(完整word版)导数知识点总结

合集下载

导数重要知识点总结

导数重要知识点总结

导数重要知识点总结一、导数的定义导数在数学上是指函数在某一点处的变化率。

具体地说,如果函数y=f(x)在点x=a处可导,那么它的导数f'(a)定义为:f'(a) = lim(x→a) (f(x) - f(a))/(x - a) (1)其中,lim表示极限,f(x) - f(a)表示函数在点a处的变化量,x - a表示自变量的改变量。

导数f'(a)表示了函数在点a处的瞬时变化率。

当函数y=f(x)在某一点处可导时,它在那一点有唯一的切线。

该切线的斜率恰好等于函数在该点的导数。

因此,导数也可以理解为切线的斜率。

导数的物理意义是描述了函数在某一点处的瞬时变化率。

二、导数的性质1. 导数的加法性质:如果函数f(x)和g(x)都在某一点处可导,那么它们的和f(x)+g(x)在该点处也可导,并且有(f+g)'(a) = f'(a) + g'(a)2. 导数的乘法性质:如果函数f(x)和g(x)都在某一点处可导,那么它们的积f(x)g(x)在该点处也可导,并且有(fg)'(a) = f'(a)g(a) + f(a)g'(a)3. 导数的商法则:如果函数f(x)和g(x)都在某一点处可导,且g'(a)≠0,那么它们的商f(x)/g(x)在该点处也可导,并且有(f/g)'(a) = (f'(a)g(a) - f(a)g'(a))/(g(a))^24. 复合函数的导数:如果函数f(x)在点x处可导,而函数g(x)在点f(x)处可导,那么复合函数g(f(x))在点x处可导,并且有(g◦f)'(x) = g'(f(x)) * f'(x)以上是导数的基本性质,它们对于计算导数和求解实际问题中的应用非常重要。

三、导数的应用导数在微积分中有着广泛的应用,其中包括函数的极值、曲线的凹凸性、曲线的切线和法线等。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。

总结导数的知识点归纳

总结导数的知识点归纳

总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。

如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。

导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。

2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。

如果函数在某一点处可导,那么该点也称为函数的导数存在的点。

函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。

3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。

当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。

函数曲线的凸凹性可以通过导数的正负来判断。

二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。

可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。

2. 导数的四则运算函数的导数满足四则运算的性质。

设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。

3. 复合函数的导数复合函数的导数可以通过链式法则来求导。

设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。

4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。

高阶导数的符号表示一阶导数的凸凹性。

三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数的主要知识点总结

导数的主要知识点总结

导数的主要知识点总结1. 导数的定义在微积分中,函数f(x)在点x=a处的导数可以用极限的概念来定义。

假设函数f(x)在x=a 处的切线斜率存在,那么这个斜率就是函数在这一点的导数。

导数可以用以下的极限式来表示:\[f'(a)=\lim_{h\to0}\frac{f(a+h)-f(a)}{h}\]其中,f'(a)表示函数在x=a处的导数。

这个式子的几何意义相当于在点(x, f(x))处做一个趋近于点(a, f(a))的切线,切线的斜率即为函数在点a处的导数。

2. 导数的计算法则导数的计算法则可以帮助我们更方便、更准确地求解函数的导数。

下面是一些常见的导数计算法则:(1) 常数法则对于常数c,它的导数为0,即\[ \frac{d}{dx}c=0 \](2) 幂函数法则对于幂函数f(x)=x^n,它的导数为\[ \frac{d}{dx}x^n=nx^{n-1} \](3) 指数函数法则对于指数函数f(x)=a^x,它的导数为\[ \frac{d}{dx}a^x=a^x\ln a \](4) 对数函数法则对于对数函数f(x)=\log_a x,它的导数为\[ \frac{d}{dx}\log_a x=\frac{1}{x\ln a} \](5) 反函数法则若y=f(x)的反函数为x=g(y),则有\[ \frac{dx}{dy}=\frac{1}{\frac{dy}{dx}} \](6) 和、差、积、商的导数法则对于两个函数u(x)和v(x),它们的和、差、积、商的导数法则分别为:\[ \frac{d}{dx}(u(x)+v(x))=\frac{du}{dx}+\frac{dv}{dx} \]\[ \frac{d}{dx}(u(x)-v(x))=\frac{du}{dx}-\frac{dv}{dx} \]\[ \frac{d}{dx}(u(x)v(x))=u(x)\frac{dv}{dx}+v(x)\frac{du}{dx} \]\[ \frac{d}{dx}\frac{u(x)}{v(x)}=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2} \]3. 导数的基本性质导数具有一系列的基本性质,这些性质可以帮助我们更好地理解导数的特点和应用。

导数的知识点内容总结

导数的知识点内容总结

导数的知识点内容总结一、导数的基本概念1.1 导数的定义在微积分中,导数(Derivative)是描述函数变化率的概念。

对于函数f(x),在x=a处的导数可以通过极限的方法定义为:\[f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}\]其中,f'(a)表示函数f(x)在x=a处的导数,也可以写成\(\frac{df}{dx}(a)\)或者\(\frac{dy}{dx}(a)\)。

这个定义表示当自变量x在a处发生微小变化h时,函数值f(x)的变化量与自变量变化量的比值。

1.2 导数的直观理解导数可以直观地理解为函数图像上某点处的切线的斜率。

也就是说,导数描述了函数曲线在某一点的瞬时变化率,或者说是瞬间的速度。

1.3 导数与函数的关系导数是函数的基本性质之一,它描述了函数的变化规律。

通过导数的概念,可以研究函数的极值、凹凸性、图像的性质等。

二、导数的性质2.1 基本导数公式常数函数的导数等于零,即\(\frac{d}{dx} c = 0\)。

幂函数\(f(x) = x^n\)的导数为\(f'(x) = nx^{n-1}\)。

指数函数\(f(x) = a^x\)的导数为\(f'(x) = a^x \ln(a)\)。

对数函数\(f(x) = \log_a(x)\)的导数为\(f'(x) = \frac{1}{x \ln(a)}\)。

三角函数(如sinx、cosx、tanx等)及其反函数的导数。

2.2 导数的四则运算导数有加减法、乘除法、复合函数等运算法则。

设函数f(x)和g(x)可导,则它们的和、差、积、商也可导,且有以下运算法则:\( \frac{d}{dx} (f(x) \pm g(x) ) = f'(x) \pm g'(x) \)\( \frac{d}{dx} (f(x)g(x) ) = f(x)g'(x) + g(x)f'(x) \)\( \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \)复合函数的导数:若y=f(u)及u=g(x)都可导,则复合函数y=f(g(x))也可导,并有:\( \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \)2.3 高阶导数如果函数f(x)的导数存在,则导数f'(x)也是一个函数,它的导数可以继续求导。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。

也就是说,导数描述了函数在某一点处的变化率。

如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。

2. 导数的代数定义设函数y=f(x),在点x0处可导。

如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。

这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。

二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。

不过反之不成立。

2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。

导数知识点归纳总结

导数知识点归纳总结

导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。

在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。

2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。

这个值就是在点a处的导数。

它是一个数值,常常用f'(a)表示。

3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。

4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。

二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。

2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。

三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。

2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。

3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。

四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。

2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。

3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。

4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。

微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②已知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .导 数导数的概念导数的运算导数的应用导数的几何意义、物理意义 函数的单调性函数的极值 函数的最值常见函数的导数导数的运算法则于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4、几种常见的函数导数:0'=C (C 为常数)1')(-=n n nx x (R n ∈)x xc o s )(s i n '= x x s i n )(c o s '-= x x 1)(ln '=e xx a a l o g 1)(l o g '= x x e e =')( a a a x x ln )('=5. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.6. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.7. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.8. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 9. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.导数练习一、选择题1.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2.设a>0,b>0,e 是自然对数的底数( )A .若e a +2a=e b +3b,则a>bB .若e a +2a=e b +3b,则a<bC .若e a -2a=e b -3b,则a>bD .若e a -2a=e b -3b,则a<b3.设函数f(x)=2x+lnx 则( )A .x=12为f(x)的极大值点B . x=12为f(x)的极小值点 C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点4.设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( )A .12120,0x x y y +>+>B .12120,0x x y y +>+<C .12120,0x x y y +<+>D .12120,0x x y y +<+<5.函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6.已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是( )A .①③B .①④C .②③D .②④7.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为8.设a >0,b >0.( )A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b9.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是 ( )A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f 10.设函数()x f x xe =,则( ) A .1x =为()f x 的极大值点 B .1x =为()f x 的极小值点 C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点11.设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.已知函数33y x x c =-+的图像与x 轴恰有两个公共点,则c =( )A .2-或2B .9-或3C .1-或1D .3-或1二、填空题13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________14.曲线33y x x =-+在点()1,3处的切线方程为___________________. 三、解答题15.已知函数3()f x ax bx c =++在2x =处取得极值为16c -(1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值.16.已知a ∈R,函数3()42f x x ax a =-+(1)求f(x)的单调区间(2)证明:当0≤x ≤1时,f(x)+ 2a ->0.17.已知函数3211()(0)32a f x x x ax a a -=+-->(I)求函数)(x f 的单调区间;(II)若函数)(x f 在区间(2,0)-内恰有两个零点,求a 的取值范围; (III)当1a =时,设函数)(x f 在区间]3,[+t t 上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间]1,3[--上的最小值.18.设函数()(,,)n n f x x bx c n N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设n 为偶数,(1)1f -≤,(1)1f ≤,求b+3c 的最小值和最大值;。

相关文档
最新文档