导数知识点归纳及应用-2
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
总结导数的知识点归纳

总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。
如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。
导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。
2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。
如果函数在某一点处可导,那么该点也称为函数的导数存在的点。
函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。
3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。
当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。
函数曲线的凸凹性可以通过导数的正负来判断。
二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。
可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。
2. 导数的四则运算函数的导数满足四则运算的性质。
设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。
3. 复合函数的导数复合函数的导数可以通过链式法则来求导。
设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。
4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。
高阶导数的符号表示一阶导数的凸凹性。
三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。
导数简单知识点总结归纳

导数简单知识点总结归纳一、导数的定义1.1 函数的平均变化率在介绍导数之前,我们先来了解一下函数的平均变化率。
对于函数y=f(x),在区间[a,b]上的平均变化率可以用下式表示:\[\frac{f(b)-f(a)}{b-a}\]这个式子表示函数在区间[a,b]上的平均变化率,也就是在这个区间里函数值的变化程度。
1.2 导数的定义当我们希望了解函数在某一点的变化率时,平均变化率已经不能满足我们的需求了。
这时,我们需要引入导数的概念。
对于函数y=f(x),在点x处的导数可以用下式表示:\[f'(x)=lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\]这个式子表示函数在点x处的导数,也可以理解为函数在这一点的瞬时变化率。
导数的定义可以直观地理解为当自变量x的增量趋于0时,函数值的变化率。
1.3 导数的几何意义导数还有一个重要的几何意义,它可以表示函数在某一点的切线的斜率。
这个概念在几何学中有着很重要的作用,也为我们理解导数提供了一个直观的解释。
二、导数的计算方法2.1 导数的基本性质对于常见的基本函数,我们可以通过一些基本的求导规则来得到它们的导数。
常见的导数规则包括:(1) 常数函数的导数为0;(2) 幂函数的导数为幂函数的指数乘以常数;(3) 指数函数的导数为指数函数的底数乘以常数;(4) 对数函数的导数为分子的导数减去分母的导数的商。
这些基本的求导规则可以帮助我们快速求出一些常见函数的导数,后面我们将会介绍一些常见函数的导数。
2.2 链式法则和乘积法则在实际的求导过程中,有时候我们会遇到一些复合函数或者乘积函数,这时就需要用到链式法则和乘积法则来求导。
链式法则的表达式为:\[f(g(x))'=f'(g(x))\cdot g'(x)\]是说一个函数的导函数是以另一个函数的作为自变量,那么它的导数等于原函数对代入函数的导函数乘以代入函数的导数。
导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。
导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。
一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。
如果导数存在,则称f(x)在该点可导。
2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。
3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。
b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。
4.基本导数公式:a.常数函数的导数为0。
b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。
c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。
d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。
二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。
2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。
b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。
3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。
导数知识点归纳总结

导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。
在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。
2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。
这个值就是在点a处的导数。
它是一个数值,常常用f'(a)表示。
3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。
4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。
二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。
2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。
三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。
2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。
3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。
四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。
2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。
3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。
4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。
微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。
导数知识点概念归纳总结

导数知识点概念归纳总结1. 导数的定义导数的定义是建立在函数的极限概念上的。
设函数y = f(x),在点x处的导数定义为:\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]其中,Δx表示x的增量,当Δx趋于0时,上式的极限存在则称函数在点x处可导,这个极限的值就是函数在点x处的导数。
导数表示了函数在某一点处的变化率,可以理解为函数在这一点处的斜率。
2. 导数的性质导数具有一些基本性质,例如:(1)可导函数一定是连续函数,但连续函数不一定可导。
(2)导数存在的充要条件是函数在该点处有切线。
(3)可导函数在一点的导数等于该点的切线的斜率。
(4)导数具有线性运算性质,即\[ (f(x) \pm g(x))' = f'(x) \pm g'(x) \],\[ (k \cdot f(x))' = k \cdot f'(x) \],其中f(x)和g(x)都是可导函数,k是常数。
(5)复合函数的导数公式,如果y = f(u),u = g(x),则\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]。
3. 导数的计算方法对于简单的函数,可以通过导数的定义进行计算。
但是对于一些复杂的函数,使用导数的定义进行计算过于繁琐,因此需要借助一些常用的导数公式和方法来进行计算。
(1)常用函数的导数公式常用函数的导数公式包括:- 幂函数的导数:\[ (x^n)' = nx^{n-1} \],其中n是常数。
- 指数函数的导数:\[ (a^x)' = a^x \ln a \],其中a是常数。
- 对数函数的导数:\[ (\log_a x)' = \frac{1}{x \ln a} \],其中a是常数。
- 三角函数的导数:\[ (\sin x)' = \cos x \],\[ (\cos x)' = -\sin x \],\[ (\tan x)' = \sec^2 x \]。
导数知识点归纳及应用

导数知识点归纳及应用导数是微积分中非常重要的一个概念,它描述了一个函数在其中一点处的变化率。
导数的应用非常广泛,不仅在数学中有着重要的意义,也在物理、经济、工程等领域中得到了广泛的应用。
下面将详细介绍导数的定义、性质及其应用。
首先,我们来看导数的定义。
设函数f(x)在点x=a处的导数为f'(a),则导数的定义为:f'(a) = lim_(x→a) [f(x)-f(a)]/(x-a)其中,lim表示极限运算。
这个定义表明,导数可以通过求极限来得到,它描述了函数在点a处的变化率。
根据导数的定义,我们可以得到一些导数的基本性质。
首先,导数有线性性质,即对于任意的实数a和b,以及函数f(x)和g(x),有:(af(x)+bg(x))' = af'(x)+bg'(x)其次,导数满足乘法法则和链式法则。
乘法法则表明,对于函数的乘积,其导数可以通过各个函数的导数来计算,具体而言有:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)链式法则表明,对于复合函数,其导数可以通过外层函数和内层函数的导数来计算,具体而言有:(f(g(x)))'=f'(g(x))g'(x)此外,导数还满足反函数法则和导数的平均值定理。
反函数法则表明,对于反函数,其导数可以通过原函数的导数来计算,具体而言有:(f^(-1)(y))'=1/f'(x)导数的平均值定理表明,对于一个区间[a,b]上连续且可导的函数f(x),存在一个点c,在[a,b]内,使得f'(c)等于函数在该区间的平均变化率。
了解了导数的定义和性质后,我们可以来看一些导数的应用。
首先,导数可以用于计算函数在其中一点的斜率。
具体而言,如果函数f(x)在点x=a处的导数存在,那么它就可以表示函数在该点处的斜率,即函数在该点处的切线的斜率。
其次,导数还可以用于确定函数的最值。
数学专升本导数知识点归纳

数学专升本导数知识点归纳导数是数学中一个非常重要的概念,它描述了函数在某一点处的瞬时变化率。
在专升本的数学学习中,掌握导数的基本概念、性质、计算方法和应用是至关重要的。
以下是对数学专升本导数知识点的归纳:一、导数的定义导数是研究函数在某一点处的切线斜率。
如果函数\( f(x) \)在点\( x=a \)处可导,则导数定义为:\[ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]当这个极限存在时,我们称\( f'(a) \)为函数\( f(x) \)在点\( a \)处的导数。
二、基本导数公式- 常数函数的导数为0。
- \( x^n \)的导数为\( nx^{n-1} \)。
- \( e^x \)的导数为\( e^x \)。
- \( \ln(x) \)的导数为\( \frac{1}{x} \)。
三、导数的运算法则- 和差法则:\( (f \pm g)' = f' \pm g' \)- 积的法则:\( (fg)' = f'g + fg' \)- 商的法则:\( \left(\frac{f}{g}\right)' = \frac{f'g -fg'}{g^2} \)- 链式法则:\( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)四、高阶导数高阶导数是导数的导数,记作\( f''(x) \)、\( f'''(x) \)等。
高阶导数在研究函数的凹凸性、拐点等性质时非常有用。
五、导数的应用- 求切线斜率:导数给出了函数图像在某一点处的切线斜率。
- 求极值:导数为0的点可能是函数的极值点。
- 物理应用:在物理学中,导数用于描述速度、加速度等物理量的变化率。
六、隐函数求导对于隐函数,如\( F(x, y) = 0 \),我们可以通过求偏导数的方法来求\( y \)关于\( x \)的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。
注意:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0); ② 求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; ③ 取极限,得导数f’(x 0)=xyx ∆∆→∆lim 。
例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵0||lim ||lim )(lim )0()0(lim 0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x ∴f ′( 0)=02.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
例:在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .0[解析]:切线的斜率为832/-==x y k 又切线的倾斜角小于4π,即10<<k 故18302<-<x 解得:338383<<-<<-x x 或 故没有坐标为整数的点3.导数的物理意义若物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s '(t )。
若物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。
例:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )答:A 。
练习:已知质点M 按规律322+=t s 做直线运动(位移单位:cm ,时间单位:s )。
(1) 当t=2,01.0=∆t 时,求t s∆∆; (2) 当t=2,001.0=∆t 时,求ts∆∆;(3) 求质点M 在t=2时的瞬时速度。
答案:(1)8.02s cm (2)8.002s cm ;(3)8s cm 二、导数的运算1.基本函数的导数公式: ①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x e x'=. 例1:下列求导运算正确的是st OA .st Ost OstOB .C .D .( ) A .(x+211)1xx+=' B .(log 2x)′=2ln 1x C .(3x )′=3x log 3e D . (x 2cosx)′=-2xsinx [解析]:A 错,∵(x+211)1x x-=' B 正确,∵(log 2x)′=2ln 1x C 错,∵(3x )′=3x ln3 D 错,∵(x 2cosx)′=2xcosx+ x 2(-sinx)例2:设f 0(x ) = sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x ) = f n ′(x ),n ∈N ,则f 2005(x )=( )A .sinxB .-sinxC .cos xD .-cosx[解析]:f 0(x ) = sinx ,f 1(x )=f 0′(x )=cosx ,f 2(x )=f 1′(x )= -sinx ,f 3(x )=f 2′(x )= -cosx , f 4(x ) = f 3′(x )=sinx ,循环了则f 2005(x )=f 1(x )=cosx2.导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:='⎪⎭⎫⎝⎛v u 2''v uv v u -(v ≠0)。
例:设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-'>0.且g(3)=0.则不等式f(x)g(x)<0的解集是 ( )A . (-3,0)∪(3,+∞)B . (-3,0)∪(0, 3)C . (-∞,- 3)∪(3,+∞)D . (-∞,- 3)∪(0, 3) [解析]:∵当x <0时,)()()()(x g x f x g x f '-'>0 ,即0)]()([/>x g x f∴当x <0时,f(x)g(x)为增函数,又g(x)是偶函数且g(3)=0,∴g(-3)=0,∴f(-3)g(-3)=0 故当3-<x 时,f(x)g(x)<0,又f(x)g(x)是奇函数, 当x>0时,f(x)g(x)为减函数,且f(3)g(3)=0 故当30<<x 时,f(x)g(x)<0 故选D3.复合函数的导数形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤: 分解——>求导——>回代。
法则:y '|X = y '|U ·u '|X 或者[()]()*()f x f x ϕμϕ'''=. 练习:求下列各函数的导数: (1);sin 25x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解:(1)∵,sin sin 23232521x x x xx x x x y ++=++=-∴y ′.cos sin 2323)sin()()(232252323x x x x x x x x x x-----+-+-='+'+'= (2) y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y ′=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x x x xxy -=+--++=++-=12)1)(1(111111 ,∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-='三、导数的应用 1.函数的单调性与导数(1)设函数)(x f y =在某个区间(a ,b )可导,如果'f )(x 0>,则)(x f 在此区间上为增函数;如果'f 0)(<x ,则)(x f 在此区间上为减函数。
(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常数。
例:函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) [解析]:由x x x f 63)(2/-=<0,得0<x<2∴函数13)(23+-=x x x f 是减函数的区间为(0,2)2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;例:函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5 [解析]:∵323)(2/++=ax x x f ,又3)(-=x x f 在时取得极值∴0630)3(/=-=-a f 则a =53.最值:在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
但在开区间(a ,b )内连续函数f (x )不一定有最大值,例如3(),(1,1)f x x x =∈-。
(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中的最大值,最小值必须在整个区间上所有函数值中的最小值。
(2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附件的函数值得出来的。
函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。
例:函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 . [解析]:由33)(2'-=x x f =0,得1±=x ,当1-<x 时,)(/x f >0,当11<<-x 时,)(/x f <0,当1>x 时,)(/x f >0, 故)(x f 的极小值、极大值分别为1)1(3)1(-==-f f 、, 而1)0(17)3(=-=-f f 、故函数13)(3+-=x x x f 在[-3,0]上的最大值、最小值分别是3、-17。