三年级奥数应用题解题技巧

合集下载

小学三年级奥数练习及答案解析-植树问题、应用题解题技巧

小学三年级奥数练习及答案解析-植树问题、应用题解题技巧

小学三年级奥数练习及答案解析-植树问题、应用题解题技巧小学三年级奥数题(应用类)1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。

铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和11270米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?分析:从甲筐取出放入乙筐,总数不变。

甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。

于是,问题就变成最基本的和差问题:和19千克,差3千克。

解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。

三年级奥数题:和差倍数问题(二)1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:被减数=减数+差=(被减数+减数+差)/2。

因此,减数与差的和=120/2=60。

这样就是基本的和倍问题了。

小数=和/(倍数+1)解:减数与差的和=120/2=60,差=60/(3+1)=15。

(完整)小学奥数解题方法大全

(完整)小学奥数解题方法大全

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

小学三年级奥数讲解及练习题应用题

小学三年级奥数讲解及练习题应用题

小学三年级奥数讲解及练习题:应用题一、知识要点应用题是小学数学中非常重要的一部分内容,它需要我们小朋友用学到的数学知识来解决生产、生活中的一些实际问题。

学好应用题的关键在于认真分析题意,掌握数量关系,找到问题的突破口。

在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求的问题;也可以从问题出发,找到必须的两个条件。

在实际解答时,我们可以根据题目中的数量关系,灵活运用这两种方法。

有时,借助线段图来分析应用题的数量关系,解答就更容易了。

二、精讲精练【例题1】学校里有排球24只,足球的只数比排球的2倍少5只,学校有排球、足球共多少只?【思路导航】根据题意画出线段图从上图可以看出,把24只排球看作1倍数,足球的只数比这样的2倍还少5只,用24×2-5=43(只)可以求出足球的只数,再用43+24=67只可以求出两种球的总只数。

练习1:1.小红每分钟跳绳25下,小军每分钟跳的下数比小红的3倍少16下,小军每分钟比小红多跳几下?2.王奶奶家养鸡12只,养鹅的只数比鸡的只数的4倍还多7只。

王奶奶家共养鸡、鹅多少只?3.少先队员种柳树30棵,种的杨树的棵数比柳树棵数的3倍多14棵。

少先队员种的杨树、柳树共多少棵?【例题2】人民广场花圃中有180盆郁金香,比月季花盆数的3倍少15盆。

月季花有多少盆?【思路导航】从上图可以看出,把月季花的盆数看作1倍数,郁金香的盆数是这样的3倍少15盆。

如果郁金香再增加15盆,就正好是月季花盆数的3倍。

因此用(180+15)÷3=65(盆)就可求出月季花的盆数。

练习2:1.小明的父亲每月工资1000元,比小明母亲每月工资的2倍少200元。

小明母亲每月工资多少元?2.饲养场养母鸭400只,比公鸭只数的7倍还多36只。

饲养场养公鸭多少只?3.水果店卖出9筐水果,平均每筐重45千克。

卖出水果的千克数比剩下的3倍还多27千克,还剩多少千克水果?【例题3】小林家养了一些鸡,黄鸡比黑鸡多13只,白鸡比黄鸡多12只,白鸡的只数正好是黑鸡的2倍。

《小学奥数解题方法大全》

《小学奥数解题方法大全》

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

三年级奥数:归一问题,盈亏问题,典型应用题解题思路

三年级奥数:归一问题,盈亏问题,典型应用题解题思路

三年级奥数:归一问题,盈亏问题,典型应用题解题思路我们把先求“单一量”的应用题统称为归一问题。

“单一量”一般是固定不变的数量,是指某人或某物在单位时间内的工作量、单位时间所走的路程、商品的单价等等。

根据求“单一量”的步骤,归一问题可以分为:一次归一和两次归一。

归一问题主要有两类:一种是正归一,即用除法求出单一量后,再用乘法求几个单一量是多少;另一种为反归一,即求出单一量后,再用除法求包含有多少个单一量。

解归一问题的一般数量关系是:(1)总额÷份数=1份数;(2)1份数×份数=总数;(3)总数÷1份数=份数。

下面我们就通过一些具体的例子来说明。

一次归一问题在做这类问题时,首先求出“单一量”(平均数),然后再根据“单一量×份数”求出总数。

一次归一问题在做归一问题时,首先求出“单一量”(平均数),然后再观察题目是求总数还是求份数,求总数用乘法(单一量×份数),求份数用除法(总数÷单一量)。

两次归一问题需要运用两次除法求出“单一量”的归一问题叫做“两次归一”。

求出单一量后,根据“单一量×份数1×份数2”求总数。

两次归一问题在做两次归一问题时,首先根据“总数÷份数1÷份数2”求出“单一量”,然后再观察题目是求总数还是求份数,求总数用乘法(单一量×份数1×份数2),求其中一个份数用除法(总数÷单一量÷份数)。

份数改变的归一问题其中一个份数发生变化时,总数=单一量×变化后的份数×另一个份数。

份数改变的归一问题做其中一个份数发生变化的归一问题时,总数=单一量×变化后的份数×另一个份数,份数=总数÷单一量÷变化后的份数。

下面是一些这个知识点的相关练习,大家可以练练看。

(做完后再看后面的答案哦)1.李师博3小时生产96个零件,照照这样计算50小时生产多少个零件?2一台播种机每小时语种20亩,3台这样的播种机6小时能播种多少亩?3.竹器编织组8人3天可编织144个精制竹篮。

小学三年级数学应用题解题技巧和注意事项

小学三年级数学应用题解题技巧和注意事项

小学三年级数学应用题解题技巧和注意事项很多同学在学习数学的过程中认为应用题是最难的地方,其实只要掌握学习的方法,你就会发现,数学并没有想象中的难学。

下面跟大家分享小学三年级数学应用题的解题技巧,希望对大家有所帮助。

小学三年级数学应用题解题技巧一、从方法入手,掌握解题步骤具体来说,三年级数学应用题的解题的步骤可以细分为以下几步:①读题,即把握题意,准确理解题目的设置的方向以及考察的内容;②说题,说提就是要厘清题目中给出的已知条件以及所要求解决的问题。

在这一过程中,应当将题目中的关键词进去圈注。

如表示数量的“一共”、“几倍”、“平均值”等,此外也应当特别注意单位的统一。

③析题。

就是要将题目中的数量关系进行分析,这也是正确解答数学应用题的关键所在,这一步骤中对学生的逻辑思维能力的要求特别高。

一般来说,三年级学生分析解答应用题的最基本的两种思路分别是综合法以及分析法。

而所谓综合法,就是根据题目的已知条件,根据已知的运算知识或者运算法则,分步骤的分析问题,最后求得答案。

较为常见的引导式用语有“已知……和……,可推得……?”而与综合法相反,分析法是从应用题的问题出发,分析要得出答案需要什么样的已知条件。

若所需的已知条件,题目中全部具备,则可以直接作答,否则还要先求出所需条件。

这种分析法常见的引导语有:“若要求得这个问题的答案,那么我们还需要什么条件呢?”“题目中给出了什么已知条件?例如,在实际教学过程中,教学生通过两步计算实际问题时,有这样一道应用题:“小红叠了23个飞机,小明比小红多叠了4个,小李比小明少叠了5个,问小李叠了多少个?”若是用分析法解答上述问题,可以问:“若要求得小李叠了多少个,那么必须知道谁叠的个数?”“小明叠了多少个不知道,那求小明叠的飞机的个数该怎么列式?”通过以上分析后得出:要想知道小李叠了多少个分级就必须先知道小明叠了多少个,而要求得小明叠了多少个,就必须知道小红叠的飞机的个数,小红的个数题干中已经给出,便可开始解答。

三年级奥数:归一问题,典型应用题解题思路

三年级奥数:归一问题,典型应用题解题思路

三年级奥数:归一问题,典型应用题解题思路我们把先求“单一量”的应用题统称为归一问题。

“单一量”一般是固定不变的数量,是指某人或某物在单位时间内的工作量、单位时间所走的路程、商品的单价等等。

根据求“单一量”的步骤,归一问题可以分为:一次归一和两次归一。

归一问题主要有两类:一种是正归一,即用除法求出单一量后,再用乘法求几个单一量是多少;另一种为反归一,即求出单一量后,再用除法求包含有多少个单一量。

解归一问题的一般数量关系是:(1)总额÷份数=1份数;(2)1份数×份数=总数;(3)总数÷1份数=份数。

下面我们就通过一些具体的例子来说明。

一次归一问题在做这类问题时,首先求出“单一量”(平均数),然后再根据“单一量×份数”求出总数。

一次归一问题在做归一问题时,首先求出“单一量”(平均数),然后再观察题目是求总数还是求份数,求总数用乘法(单一量×份数),求份数用除法(总数÷单一量)。

两次归一问题需要运用两次除法求出“单一量”的归一问题叫做“两次归一”。

求出单一量后,根据“单一量×份数1×份数2”求总数。

两次归一问题在做两次归一问题时,首先根据“总数÷份数1÷份数2”求出“单一量”,然后再观察题目是求总数还是求份数,求总数用乘法(单一量×份数1×份数2),求其中一个份数用除法(总数÷单一量÷份数)。

份数改变的归一问题其中一个份数发生变化时,总数=单一量×变化后的份数×另一个份数。

份数改变的归一问题做其中一个份数发生变化的归一问题时,总数=单一量×变化后的份数×另一个份数,份数=总数÷单一量÷变化后的份数。

下面是一些这个知识点的相关练习,大家可以练练看。

(做完后再看后面的答案哦)1.李师博3小时生产96个零件,照照这样计算50小时生产多少个零件?2一台播种机每小时语种20亩,3台这样的播种机6小时能播种多少亩?3.竹器编织组8人3天可编织144个精制竹篮。

3年级奥数解题方法大全

3年级奥数解题方法大全

3年级奥数解题方法大全【原创版6篇】目录(篇1)1.奥数的概念和意义2.3 年级奥数的主要内容3.3 年级奥数的解题方法4.如何提高 3 年级奥数解题能力正文(篇1)【奥数的概念和意义】奥数,全称为奥林匹克数学竞赛,是一项针对中小学生的数学竞赛活动。

它旨在选拔和培养优秀的数学人才,激发学生学习数学的兴趣,提高学生的数学素养。

对于 3 年级的学生来说,奥数可以锻炼他们的逻辑思维能力、分析问题和解决问题的能力,为以后的学习打下坚实的基础。

【3 年级奥数的主要内容】3 年级奥数的主要内容包括:四则运算、几何图形、逻辑推理、数论、组合等。

这些内容都是奥数的基础,学生需要掌握基本的概念和方法,才能在奥数竞赛中取得好成绩。

【3 年级奥数的解题方法】1.画图法:通过画图,将问题形象化,便于理解和解决问题。

2.列表法:将问题中的条件和要求列成表格,便于分析和找出规律。

3.逆推法:从问题的结果出发,逆向推导出问题的解答。

4.代换法:用一个变量代替问题中的某个量,简化问题。

5.分类讨论法:将问题分成若干种情况,分别讨论,得出结论。

【如何提高 3 年级奥数解题能力】1.培养数学兴趣:让学生在解决数学问题的过程中体验到成就感和乐趣,激发他们对数学的热爱。

2.扎实掌握基础知识:学生需要熟练掌握 3 年级奥数的基本概念和方法,才能在解题时游刃有余。

3.多做练习:通过大量的练习,提高学生的解题速度和准确率。

4.学会总结和反思:在做题过程中,学生要学会总结解题方法,反思自己的错误,不断进步。

5.参加培训和比赛:参加奥数培训班和比赛,可以让学生了解自己的水平,提高应试能力。

目录(篇2)1.奥数的概念和意义2.3 年级奥数的特点和要求3.解题方法一:逻辑推理法4.解题方法二:数学归纳法5.解题方法三:逆向思维法6.解题方法四:画图辅助法7.总结与建议正文(篇2)一、奥数的概念和意义奥数,全称奥林匹克数学竞赛,是一项针对青少年的数学竞赛活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数应用题解题技巧(一)
来源:奥数网整理文章作者:—— 2010-03-25 14:54:19
[标签:应用题三年级]奥数精华资讯免费订阅
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
40÷5=8(公顷)
(2)需要多少小时?
72÷8=9(小时)
答:耕72公顷地需要9小时。

【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?
【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?
1500×6=9000(千克)
(2)可以烧多少天?
9000÷1000=9(天)
(3)可以多烧多少天?
9-6=3(天)。

【试题】把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
【详解】
方法1:
(1)每本书多少毫米?
42÷7=6(毫米)
(2)28本书高多少毫米?
6×28=168(毫米)
方法2:
(1)28本书是7本书的多少倍?
28÷7=4
(2)28本书高多少毫米?
42×4=168(毫米)
【试题】两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台?
【详解】
方法1:
(1)两个车间一天共装配多少台?
35+37=72(台)
(2)15天共可以装配多少台?
72×15=1080(台)
方法2:
(1)第一车间15天装配多少台?
35×15=525(台)
(2)第二车间15天装配多少台?
37×15=555(台)
(3)两个车间一共可以装配多少台?
555+525=1080(台)
答:15天两个车间一共可以装配1080台。

相关文档
最新文档