高考数学中档大题保分练4
高三数学综合复习:中档大题保分练(一)

中档大题保分练中档大题保分练(一)(推荐时间:50分钟)1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(cos(x -B ),cos B ),n =⎝⎛⎭⎫cos x ,-12,f (x )=m ·n ,f ⎝⎛⎭⎫π3=14. (1)求角B 的值;(2)若b =14,BA →·BC →=6,求a 和c 的值. 解 (1)f (x )=m ·n =cos x ·cos(x -B )-12cos B=cos 2x cos B +cos x sin x sin B -12cos B=12(cos 2x ·cos B +sin 2x ·sin B )=12cos(2x -B ),∵f ⎝⎛⎭⎫π3=14,∴cos ⎝⎛⎭⎫2π3-B =12, 又∵B 为△ABC 的内角,∴2π3-B =π3即B =π3. (2)由BA →·BC →=6,及B =π3,得ac ·cos π3=6,即ac =12,在△ABC 中,由余弦定理:b 2=a 2+c 2-2ac cos B 得 14=a 2+c 2-2ac cos π3,a 2+c 2=26,从而(a +c )2-2ac =26,(a +c )2=50, ∴a +c =5 2.解方程组⎩⎪⎨⎪⎧ ac =12a +c =52,得⎩⎪⎨⎪⎧ a =22c =32,或⎩⎪⎨⎪⎧a =32c =22.2. 设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎫n ,S nn (n ∈N *)均在函数y =2x -1的图象上. (1)求数列{a n }的通项公式;(2)设b n =4a n a n +1,T n 是数列{b n }的前n 项和,求证:T n <1.(1)解 由条件S nn =2n -1,即S n =2n 2-n .当n ≥2时,a n =S n -S n -1=()2n 2-n -[2(n -1)2-(n -1)]=4n -3.又n =1时,a 1=S 1=1适合上式, 所以a n =4n -3(n ∈N *).(2)证明 b n =4a n a n +1=4(4n -3)(4n +1)=14n -3-14n +1.∴T n =b 1+b 2+b 3+…+b n=⎣⎡⎦⎤⎝⎛⎭⎫1-15+⎝⎛⎭⎫15-19+⎝⎛⎭⎫19-113+…+⎝⎛⎭⎫14n -3-14n +1 =1-14n +1.∵n ∈N *,∴-14n +1<0, ∴1-14n +1<1,即T n <1.3. M 公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生.这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(1)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(2)若从所有“甲部门”人选中随机选3人,用X 表示所选人员中能担任“助理工作”的人数,写出X 的分布列,并求出X 的数学期望.解 (1)用分层抽样的方法, 每个人被抽中的概率是820=25.根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人, 所以选中的“甲部门”人选有10×25=4人,“乙部门”人选有10×25=4人.用事件A 表示“至少有一名甲部门人选被选中”, 则它的对立事件A 表示“没有一名甲部门人选被选中”, 则P (A )=1-P (A )=1-C 34C 38=1-456=1314.因此,至少有一人是“甲部门”人选的概率是1314.(2)依题意,所选毕业生中能担任“助理工作”的人数X 的取值分别为0,1,2,3.P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16,因此,X 的分布列如下:所以X 的数学期望E (X )=0×130+1×310+2×12+3×16=95.4. 在四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,∠ABC=90°,AB =PB =PC =BC =2CD ,平面PBC ⊥平面ABCD . (1)求证:AB ⊥平面PBC ;(2)求平面ADP 与平面BCP 所成的二面角(小于90°)的大小;(3)在棱PB 上是否存在点M 使得CM ∥平面P AD ?若存在,求PMPB 的值;若不存在,请说明理由.(1)证明 因为∠ABC =90°, 所以AB ⊥BC .因为平面PBC ⊥平面ABCD , 平面PBC ∩平面ABCD =BC , AB ⊂平面ABCD , 所以AB ⊥平面PBC .(2)解 如图,取BC 的中点O ,连接PO . 因为PB =PC ,所以PO ⊥BC . 因为平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC , 所以PO ⊥平面ABCD .以O 为原点,OB 所在的直线为x 轴,在平面ABCD 内过O 垂直 于BC 的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系O -xyz . 不妨设BC =2.由AB =PB =PC =BC =2CD 可得, P (0,0,3),D (-1,1,0),A (1,2,0). 所以DP →=(1,-1,3),DA →=(2,1,0). 设平面ADP 的法向量为m =(x ,y ,z ). 因为⎩⎪⎨⎪⎧m ·DP →=0,m ·DA →=0,所以⎩⎪⎨⎪⎧x -y +3z =0,2x +y =0.令x =-1,则y =2,z = 3. 所以m =(-1,2,3).取平面BCP 的一个法向量n =(0,1,0). 所以cos 〈m ,n 〉=m ·n |m |·|n |=22.所以平面ADP 和平面BCP 所成的二面角(小于90°)的大小为π4.(3)解 在棱PB 上存在点M 使得CM ∥平面P AD ,此时PM PB =12.取AB 的中点N ,连接CM ,CN ,MN , 则MN ∥P A ,AN =12AB .因为AB =2CD , 所以AN =CD . 因为AB ∥CD ,所以四边形ANCD 是平行四边形, 所以CN ∥AD .因为MN ∩CN =N ,P A ∩AD =A , 所以平面MNC ∥平面P AD . 因为CM ⊂平面MNC ,所以CM∥平面P AD.。
数学二轮复习46分大题保分练4理含解析

46分大题保分练(四)(建议用时:40分钟)17.(12分)已知△ABC的三个内角A,B,C所对的边分别是a,b,c,且c cos A+33a cos C=0,tan(2 019π+2A)=错误!.(1)求tan C的大小;(2)若C为钝角且c=错误!,求△ABC的周长的取值范围.[解](1)因为c cos A+3错误!a cos C=0,所以sin C cos A+3错误! sin A cos C=0.又cos A cos C≠0,所以tan C=-3错误!tan A.因为tan(2 019π+2A)=错误!,所以tan 2A=错误!,所以错误!=错误!,解得tan A=13或tan A=-3。
①若tan A=错误!,则tan C=-3错误!tan A=-3错误!×错误!=-错误!;②若tan A=-3,则tan C=-3错误!tan A=-3错误!×(-3)=9错误!.故tan C的值为-错误!或9错误!.(2)因为C为钝角,所以由(1)知tan C=-错误!,又因为0<C<π,所以C=错误!.由余弦定理得c2=a2+b2-2ab cos 23π=a2+b2+ab=(a+b)2-ab≥(a+b)2-错误!错误!=错误!(a+b)2,当且仅当a=b时取等号,所以(a+b)2≤4,则a+b≤2。
又a+b>c=错误!,所以a+b∈(错误!,2].所以△ABC的周长的取值范围是(23,2+错误!].18.(12分)(2020·三明模拟)国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.(参考数据:162+142+122+52+32+72+82+162+192=1360,142+112+32+22+12+22+32+62+72+132=598)[解](1)甲城市的打分平均数为:错误!=79,乙城市的打分平均数为:错误!=79,则甲城市的打分的方差为:错误![错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2]=136.乙城市的打分的方差为:错误![错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!2+错误!292-792]=59。
(通用版)2020高考数学二轮复习46分大题保分练(四)文

46分大题保分练(四)(建议用时:40分钟)17.(12分)(2019·福州模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a (3sinB -cosC )=(c -b )cos A .(1)求角A ;(2)若b =3,点D 在BC 边上,CD =2,∠ADC =π3,求△ABC 的面积.[解] 法一:(1)根据正弦定理,及a (3sin B -cos C )=(c -b )cos A , 得sin A (3sin B -cos C )=(sin C -sin B )cos A , 所以3sin A sin B +sin B cos A =sin C cos A +cos C sin A , 即3sin A sin B +sin B cos A =sin(A +C ). 又A +C =π-B ,所以sin(A +C )=sin B , 所以3sin A sin B +sin B cos A =sin B . 又0<B <π,所以sin B >0,所以3sin A +cos A =1,即sin ⎝⎛⎭⎪⎫A +π6=12.又0<A <π,所以π6<A +π6<7π6,所以A +π6=5π6,解得A =2π3.(2)如图,在△ACD 中,AC =b =3,CD =2,∠ADC =π3,由正弦定理,得AC sin∠ADC =CDsin∠CAD ,即3sinπ3=2sin∠CAD ,所以sin∠CAD =1,∠CAD =π2. 从而∠ACD =π-π2-π3=π6,∠ABC =π-π6-2π3=π6,所以AB =AC = 3.故S △ABC =12·AB ·AC ·sin∠BAC =12×3×3×sin 2π3=334.法二:(1)因为a (3sin B -cos C )=(c -b )cos A , 所以3a sin B =a cos C +(c -b )cos A ,由余弦定理,得3a sin B =a ·a 2+b 2-c 22ab +(c -b )·b 2+c 2-a 22bc,化简得23ac sin B =2bc -(b 2+c 2-a 2), 所以23ac sin B =2bc -2bc cos A , 即3a sin B =b -b cos A .由正弦定理,得3b sin A =b -b cos A .所以3sin A =1-cos A ,所以sin ⎝⎛⎭⎪⎫A +π6=12.又0<A <π,所以π6<A +π6<7π6,所以A +π6=5π6,A =2π3.(2)在△ACD 中,AC =b =3,CD =2,∠ADC =π3,由余弦定理,得AC 2=AD 2+CD 2-2AD ·CD ·cos∠ADC , 即3=AD 2+4-2×AD ×2×12,解得AD =1,从而AD 2+AC 2=CD 2,所以∠CAD =π2,所以∠ACD =π-π2-π3=π6,∠ABC =π-π6-2π3=π6,所以AB =AC = 3.故S △ABC =12·AB ·AC ·sin∠BAC =12×3×3×sin 2π3=334.18.(12分)如图,在直三棱柱ABC A1B 1C 1中,底面ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点,且A 1M ⊥B 1N .(1)求证:B 1N ⊥A 1C ; (2)求M 到平面A 1B 1C 的距离. [解] 法一:(1)如图,连接CM .在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,CM ⊂平面ABC . 所以AA 1⊥CM .在△ABC 中,AC =BC ,AM =BM ,所以CM ⊥AB . 又AA 1∩AB =A ,所以CM ⊥平面ABB 1A 1. 因为B 1N ⊂平面ABB 1A 1,所以CM ⊥B 1N .又A 1M ⊥B 1N ,A 1M ∩CM =M ,所以B 1N ⊥平面A 1CM . 因为A 1C ⊂平面A 1CM ,所以B 1N ⊥A 1C . (2)连接B 1M .在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N . 所以tan∠AA 1M =tan∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点,所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x2.所以1x =x22,解得x =2.从而S △A 1B 1M =12S 正方形ABB 1A 1=2,A 1C =B 1C =2 2.在△A 1CB 1中,cos∠A 1CB 1=A 1C 2+B 1C 2-A 1B 212A 1C ·B 1C =34,所以sin∠A 1CB 1=74,所以S △A 1B 1C =12A 1C ·B 1C ·sin∠A 1CB 1=7.设点M 到平面A 1B 1C 的距离为d ,由V 三棱锥M A 1B 1C =V 三棱锥C A 1B 1M ,得13S △A 1B 1C ·d=13S △A 1B 1M ·CM , 所以d =S △A 1B 1M ·CM S △A 1B 1C =2217,即点M 到平面A 1B 1C 的距离为2217.法二:(1)同法一.(2)在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N , 所以tan∠AA 1M =tan∠A 1B 1N ,即AM AA 1=A 1NA 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点, 所以AM =1,CM =3,A 1B 1=2. 设AA 1=x ,则A 1N =x2,所以1x =x22,解得x =2.如图,取A 1B 1的中点D ,连接MD ,CD ,过M 作MO ⊥CD 于O.在正方形ABB 1A 1中,易知A 1B 1⊥MD ,由(1)可得CM ⊥A 1B 1, 又CM ∩MD =M ,所以A 1B 1⊥平面CDM . 因为MO ⊂平面CDM ,所以A 1B 1⊥MO .又MO ⊥CD ,A 1B 1∩CD =D ,所以MO ⊥平面A 1B 1C , 即线段MO 的长就是点M 到平面A 1B 1C 的距离.由(1)可得CM ⊥MD ,又MD =2,所以由勾股定理,得CD =CM 2+MD 2=7.S △CMD =12·CD ·MO =12·CM ·MD ,即12×7×MO =12×3×2,解得MO =2217,故点M 到平面A 1B 1C 的距离为2217.19.(12分)(2019·合肥模拟)“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某IT 从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入y (单位:千元)的散点图:(1)由散点图知,可用回归模型y =b ln x +a 拟合y 与x 的关系,试根据有关数据建立y 关于x 的回归方程;(2)如果该IT 从业者在个税新政下的专项附加扣除为3 000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.附注:1.参考数据:∑10i =1x i =55,∑10i =1y i =155.5,∑10i =1(x i -x )2=82.5,∑10i =1(x i -x )(y i -y )=94.9,∑10i =1t i =15.1,∑10i =1(t i -t )2=4.84,∑10i =1(t i -t )(y i -y )=24.2,其中t i =ln x i ;取ln 11=2.4,ln 36=3.6.2.参考公式:回归方程v =bu +a 中斜率和截距的最小二乘估计分别为b ^=∑ni =1(u i -u )(v i -v )∑ni =1(u i -u )2,a ^=v -b ^u .3.新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:b ^=∑10i =1(t i -t )(y i -y )∑10i =1 (t i -t )2=24.24.84=5, y =∑10i =1y i10=155.510=15.55,t =∑10i =1t i10=15.110=1.51,a ^=y -b ^t =15.55-5×1.51=8,所以y 关于t 的回归方程为y =5t +8.因为t =ln x ,所以y 关于x 的回归方程为y =5ln x +8.(2)由(1)得该IT 从业者36岁时月平均收入为y =5ln 11+8=5×2.4+8=20(千元).旧个税政策下每个月应缴纳的个人所得税为1 500×3%+3 000×10%+4 500×20%+(20 000-3 500-9 000)×25%=3 120(元). 新个税政策下每个月应缴纳的个人所得税为3 000×3%+(20 000-5 000-3 000-3 000)×10%=990(元).故根据新旧个税政策,该IT 从业者36岁时每个月少缴纳的个人所得税为3 120-990=2 130(元).选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+35t y =1+45t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=21+sin 2θ,点P 的极坐标为⎝⎛⎭⎪⎫2,π4. (1)求C 的直角坐标方程和P 的直角坐标;(2)设l 与C 交于A ,B 两点,线段AB 的中点为M ,求|PM |.[解] (1)由ρ2=21+sin 2θ得ρ2+ρ2sin 2θ=2 ①,将ρ2=x 2+y 2,y =ρsin θ代入①并整理得,曲线C 的直角坐标方程为x 22+y 2=1.设点P 的直角坐标为(x ,y ),因为点P 的极坐标为⎝ ⎛⎭⎪⎫2,π4, 所以x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1.所以点P 的直角坐标为(1,1). (2)法一:将⎩⎪⎨⎪⎧x =1+35t y =1+45t 代入x 22+y 2=1,并整理得41t 2+110t +25=0,Δ=1102-4×41×25=8 000>0, 故可设方程的两根分别为t 1,t 2,则t 1,t 2为A ,B 对应的参数,且t 1+t 2=-11041.依题意,点M 对应的参数为t 1+t 22.所以|PM |=⎪⎪⎪⎪⎪⎪t 1+t 22=5541.法二:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧x =1+35ty =1+45t ,消去t ,得y =43x -13.将y =43x -13代入x 22+y 2=1,并整理得41x 2-16x -16=0,因为Δ=(-16)2-4×41×(-16)=2 880>0, 所以x 1+x 2=1641,x 1x 2=-1641.所以x 0=841,y 0=43x 0-13=43×841-13=-341,即M ⎝ ⎛⎭⎪⎫841,-341.所以|PM |=⎝ ⎛⎭⎪⎫841-12+⎝ ⎛⎭⎪⎫-341-12=⎝ ⎛⎭⎪⎫-33412+⎝ ⎛⎭⎪⎫-44412=5541.23.(10分)[选修4-5:不等式选讲] 已知函数f (x )=|x +1|-|ax -3|(a >0). (1)当a =2时,求不等式f (x )>1的解集;(2)若y =f (x )的图象与x 轴围成直角三角形,求a 的值. [解] (1)当a =2时,不等式f (x )>1即|x +1|-|2x -3|>1.当x ≤-1时,原不等式可化为-x -1+2x -3>1,解得x >5,因为x ≤-1,所以此时原不等式无解;当-1<x ≤32时,原不等式可化为x +1+2x -3>1,解得x >1,所以1<x ≤32;当x >32时,原不等式可化为x +1-2x +3>1,解得x <3,所以32<x <3.综上,原不等式的解集为{x |1<x <3}. (2)法一:因为a >0,所以3a>0,所以f (x )=⎩⎪⎨⎪⎧(a -1)x -4,x ≤-1(a +1)x -2,-1<x ≤3a .(1-a )x +4,x >3a因为a >0,所以f (-1)=-a -3<0,f ⎝ ⎛⎭⎪⎫3a =1+3a>0.当0<a <1时,f (x )的图象如图①所示,要使得y =f (x )的图象与x 轴围成直角三角形,则(a -1)(a +1)=-1,解得a =0,舍去;当a =1时,f (x )的图象如图②所示,所以y =f (x )的图象与x 轴不能围成三角形,不符合题意,舍去;当a >1时,f (x )的图象如图③所示,要使得y =f (x )的图象与x 轴围成直角三角形,则(1-a )(a +1)=-1,解得a =±2,因为a >1,所以a = 2.综上,所求a 的值为2.图① 图② 图③法二:因为a >0,所以3a>0,所以f (x )=⎩⎪⎨⎪⎧(a -1)x -4,x ≤-1(a +1)x -2,-1<x ≤3a .(1-a )x +4,x >3a若y =f (x )的图象与x 轴围成直角三角形, 则(a -1)(a +1)=-1或(a +1)(1-a )=-1, 解得a =0(舍去)或a =2或a =-2(舍去). 经检验,a =2符合题意, 所以所求a 的值为 2.。
高考理科数学中档大题保分专练15套(经典珍藏解析版)

(Ⅱ)若选取的是 12 月 1 日与 12 月 5 日的两组数据,请根据 12 月 2 日至 12 月 4 日的数据,
求 y 关于 x 的线性回归方程 y bx a ;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过 2 颗,则认为
得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
i 1
xi2
112
132
122
434
2
, 3x
432 ,由公式求
得
第 2 页 共 57 页
中档大题保分专练 15 套
3
b
xi yi
i 1
977 972 5 ,a y bx 3
3
xi 2
2
3x
434 432
2
i 1
.
x 2 cos
4.
(广西名校第一次摸底)已知曲线
M
的参数方程为
12 月 2 日
12 月 3 日
12 月 4 日
12 月 5 日
温差 x (℃) 10
11
13
12
8
发芽数 y(颗) 23
25
30
26
16
该农科所确定的研究方案是:先从这 5 组数据中选取 2 组,用剩下的 3 组数据求线性回归方
程,再对被选取的 2 组数据进行检验.
(Ⅰ)求选取的 2 组数据恰好是不相邻的 2 天数据的概率;
,
∴曲线 N 的普通方程为 3x y 16 0 .……………………………………5 分
(Ⅱ)圆 M 的圆心 M 0 ,2 ,半径 r 2.
2 16
d
7
点 M 到直线 N 的距离为
高考理科数学中档大题保分专练18套(经典珍藏解析版)

高考理科数学中档大题保分专练 18 套 目 录
目 录............................................................................................................................... 1 专练一(共 4 道大题)建议用时:40 分钟.................................................................. 2 专练二(共 4 道大题)建议用时:40 分钟.................................................................. 5 专练三(共 4 道大题)建议用时:40 分钟................................................................ 10 专练四(共 4 道大题)建议用时:40 分钟................................................................ 13 专练五(共 4 道大题)建议用时:40 分钟................................................................ 16 专练六(共 4 道大题)建议用时:40 分钟................................................................ 21 专练七(共 4 道大题)建议用时:40 分钟................................................................ 24 专练八(共 4 道大题)建议用时:40 分钟................................................................ 28 专练九(共 4 道大题)建议用时:40 分钟................................................................ 32 专练十(共 4 道大题)建议用时:40 分钟................................................................ 36 专练十一(共 4 道大题)建议用时:40 分钟............................................................ 40 专练十二(共 4 道大题)建议用时:40 分钟............................................................ 44 专练十三(共 4 道大题)建议用时:40 分钟............................................................ 49 专练十四(共 4 道大题)建议用时:40 分钟............................................................ 53 专练十五(共 4 道大题)建议用时:40 分钟..................... 56 专练十六(共 4 道大题)建议用时:40 分钟............................................................ 60 专练十七(共 4 道大题)建议用时:40 分钟............................................................ 63 专练十八(共 4 道大题)建议用时:40 分钟............................................................ 65 独家整理编辑
高中数学中档题1,4

高三数学中档题训练(一)1、已知向量OA=3i-4j,OB=6i-3j,OC=(5-m)I-(3+m)j,其中i、j分别是直角坐标系内x轴与y轴正方向上的单位向量.①若A、B、C能构成三角形,求实数m应满足的条件;②若△ABC为直角三角形,且∠A为直角,求实数m的值.2、已知数列{a n}的前n项之和为S n,且S n=a(a n-1)(a≠0,a≠1,n∈N n)(1)求数列{a n}的通项公式;(2)数列{b n}=2n+b(b是常数),且a1=b1,a2>b2,求a的取值范围.3、如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,△ABC 为正三角形,D 、E 分别是BC 、CA 的中点.(1)证明:平面PBE ⊥平面PAC ; (2)如何在BC 上找一点F ,使AD//平面PEF ?并说明理由; (3)若PA=AB=2,对于(2)中的点F ,求三棱锥B-PEF 的体积.4、某种细菌两小时分裂一次,(每一个细菌分裂成两个,分裂所需的时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y 是研究时间t 的函数,记作y=f(t)(1)写出函数y=f(t)的定义域和值域;(2)在所给坐标系中画出y=f(t);(0≤t<6)的图象;(3)写出研究进行到n 小时(n ≤0,n ∈Z)时细菌的总数有多少个(用关于n 的式子表示).答案在第9页A B D CFP高三数学中档题训练(二)1、求函数x x x f 4131)(3-=的单调区间,并求f(sinx)的最大值.2、数列{a n }共有k 项(k 为定值),它的前n 项和S n =2n 2+n(1≤n ≤k ,n ∈N),现从k 项中抽取一项(不抽首项、末项),余下的k-1项的平均值是79.(1)求数列{a n }的通项.(2)求出k 的值并指出抽取的第几项.3、若一个三棱锥的三个侧面中有两个是等腰直角三角形,另一个是边长为1的正三角形,试求所有的满足上述条件的三棱锥的体积.4、某服装公司生产的衬衫,若每件定价80元,则在某市年销售量为8万件. 若该服装公司在该市设立代理商来销售该衬衫,代理商要收取代销费,代销费是销售额的p%(即每销售100元时收取p 元). 为此,该衬衫每件的价格要提高到%180p 元,而每年销售量将减少0.62p 万件.(1)设该衬衫每年销售额为y 元,试写y 与p 的函数关系式,并指出这个函数的定义域; (2)若代理商对衬衫每年收取的代理费不小于16万元,求p 的取值范围.高三数学中档题训练(三)1、已知:A 、B 是△ABC 的两个内角,j BA i b A m 2sin 252cos ++-=,其中i 、j 为互相垂地的单位向量. 若|m |=423,试求tanA ·tanB 的值.2、如图,直三棱柱ABC-A 1B 1C 1中,AB=AC=4,∠BAC=90°,侧面ABB 1A 1为正方形,D 为正方形ABB 1A 1的中心,E 为BC 的中点.(1)求证:平面DB 1E ⊥平面BCC 1B 1; (2)求异面直线A 1B 与B 1E 所成的角.1A 1C BA C D1B E3、某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为K(K>0),货款的利率为4.8%,又银行吸收的存款能全部放货出去.(1)若存款的利率为x ,x ∈(0,0.048),试写出存款量g(x)及银行应支付给储户的利息(x);(2)存款利率定为多少时,银行可获得最大收益?4、已知函数f(x)=nxx a x a a n 2210a …++++(n ∈N n),且y=f(x)的图象经过点(1,n 2),数列{a n }(n ∈N +)为等差数列.(1)求数列{a n }的通项公式;(2)当n 为奇函数时,设g(x)=)]()([21x f x f --,是否存在自然数m 和M ,使不等式m<g(21)<M 恒成立,若存在,求出M-m 的最小值;若不存在,说明理由.高三数学中档题训练(四)1、已知函数)R (2sin 3cos 2)(2∈++=a a x x x f .(1)若x ∈R ,求f (x )的单调递增区间;(2)若x ∈[0,2π]时,f (x )的最大值为4,求a 的值,并指出这时x 的值.2、设两个向量1e 、2e ,满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2172e te +与向量21te e +的夹角为钝角,求实数t 的取值范围.3、如图,平面VAD ⊥平面ABCD ,△VAD 是等边三角形,ABCD 是矩形,AB ∶AD =2∶1,F 是AB 的中点.(1)求VC 与平面ABCD 所成的角;(2)求二面角V -FC -B 的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.4、已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-=n n a b(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求1)1(+-n nS b n高三数学中档题训练(一)答案1、①当m ≠21时,A 、B 、C 三点能构成三角形; ②当m=47时,三角形ABC 为直角三角形,且∠A=90°.2、(1)n n a a a )1(-= (2))2,1()1,21(⋃3、(1) ∵PA ⊥底面ABC ,∴PA ⊥BE又∵△ABC 是正三角形,且E 为AC 的中点,∴BE ⊥CA又PA A CA =⋂,∴BE ⊥平面PAC ∵BE ⊂平面PBE ,∴平面PBE ⊥平面PAC. (2)取CD 的中点F ,则点F 即为所求. ∵E 、F 分别为CA 、CD 的中点,∴EF//AD 又EF ⊂平面PEF ,AD ⊄平面PEF ,∴AD//平面PEF. (3)43 4、 (1)函数y=f(t)的定义域为[0,+∞);值域为{y|y=2n,n ∈N *} (2)(3)y=⎪⎩⎪⎨⎧⋅⋅-为奇数时当为偶数当n n n,22n ,22212 高三数学中档题训练(二)答案1、f(sinx)有最大值121. 2、(1)a n =4n-1(1≤n ≤k) (2)抽取的是第20项. 3、1 2 3 4 5 6x12 3 4 5 6 78y4、解:(1))31400p (0 )62.08(%180<<--=p p y(2)16100)6.08(%180≥⨯--pp p 10311000100411.32≤≤∴≤+-∴p p p高三数学中档题训练(二)答案1、91 2、(1)证明:延长B 1D 至A ,连结AE∵三棱柱为直三棱柱,∴平面BCC 1B 1⊥平面ABC 又△ABC 中AB=AC ,E 为AB 中点 ∴AE ⊥BC ∴AE ⊥平面BCC 1B 1又∵AC ⊂平面B 1DE ∴平面B 1DE ⊥平面BCC 1B 1 (2)63 3、(1)由题意,存款量g(x)=Kx 2,银行应支付的利息h(x)=x ·g(x)=Kx 36(2)存款利率为3.2%时,银行可获得最大利益4、(1)据题意:f(1)=n 2 即a 0+a 1+a 2+……+a n =n 2令n=1 则a 0+a 1=1,a 1=1-a 0 令n=2 则a 0+a 1+a 2=22,a 2=4-(a 0+a 1)=4-1=3令n=3 则a 0+a 1+a 2+a 3=32,a 3=9-(a 0+a 1+a 2)=9-4=5 ∵{a n }为等差数列 ∴d=a 3-a 2=5-3=2 a 1=3-2=1 a 0=0 a n =1+(n-1)·2=2n-1(2)由(1)f(x)=a 1x 1+a 2x 2+a 3x 3+…+a n x nn 为奇数时,f(-x)=-a 1x 1+a 2x 2-a 3x 3+…+a n-1x n-1-a n x ng(x)=n n n n x a x a x a x a x a x f x f +++++=----22553311)]()([21n n n n g )21)(12()21)(52()21(9)21(5211)21(253-+-++⋅+⋅+⋅=-2753)21)(12()21)(52()21(9)21(5)21(1)21(41+-+-++⋅+⋅+⋅=n n n n g相减得 253)21)(12(])21()21()21[(4211)21(43+--++++⋅=n n n g∴n n n g )21(32)21(913914)21(+-= 令n n n C )21(32= ∵*1N n ,021)21(32∈≤-⋅⋅=-+n C C n n n ∴C n+1≤C n ,C n 随n 增大而减小 又n )21(913⋅随n 增大而减小 ∴g(21)为n 的增函数,当n=1时,g(21)=21 而914)21(32)21(913914<-⋅-n n n 914)21(21<≤∴g ∴使m<g(21)<M 恒成立的自然m 的最大值为0,M 最小值为2. M-m 的最小值为2.高三数学中档题训练(三)答案解析:1、(1)a x a x x x f +++=+++=1)6π2sin(212cos 2sin 3)(. 解不等式2ππ26π22ππ2+≤+≤-k x k . 得)Z (6ππ3ππ∈+≤≤-k k x k∴ f (x )的单调增区间为3ππ[-k ,)Z ](6ππ∈+k k .(2)∵ 0[∈x ,2π], ∴ 6π76π26π≤+≤x .∴ 当2π6π2=+x 即6π=x 时,a x f +=3)(max . ∵ 3+a =4,∴ a =1,此时6π=x . 2、解析:由已知得421=e ,122=e ,160cos 1221=⨯⨯=⋅ e e .∴ 71527)72(2)()72(222212212121++=+++=++⋅t t te e e t te te e e te . 欲使夹角为钝角,需071522<++t t . 得 217-<<-t . 设)0)((722121<+=+λte e i e te . ∴ ⎩⎨⎧==λλt t 72,∴ 722=t .∴ 214-=t ,此时14-=λ. 即214-=t 时,向量2172e te +与21te e +的夹角为π . ∴ 夹角为钝角时,t 的取值范围是(-7,214-) (214-,21-). 3、解析:(甲)取AD 的中点G ,连结VG ,CG .(1)∵ △ADV 为正三角形,∴ VG ⊥AD .又平面VAD ⊥平面ABCD .AD 为交线,∴ VG ⊥平面ABCD ,则∠VCG 为CV 与平面ABCD所成的角.设AD =a ,则a VG 23=,a DC 2=. 在Rt △GDC 中, a a a GD DC GC 23422222=+=+=. 在Rt △VGC 中,33tan ==∠GC VG VCG . ∴ 30=∠VCG . 即VC 与平面ABCD 成30°.(2)连结GF ,则a AF AG GF 2322=+=. 而 a BC FB FC 2622=+=. 在△GFC 中,222FC GF GC +=. ∴ GF ⊥FC .连结VF ,由VG ⊥平面ABCD 知VF ⊥FC ,则∠VFG 即为二面角V -FC -D 的平面角. 在Rt △VFG 中,a GF VG 23==. ∴ ∠VFG =45°. 二面角V -FC -B 的度数为135°.(3)设B 到平面VFC 的距离为h ,当V 到平面ABCD 的距离是3时,即VG =3. 此时32==BC AD ,6=FB ,23=FC ,23=VF . ∴ 921==⋅∆FC VF S VFC , 2321==⋅∆BC FB S BFC . ∵ VCF B FCB V V V --=, ∴ VFC FBC S h S VG ∆∆⋅⋅⋅⋅=3131. ∴ 93123331⋅⋅=⨯⨯h . ∴ 2=h 即B 到面VCF 的距离为2解析:(1)4、4、 4、1112111111-=--=-=---n n n n n a a a a b , 而 1111-=--n n a b , ∴ 11111111=-=-=-----n n n n n a a a b b .)(+∈N n ∴ {n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有n n b a 11=-,而5.31)1(25-=-+-=⋅n n b n , ∴ 5.311-=-n a n . 对于函数5.31-=x y ,在x >3.5时,y >0,0<y',在(3.5,∞+)上为减函数. 故当n =4时,5.311-+=n a n 取最大值3 而函数5.31-=x y 在x <3.5时,y <0,0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)2)5)(1(2)25225)(1(1-+=-+-+=+n n n n S n ,5.3-=n b n ,∴ ∞→+∞→=-+--=-n n n n n n n n S b n 2)5)(1()5.3)(1(2lim )1(lim 1.。
高三年文科数学中档大题保分练(1-3)

中档大题保分练(1) (推荐时间:50分钟)1.已知函数f(x)=32sin 2x-12(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移π6个单位后得到函数g(x),设△ABC三个内角A,B,C的对边分别为a,b,c.(1)若c=7,f(C)=0,sin B=3sin A,求a和b的值;(2)若g(B)=0且m=(cos A,cos B),n=(1,sin A-cos A tan B),求m·n的取值范围.2.某园林局对1 000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1 000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如下表:(1)求x(2)如果杉树的树干周长超过60 cm就可以砍伐,请估计该片园林可以砍伐的杉树有多少株?(3)树干周长在30 cm到40 cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.3.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.4.已知n∈N*,数列{d n}满足d n=3+(-1)n2,数列{a n}满足a n=d1+d2+d3+…+d2n;又知数列{b n}中,b1=2,且对任意正整数m,n,b m n=b n m.(1)求数列{a n}和数列{b n}的通项公式;(2)将数列{b n}中的第a1项,第a2项,第a3项,……,第a n项,……删去后,剩余的项按从小到大的顺序排成新数列{c n},求数列{c n}的前2 013项和.1.解 (1)f (x )=32sin 2x -12cos 2x -1=sin ⎝⎛⎭⎫2x -π6-1 g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6-1=sin ⎝⎛⎭⎫2x +π6-1 由f (C )=0,∴sin ⎝⎛⎫2C -π6=1. ∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3.由sin B =3sin A ,∴b =3a .由余弦定理得(7)2=a 2+b 2-2ab cos π3.∴7=a 2+9a 2-3a 2,∴a =1,b =3. (2)由g (B )=0得sin ⎝⎛⎭⎫2B +π6=1, ∵0<B <π,∴π6<2B +π6<136π,∴2B +π6=π2,∴B =π6.∴m ·n =cos A +cos B (sin A -cos A tan B ) =cos A +sin A cos B -cos A sin B =32sin A +12cos A =sin ⎝⎛⎭⎫A +π6. ∵A +C =5π6,∴0<A <5π6,∴π6<A +π6<π,∴0<sin ⎝⎛⎭⎫A +π6≤1. ∴m ·n 的取值范围是(0,1].2. 解 (1)按分层抽样方法随机抽取100株,可得槐树为40株,杉树为60株, ∴x =60-6-19-21=14,y =40-4-20-6=10. 估计槐树树干周长的众数为45 cm. (2)1460×600=140, 估计该片园林可以砍伐的杉树有140株.(3)设4株树为B 1,B 2,B 3,D ,设D 为有虫害的那株,基本事件为(D ),(B 1,D ),(B 2,D ),(B 3,D ),(B 1,B 2,D ),(B 1,B 3,D ),(B 2,B 1,D ),(B 2,B 3,D ),(B 3,B 1,D ),(B 3,B 2,D ),(B 1,B 2,B 3),(B 1,B 3,B 2),(B 2,B 1,B 3),(B 2,B 3,B 1),(B 3,B 1,B 2),(B 3,B 2,B 1)共16种,设事件A :排查的树木恰好为2株,事件A 包含(B 1,D ),(B 2,D ),(B 3,D )3种, ∴P (A )=316.3.(1)证明 ∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD , SE ⊥AD , ∴SE ⊥平面ABCD .∵BE ⊂平面ABCD ,∴SE ⊥BE .∵AB ⊥AD ,AB ∥CD ,CD =3AB =3,AE =ED =3, ∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°,即BE ⊥CE . 结合SE ∩CE =E ,得BE ⊥平面SEC . ∵BE ⊂平面SBE ,∴平面SBE ⊥平面SEC . (2)解 如图,作EF ⊥BC 于F ,连接SF . 由BC ⊥SE ,SE 和EF 相交, 得BC ⊥平面SEF . 由BC 在平面SBC 内, 得平面SEF ⊥平面SBC . 过E 作EG ⊥SF 于点G , 则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由SE =1,BE =2,CE =23得BC =4,EF =3, 所以SF =2.在Rt △SEF 中,EG =SE ·EF SF =32,所以三棱锥E -SBC 的高为32. 4.解 方法一 (1)∵d n =3+(-1)n2,∴a n =d 1+d 2+d 3+…+d2n .=3×2n2=3n . 又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n. 若b n =2n ,则b m n =2nm ,b n m =2mn , ∴b m n =b n m 恒成立.若b n ≠2n ,当m =1,b m n =b n m 不成立,∴b n =2n .(2)由题知将数列{b n }中的第3项、第6项、第9项……删去后构成的新数列{c n }中的奇数列与偶数列仍成等比数列,首项分别是b 1=1,b 2=4,公比均是8, T 2 013=(c 1+c 3+c 5+…+c 2 013)+(c 2+c 4+c 6+…+c 2 012) =2×(1-81 007)1-8+4×(1-81 006)1-8=20×81 006-67.方法二 (1)a n =d 1+d 2+…+d 2n =32×2n =3n .由b m n =b nm 及b 1=2>0知b n >0,对b m n =b n m 两边取对数得,m lg b n =n lg b m ,令m =1,得lg b n =n lg b 1=n lg 2=lg 2n , ∴b n =2n .(2)T 2 013=c 1+c 2+…+c 2 013=b 1+b 2+b 4+b 5+b 7+b 8+…+b 3 018+b 3 019 =(b 1+b 2+…+b 3 019)-(b 3+b 6+…+b 3 018) =2(1-23 019)1-2-8(1-81 006)1-23=20×81 006-67.中档大题保分练(2)(推荐时间:50分钟)1. 已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.2. 已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.3. 如图1,在等腰△ABC 中,D ,E ,F 分别是AB ,AC ,BC 边的中点,现将△ACD 沿CD 翻折,使得平面ACD ⊥平面BCD .(如图2)(1)求证:AB ∥平面DEF ; (2)求证:BD ⊥AC ;(3)设三棱锥A -BCD 的体积为V 1,多面体ABFED 的体积为V 2,求V 1∶V 2的值.4. 已知数列{a n }是一个公差大于零的等差数列,且a 3a 6=55,a 2+a 7=16,数列{b n }的前n 项和为S n ,且S n =2b n -2.(1)求数列{a n },{b n }的通项公式; (2)设c n =a nb n ,T n =c 1+c 2+…+c n ,求T n .1.解 (1)f (x )=m ·n =3A sin x cos x +A 2cos 2x =A ⎝⎛⎭⎫32sin 2x +12cos 2x =A sin ⎝⎛⎭⎫2x +π6. 因为A >0,由题意知A =6. (2)由(1)得f (x )=6sin ⎝⎛⎫2x +π6. 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6=6sin ⎝⎛⎭⎫2x +π3的图象; 再将得到的图象上各点横坐标缩短为原来的12,纵坐标不变,得到y =6sin ⎝⎛⎭⎫4x +π3的图象. 因此g (x )=6sin ⎝⎛⎭⎫4x +π3. 因为x ∈⎣⎡⎦⎤0,5π24, 所以4x +π3∈⎣⎡⎦⎤π3,7π6, 故g (x )在⎣⎡⎦⎤0,5π24上的值域为[-3,6]. 2.解 (1)共包含12个基本事件.Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},设“a ∥b ”为事件A ,由a ∥b ,得x =2y , 则A ={(0,0),(2,1)},含2个基本事件, 则P (A )=212=16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角, 可得a ·b <0,即2x +y <0,且x ≠2y .Ω=⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,,B =⎩⎨⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,则P (B )=S B S Ω=12×⎝⎛⎭⎫12+32×23×2=13.3.(1)证明 在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF . (2)证明 ∵平面ACD ⊥平面BCD , 平面ACD ∩平面BCD =CD , AD ⊥CD ,且AD ⊂平面ACD ,∴AD ⊥平面BCD .又BD ⊂平面BCD , ∴AD ⊥BD .又∵CD ⊥BD ,且AD ∩CD =D , ∴BD ⊥平面ACD .又AC ⊂平面ACD ,∴BD ⊥AC . (3)解 由(2)可知AD ⊥平面BCD , ∴AD 是三棱锥A -BCD 的高, ∴V 1=13·AD ·S △BCD ,又∵E ,F 分别是AC ,BC 边的中点,∴三棱锥E -CDF 的高是三棱锥A -BCD 高的一半, 三棱锥E -CDF 的底面积是三棱锥A -BCD 底面积的一半, ∴三棱锥E -CDF 的体积V E -CDF =14V 1,∴V 2=V 1-V E -CDF =V 1-14V 1=34V 1,∴V 1∶V 2=4∶3.4.解 (1)依题意,设等差数列{a n }的公差为d (d >0),则有⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55 ①2a 1+7d =16 ②将②代入①得(16-3d )(16+3d )=220, 即d 2=4,∵d >0,∴d =2,a 1=1,∴a n =2n -1, 当n =1时,S 1=2b 1-2,b 1=2, 当n ≥2时,b n =S n -S n -1=(2b n -2)-(2b n -1-2)=2b n -2b n -1, ∴b n =2b n -1.∴{b n }是以2为首项,2为公比的等比数列.即b n =2n . (2)c n =a n b n =2n -12n , T n =12+322+…+2n -12n12T n =122+323+…+2n -32n +2n -12n +1 ∴③-④得,12T n =12+222+223+…+22n -2n -12n +1=12+12+122+…+12n -1-2n -12n +1 =12+12⎝⎛⎭⎫1-12n -11-12-2n -12n +1=32-2n +32n +1 ∴T n =3-2n+32n .中档大题保分练(3)(推荐时间:50分钟)1. 已知向量m =(sin x ,-1),n =(cos x,3).(1)当m ∥n 时,求sin x +cos x3sin x -2cos x的值;(2)已知在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,3c =2a sin(A +B ),函数f (x )=(m +n )·m ,求f ⎝⎛⎭⎫B +π8的取值范围.2. 已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0(n ∈N *),且b 1+b 2+b 3=15,又a 1+b 1、a 2+b 2、a 3+b 3成等比数列. (1)求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .3. 某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率.4. 如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E ,F分别为AD ,BP 的中点,AD =3,AP =5,PC =27. (1)求证:EF ∥平面PDC ;(2)若∠CDP =90°,求证:BE ⊥DP ; (3)若∠CDP =120°,求该多面体的体积.1.解 (1)由m ∥n ,可得3sin x =-cos x ,于是tan x =-13,∴sin x +cos x 3sin x -2cos x =tan x +13tan x -2=-13+13×⎝⎛⎭⎫-13-2=-29.(2)在△ABC 中,A +B =π-C ,于是sin(A +B )=sin C , 由正弦定理知:3sin C =2sin A sin C , ∵sin C ≠0,∴sin A =32. 又△ABC 为锐角三角形,∴A =π3,于是π6<B <π2.∵f (x )=(m +n )·m =(sin x +cos x,2)·(sin x ,-1)=sin 2x +sin x cos x -2 =1-cos 2x 2+12sin 2x -2 =22sin ⎝⎛⎭⎫2x -π4-32, ∴f ⎝⎛⎭⎫B +π8=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫B +π8-π4-32 =22sin 2B -32. 由π6<B <π2得π3<2B <π, ∴0<sin 2B ≤1,-32<22sin 2B -32≤22-32, 即f ⎝⎛⎭⎫B +π8∈⎝⎛⎦⎤-32,22-32. 2. 解 (1)∵a n =3n -1(n ∈N *),∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中,∵b 1+b 2+b 3=15,∴b 2=5. 又∵a 1+b 1、a 2+b 2、a 3+b 3成等比数列, 设等差数列{b n }的公差为d ,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2, ∵b n >0(n ∈N *),∴舍去d =-10,取d =2,∴b 1=3, ∴b n =2n +1(n ∈N *).(2)由(1)知,T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1, ① 3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)·3n ,②①-②得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n=3+2(3+32+33+…+3n -1)-(2n +1)3n=3+2×3-3n 1-3-(2n +1)3n =3n -(2n +1)3n =-2n ·3n , ∴T n =n ·3n .3.解 (1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12,所以应在第三批次中抽取12名.(3)设第三批次中女教职工比男教职工多的事件为A ,第三批次女教职工和男教职工数记为数对(y ,z ).由(2)知y +z =200(y ,z ∈N *,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个;而事件A 包含的基本事件有(101,99),(102,98),(103,97),(104,96)共4个. 所以,所求概率为P (A )=49.4.(1)证明 取PC 的中点为O ,连接FO ,DO . 因为F ,O 分别为BP ,PC 的中点, 所以FO ∥BC ,且FO =12BC .又四边形ABCD 为平行四边形,E 为AD 的中点, 所以ED ∥BC ,且ED =12BC ,所以FO ∥ED ,且FO =ED ,所以四边形EFOD 是平行四边形,所以EF ∥DO . 又EF ⊄平面PDC ,DO ⊂平面PDC , 所以EF ∥平面PDC .(2)解 若∠CDP =90°,则PD ⊥DC , 又AD ⊥平面PDC ,所以AD ⊥DP , 又∵DC ∩AD =D ,所以DP ⊥平面ABCD 因为BE ⊂平面ABCD ,所以BE ⊥DP .(3)解 连接AC ,由ABCD 为平行四边形可知△ABC 与△ADC 面积相等, 所以三棱锥P -ADC 与三棱锥P -ABC 体积相等, 即五面体的体积为三棱锥P -ADC 体积的2倍. 因为AD ⊥平面PDC ,所以AD ⊥DP , 由AD =3,AP =5,可得DP =4.又∠CDP =120°,PC =27,由余弦定理得DC =2, 所以三棱锥P -ADC 的体积V P -ADC =V A -CDP =13×12×2×4×sin 120°×3=23,所以该五面体的体积为4 3.。
(高中段)高考4道保分大题组合限时训练(四)

高考4道保分大题组合限时训练 〔四〕1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且(sin A -sin B )2=sin 2C -sin A sin B.(1)求C .(2)假设c =1,△ABC 的周长是否有最大值?如果有,求出这个最大值;如果没有,请说明理由.解:(1)由(sin A -sin B )2=sin 2C -sin A sin B , 整理得sin 2A +sin 2B -sin 2C =sin A sin B. 又由正弦定理得a 2+b 2-c 2=ab , 因此cos C =a 2+b 2-c 22ab =ab 2ab =12.又因为C ∈(0,π),所以C =π3.(2)当c =1时,△ABC 的周长有最大值,且最大值为3. 理由如下:由正弦定理得a sin A =b sin B =c sin C =1sinπ3=23,所以a =23sin A ,b =23sin B , 所以a +b =23sin A +23sin B =23sin A +23sin ⎝⎛⎭⎫2π3-A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6,所以当A +π6=π2,即A =π3时,a +b 取到最大值2,所以△ABC 的周长有最大值,且最大值为3.①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.数列{a n }中,a 1=1,a n +1=3a n ,公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .解:因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }公差为d , 因为a 2=3,所以b 1+b 2=3,因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1, 解得b 1=23,b 2=73,所以d =53,所以b n =5n -33.所以b n a n=5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,13S n =232+733+1234+…+5n -83n +5n -33n +1, 两式相减,得23S n =23+5⎝⎛⎭⎫132+133+…+13n -5n -33n +1=23+56-152·3n +1-5n -33n +1=32-10n +92·3n +1, 所以S n =94-10n +94·3n.选②③时,设数列{b n }公差为d ,因为a 2=3,所以b 1+b 2=3,即2b 1+d =3, 因为b 1,b 2,b 4成等比数列, 所以b 22=b 1b 4, 即(b 1+d )2=b 1(b 1+3d ), 化简得d 2=b 1d , 因为d ≠0,所以b 1=d , 从而d =b 1=1,所以b n =n ,所以b n a n =n3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,13S n =131+232+333+…+n -13n -1+n 3n , 两式相减,得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎫1-13n -n 3n =32-2n +32·3n , 所以S n =94-2n +34·3n -1.选①③时,设数列{b n }公差为d ,因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1, 所以d =b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4, 即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d , 因为d ≠0,所以b 1=d ,从而无解, 所以等差数列{b n }不存在,故不符合题意.3.如图1,在平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)直线DE 与平面ABC 所成的角为π4,求二面角A -DB -C 的余弦值.解:(1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC , 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC , 又BC ∩CD =C ,所以AE ⊥平面BCD ,又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4,故CD =CE =1.由(1)知AE ⊥平面BCD ,过E 作EH ⊥BD 于H ,连接AH , 由三垂线定理可知AH ⊥BD , 故∠AHE 为二面角A -DB -C 的平面角. 由△BHE ∽△BCD ,得BE BD =EHCD , 即15=EH 1,得EH =55,所以AH =305, 故cos ∠AHE =EH AH =66,所以二面角A -DB -C 的余弦值为66.4.过去五年,我国的扶贫工作进入了“精准扶贫〞阶段.目前“精准扶贫〞覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.到底全国830个贫困县都将脱贫摘帽,最后4 335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准〞.为落实“精准扶贫〞政策,某扶贫小组为一“对点帮扶〞农户引种了一种新的经济农作物,并指导该农户于初开始种植.该经济农作物每年每亩的种植本钱为1 000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:该经济农作物亩产量(kg)900 1 200 概率该经济农作物市场价格(元/kg)15 20 概率(1)设该农户种植该经济农作物一亩的纯收入为X 元,求X 的分布列.(2)假设该农户从开始,连续三年种植该经济农作物,假设三年内各方面条件根本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16 000元的概率.(3)全国脱贫标准约为人均纯收入4 000元.假设该农户是一个四口之家,且该农户在的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在底可以脱贫?并说明理由.解:(1)由题意知:1 200×20-1 000=23 000,1 200×15-1 000=17 000,900×20-1 000=17 000,900×15-1 000=12 500,所以X的所有可能取值为:23 000,17 000,12 500.设A表示事件“作物亩产量为900 kg〞,那么P(A)=0.5;B表示事件“作物市场价格为15元/kg〞,那么P(BP(X=23 000)=P(A·B)=(1-0.5)(1-0.4)=0.3,P(X=17 000)=P(A·B)+P(A·B)=(1-0.5)××(1-0.4)=0.5,P(X=12 500)=P(A·B×0.4=0.2,所以X的分布列为(2)设C表示事件“种植该农作物一亩一年的纯收入不少于16 000元〞,那么P(C)=P(X>16 000)=P(X=23 000)+P(X=17 000)=0.3+0.5=0.8,设这三年中有Y年的纯收入不少于16 000元,那么有Y~B(3,0.8),所以这三年中至少有两年的纯收入不少于16 000元的概率为P=P(Y≥2)=C33×3+C23×2×0.2=0.896.(3)由(2)知,该农户种植该经济农作物一亩的预计纯收入为E(X)=23 000×0.3+17 000×0.5+12 500×0.2=17 900(元),因为17 9004>4 000,所以凭这一亩经济农作物的纯收入,该农户的人均纯收入超过了国家脱贫标准,所以能预测该农户在底可以脱贫.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中档大题保分练(四)(建议用时:45分钟)1.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y=bx+a,其中b=-20,a=y-b x;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)2.(2015·宁夏模拟)为了比较两种复合材料制造的轴承(分别称为类型Ⅰ和类型Ⅱ轴承)的使用寿命,检验了两种类型轴承各30个,它们的使用寿命(单位:百万圈)如下表:类型Ⅰ6.26.48.38.69.49.810.310.611.211.411.611.611.711.811.8 12.212.312.312.512.512.612.712.813.313.313.413.613.814.214.58.48.58.79.29.29.59.79.79.89.810.110.210.310.310.4 10.610.810.911.211.211.311.511.511.611.812.312.412.713.113.4图1(2)分别估计两种类型轴承使用寿命的中位数;(3)根据茎叶图对两种类型轴承的使用寿命进行评价.3.(2015·南昌模拟)甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图2所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球和3个红球的盒子中一次性摸出2球(这些球除颜色外完全相同),如果摸到的是2个红球,即为中奖.试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.图24.某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;图3(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k)0.100.050.0100.005k2.7063.841 6.6357.8795.(2015·青岛模拟)某车间要加工某种零件,现将10名技工平均分为甲、乙两组,分别标记为1,2,3,4,5号,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:1号技工2号技工3号技工4号技工5号技工甲组457910乙组56789并由此比较两组技工的技术水平;(2)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.6.(2015·临川模拟)为了解某市的交通状况,现对其6条道路进行评估,得分分别为5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.【详解答案】1.解:(1)由于x -=16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y -=16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y ^-b x -=80+20×8.5=250, 从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1000 =-20⎝⎛⎭⎪⎫x -3342+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 2.解:(1)茎叶图如下:(2)由茎叶图知,类型Ⅰ轴承的使用寿命按由小到大排序,排在第15,16位是11.8,12.2,故中位数为12;类型Ⅱ轴承的使用寿命按由小到大排序,排在第15,16位是10.4,10.6,故中位数为10.5.(3)由所作茎叶图可知,类型Ⅰ轴承使用寿命的中位数高于类型Ⅱ轴承使用寿命的中位数,表明类型Ⅰ轴承的使用寿命较长;由茎叶图可以大致看出类型Ⅰ轴承使用寿命的标准差大于类型Ⅱ轴承使用寿命的标准差,表明类型Ⅱ轴承稳定型较好.3.解:设顾客去甲商场,转动圆盘,指针指向阴影部分为事件A , 试验的全部结果构成的区域为圆盘,面积为πr 2(r 为圆盘的半径),阴影区域的面积为S=4×12×π12r2=π6r2.所以P(A)=π6r2πr2=16.设顾客去乙商场一次摸出两个红球为事件B,记盒子中3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3),(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种.摸到的2个球都是红球有(b1,b2),(b1,b3),(b2,b3),共3种.所以P(B)=315=15.因为P(A)<P(B),所以顾客在乙商场中奖的可能性大.4.解:(1)300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:结合列联表可算得K2=75×225×210×90≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.5.解:(1)依题意,x-甲=15(4+5+7+9+10)=7,x-乙=15(5+6+7+8+9)=7.S2甲=15[(4-7)2+(5-7)2+(7-7)2+(9-7)2+(10-7)2]=265=5.2,S2乙=15[(5-7)2+(6-7)2+(7-7)2+(8-7)2+(9-7)2]=2.因为x-甲=x-乙,S2甲>S2乙,所以两组技工的总体水平相同,甲组技工的技术水平差异比乙组大,乙组更稳定.(2)记该车间“质量合格”为事件A,则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为:(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9),共25种.事件A包含的基本事件为:(4,9),(5,8),(5,9),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9),共17种.所以“质量合格”的概率为P(A)=17 25 .6.解:(1)6条道路的平均得分为16×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从6条道路中抽取2条的得分组成的所有基本事件为:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本事件.事件A包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9)共7个基本事件,∴P(A)=7 15 .即该样本平均数与总体平均数之差的绝对值不超过0.5的概率为7 15 .。