地说,可从减少角的种类(异角化同角),减少函数的种类(异名化同名),改变运算结构等方面入手,通过三角恒等变换,应用化繁为简、左右归一、变更命题等方法,使等式两端的“异”化为“同”.
2009-7-5。