广东省深圳市2019-2020学年新高考高一数学下学期期末预测试题
2019-2020学年广东省深圳市宝安中学高一(下)晚测数学试卷(一)

2019-2020学年广东省深圳市宝安中学高一(下)晚测数学试卷(一)一、选择题(共14小题,每小题3分,满分42分)1. 为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单的随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 【答案】 C【考点】 分层抽样方法 【解析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样. 【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理, 故选C .2. 在△ABC 中,若AB =√13,BC =3,∠C =120∘,则AC =( ) A.1 B.2 C.3 D.4 【答案】 A【考点】余弦定理的应用 【解析】本题考查解三角形. 【解答】解:在△ABC 中,由余弦定理可得AB 2=AC 2+BC 2−2AC ⋅BC cos 120∘, 则13=AC 2+9+3AC ,解得AC =1(舍负). 故选A .3. 设向量a →=(1, cos θ)与b →=(−1, 2cos θ)垂直,则cos 2θ等于( ) A.√22B.12C.0D.−1【答案】 C【考点】二倍角的三角函数数量积判断两个平面向量的垂直关系 【解析】由两向量的坐标,以及两向量垂直,根据平面向量的数量积运算法则得到其数量积为0,得出2cos2θ−1的值,然后将所求的式子利用二倍角的余弦函数公式化简后,将2cos2θ−1的值代入即可求出值.【解答】∵a→=(1, cosθ),b→=(−1, 2cosθ),且两向量垂直,∴a→⋅b→=0,即−1+2cos2θ=0,则cos2θ=2cos2θ−1=0.4. △ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC的面积为()A.2√3+2B.√3+1C.2√3−2D.√3−1【答案】B【考点】正弦定理三角形的面积公式【解析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】∵b=2,B=π6,C=π4,∴由正弦定理bsin B =csin C得:c=b sin Csin B=2×√2212=2√2,A=7π12,∴sin A=sin(π2+π12)=cosπ12=√2+√64,则S△ABC=12bc sin A=12×2×2√2×√2+√64=√3+1.5. 某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96, 106],样本数据分组为[96, 98),[98, 100),[100, 102),[102, 104), (104, 106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90B.75C.60D.45【答案】A【考点】频率分布直方图先求出样本中产品净重小于100克的频率,由此利用样本中产品净重小于100克的个数是36,求出样本总数,由此能求出样本中净重大于或等于98克并且小于104克的产品个数.【解答】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,∵样本中产品净重小于100克的个数是36,∴样本总数n=36=120.0.3∴样本中净重大于或等于98克并且小于104克的产品个数为120×0.75=90.6. 设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定【答案】B【考点】两角和与差的正弦公式正弦定理三角形的形状判断【解析】由条件利用正弦定理可得sin B cos C+sin C cos B=sin A sin A,再由两角和的正弦公式、,由此可得△ABC的形状.诱导公式求得sin A=1,可得A=π2【解答】解:△ABC的内角A,B,C所对的边分别为a,b,c,∵b cos C+c cos B=a sin A,则由正弦定理可得:sin B cos C+sin C cos B=sin A sin A,即sin(B+C)=sin A sin A,,可得sin A=1,故A=π2故三角形为直角三角形,故选B.7. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差【答案】A【考点】众数、中位数、平均数【解析】根据题意,由数据的数字特征的定义,分析可得答案.根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,8. △ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A⋅(sin C−cos C)= 0,a=2,c=√2,则C=()A.π12B.π6C.π4D.π3【答案】B【考点】正弦定理【解析】本题主要考查三角形内角和定理、两角和的正弦公式、正弦定理等知识. 【解答】解:因为sin B+sin A(sin C−cos C)=0,所以sin(A+C)+sin A⋅sin C−sin A⋅cos C=0,所以sin A cos C+cos A sin C+sin A sin C−sin A cos C=0,整理得sin C(sin A+cos A)=0,因为sin C≠0,所以sin A+cos A=0,所以tan A=−1,因为A∈(π2,π),所以A=3π4,由正弦定理得sin C=c⋅sin Aa =√2×√222=12,又0<C<π4,所以C=π6.故选B.9. 设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【答案】A【考点】众数、中位数、平均数极差、方差与标准差【解析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】方法1:∵y i=x i+a,∴ E(y i )=E(x i )+E(a)=1+a , 方差D(y i )=D(x i )+E(a)=4. 方法2:由题意知y i =x i +a , 则y ¯=110(x 1+x 2+...+x 10+10×a)=110(x 1+x 2+...+x 10)=x ¯+a =1+a ,方差s 2=110[(x 1+a −(x ¯+a)2+(x 2+a −(x ¯+a)2+...+(x 10+a −(x ¯+a)2]=110[(x 1−x ¯)2+(x 2−x ¯)2+...+(x 10−x ¯)2]=s 2=4.10. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m →=(sin A,cos A),n →=(√3,1).若m →∥n →,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3B.2π3,π6C.π3,π6D.π3,π3【答案】 C【考点】平面向量共线(平行)的坐标表示 【解析】由已知求得A ,再由a cos B +b cos A =c sin C 结合正弦定理求得C ,则答案可求. 【解答】∵ a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边, m →=(sin A,cos A),n →=(√3,1).且m →∥n →; ∴ sin A −√3cos A =0,则tan A =√3,则A =π3.由a cos B +b cos A =c sin C ,得sin A cos B +sin B cos A =sin 2C , 即sin (A +B)=sin C =sin 2C , 则sin C =1,即C =π2, ∴ B =π2−π3=π6.11. 在△ABC 中,sin 2A ≤sin 2B +sin 2C −sin B sin C ,则A 的取值范围是( ) A.(0, π6]B.[π6, π)C.(0, π3]D.[π3, π)【答案】 C【考点】 余弦定理 正弦定理 【解析】先利用正弦定理把不等式中正弦的值转化成边,进而代入到余弦定理公式中求得cos A 的范围,进而求得A 的范围. 【解答】由正弦定理可知a=2R sin A,b=2R sin B,c=2R sin C,∵sin2A≤sin2B+sin2C−sin B sin C,∴a2≤b2+c2−bc,∴bc≤b2+c2−a2∴cos A=b2+c2−a22bc ≥12∴A≤π3∵A>0∴A的取值范围是(0, π3]12. 已知函数f(x)=2cos2x−√3sin2x,在△ABC中,内角A,B,C的对边分别是a,b,c,内角A满足f(A)=−1,若a=√6,则△ABC的面积的最大值为()A.3√3B.3√32C.√34D.2√3【答案】B【考点】余弦定理【解析】由二倍角公式和两角和的余弦公式,以及基本不等式和余弦定理、三角形的面积公式可得所求最大值.【解答】f(x)=2cos2x−√3sin2x=cos2x−√3sin2x+1=2cos(2x+π3)+1,f(A)=2cos(2A+π3)+1=−1⇒cos(2A+π3)=−1,A为三角形内角,则A=π3,a=√6,可得a2=b2+c2−2bc cos A=b2+c2−bc≥2bc−bc=bc,当且仅当b=c时取等号,S△ABC=12bc sin A≤12×6×√32=3√32.△ABC的面积的最大值为3√32.13. 如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【答案】A,B,D【考点】进行简单的合情推理【解析】结合图象,分别分析图形中同比及环比数据的特点,结合各选项进行分析即可判断.【解答】A:从同比来看,同比均为正数,即同比都上涨,故A正确;B:从环比来看,2018年3越至2019年3月全国居民消费价格环比图象有升有降,即环比有涨有跌,故B正确;C:从同比来看,2018年9月,10月全居民消费价格同比涨幅最大,故C错误;D:从环比来看,2019年3月全国居民消费价格环比绝对值最大,即价格环比变化最快,故D正确.14. 某城市户居民的月平均用电量(单位:度),以[160, 180),[180, 200),[200, 220),[220, 240),[240, 260),[260, 280),[280, 300]分组的频率分布直方图如图.则下列说法正确的是()A.直方图中x=0.0075B.上图中所有矩形面积之和为1C.月平均用电量的众数和中位数分别为230,224D.在月平均用电量为[220, 240),[240, 260),[260, 280),[280, 300]的四组用户中,用分层抽样的方法抽取11户居民,月平均用电量在[220, 240)的用户中应抽取5户.【答案】A,B,C,D【考点】频率分布直方图【解析】在A中,由频率分布直方图解得x=0.0075;在B中,由频率分布直方图的性质得所有矩形面积之和为1;在C中,由频率分布直方图求出月平均用电量的众数为:和中位数分别为230,224;在D中,用分层抽样的方法抽取11户居民,月平均用电量在[220, 240)的用户中应抽取5户.【解答】由频率分布直方图得:在A中,(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解得x=0.0075.故A正确;在B中,由频率分布直方图的性质得所有矩形面积之和为1,故B正确;在C中,月平均用电量的众数为:和中位数分别为220+2402=230,[160, 220)的频率为:(0.002+0.0095+0.011)×20=0.45,[220, 240)的频率为0.0125×20=0.25,∴中位数为:220+0.5−0.450.25×20=224,故C正确;在D中,在月平均用电量为[220, 240),[240, 260),[260, 280),[280, 300]的四组用户中,用分层抽样的方法抽取11户居民,月平均用电量在[220, 240)的用户中应抽取:11×0.01250.0125+0.0075+0.005+0.0025=5户.故D正确.二.填空题函数f(x)=sin22x的最小正周期是________.【答案】π2【考点】三角函数的周期性及其求法【解析】用二倍角公式可得f(x)=−12cos(4x)+12,然后用周期公式求出周期即可.【解答】∵f(x)=sin2(2x),∴f(x)=−12cos(4x)+12,∴f(x)的周期T=π2,若满足条件C=60∘,AB=√3,BC=a的△ABC有两个,那么a的取值范围是________√3<a<2.【答案】C【考点】解三角形【解析】由已知条件C的度数,AB及BC的值,根据正弦定理用a表示出sin A,由C的度数及正弦函数的图象可知满足题意△ABC有两个A的范围,然后根据A的范围,利用特殊角的三角函数值即可求出sin A的范围,进而求出a的取值范围.【解答】由正弦定理得:ABsin C =BCsin A,即√3√32=asin A,变形得:sin A=a2,由题意得:当A∈(60∘, 120∘)时,满足条件的△ABC有两个,所以√32<a2<1,解得:√3<a<2,则a的取值范围是(√3, 2).在△ABC中,内角A,B,C所对的边分别为a,b,c.若tan(π4+A)=2,则sin2Asin2A+cos2A的值为________.【答案】25【考点】两角和与差的三角函数【解析】利用两角和的正切公式,求出tan A的值,再利用同角三角函数的基本关系,求得要求式子的值.【解答】在△ABC中,若tan(π4+A)=2=1+tan A1−tan A,∴tan A=13,则sin2Asin2A+cos2A =2sin A cos A2sin A cos A+cos2A=2tan A2tan A+1=2323+1=25,△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=2π3,则△ABC的面积为________【答案】18√37【考点】正弦定理【解析】由余弦定理可得关于c的方程,解出c得到a,由面积公式S△ABC=12ac sin B求出面积.【解答】由余弦定理,有b2=a2+c2−2ac cos B,∵b=6,a=2c,B=2π3,∴36=4c2+c2−4c2(−12),∴c2=367,∴c=√7,∴a=√7∴S△ABC=12ac sin B=18√37.已知x、y的取值如表所示:从散点图分析,y 与x 线性相关,且y =0.95x +a ,则a =________.【答案】 2.6【考点】求解线性回归方程 【解析】根据表中的数据可以分别求出变量x ,y 的算术平均值,而根据回归方程知道直线的斜率为0.95,然后带入求截距的公式即可求出a . 【解答】根据表中数据得:x ¯=2,y ¯=14×(2.2+4.3+4.8+6.7)=92; 又由回归方程知回归方程的斜率为0.95; ∴ a =92−0.95×2=2.6.在△ABC 中,B =120∘,AB =√2,A 的角平分线AD =√3,则AC =________. 【答案】√6【考点】余弦定理的应用 正弦定理 【解析】利用已知条件求出A ,C ,然后利用正弦定理求出AC 即可. 【解答】解:由题意以及正弦定理可知:AB sin ∠ADB=AD sin B,即√2sin ∠ADB=√3√32,∠ADB =45∘,12A =180∘−120∘−45∘,可得A =30∘,则C =30∘, 三角形ABC 是等腰三角形, AC =2√2sin 60∘=√6. 故答案为:√6.设当x =θ时,函数f(x)=sin x −2cos x 取得最大值,则cos θ=________. 【答案】−2√55【考点】正弦函数的定义域和值域 两角和与差的三角函数 【解析】 f(x)解析式提取√5,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x =θ时,函数f(x)取得最大值,得到sin θ−2cos θ=√5,与sin 2θ+cos 2θ=1联立即可求出cosθ的值.【解答】方法一:f(x)=sin x−2cos x=√5(√55sin x−2√55cos x)=√5sin(x−α)(其中cosα=√55,sinα=2√55),∵x=θ时,函数f(x)取得最大值,∴sin(θ−α)=1,即sinθ−2cosθ=√5,又sin2θ+cos2θ=1,联立得(2cosθ+√5)2+cos2θ=1,解得cosθ=−2√55.方法二:f(x)=sin x−2cos x=√5sin(x+φ)(其中tanφ=−2,φ∈(−π2,π2 )),因为当x=θ时,f(x)取得最大值,所以θ+φ=π2+2kπ(k∈Z),所以θ=π2+2kπ−φ(k∈Z),所以cosθ=cos(π2+2kπ−φ)=sinφ=−2√55.已知函数f(x)=cos x⋅sin(x+π3)−√3cos2x+√34,x∈R.f(x)在[−π4,π4]上的最大值为________.【答案】14【考点】两角和与差的三角函数【解析】由题意利用三角恒等变换花简函数f(x)的解析式,再利用正弦函数的定义域和值域,求出f(x)在[−π4,π4]上的最大值.【解答】∵函数f(x)=cos x⋅sin(x+π3)−√3cos2x+√34=cos x⋅(12sin x+√32cos x)−√3cos2x+√3 4=14sin2x−√32cos2x+√34=14sin2x−√34cos2x=12sin(2x−π3),x∈R.x∈[−π4,π4],2x−π3∈[−5π6, π6],故当2x−π3=π6时,函数f(x)取得最大值为14,如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=√7,若cos∠BAD=−√714,sin∠CBA=√216,则BC=________.【答案】 3【考点】 解三角形 【解析】由题意在△ADC 中应用余弦定理易得cos ∠CAD ,进而由同角三角函数基本关系可得sin ∠CAD 和sin ∠BAD ,再由和差角公式可得sin ∠CAB ,在△ABC 中由正弦定理可得BC . 【解答】由题意在△ADC 中,AD =1,CD =2,AC =√7, ∴ 由余弦定理可得cos ∠CAD =2×1×√7=2√77, ∴ sin ∠CAD =√217, 同理由cos ∠BAD =−√714,可得sin ∠BAD =3√2114, ∴ sin ∠CAB =sin (∠BAD −∠CAD) =sin ∠BAD cos ∠CAD −cos ∠BAD sin ∠CAD =√32在△ABC 中由正弦定理可得BC =√7×√32√216=3已知△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c 且a =6,4sin B =5sin C ,有以下三个命题:①满足条件的△ABC 不可能是直角三角形; ②当A =2C 时,△ABC 的周长为15;③当A =2C 时,若O 为△ABC 的内心,则△AOB 的面积为√7. 其中正确命题有________(填写出所有正确命题的序号). 【答案】 ②③【考点】命题的真假判断与应用 【解析】①假设是三角形,求出各个边长,最后证明假设是否正确,②通过正弦定理可求出关系,再由余弦定理和已知条件,求出各个边,可求出周长, ③由②各个边,通过面积相等求出内接球半径,再求面积. 【解答】①假设△ABC 是直角三角形,由题意知b =54c ,则b 2=(54c)2=c 2+a 2=c 2+36, 解得a =6,b =10,c =8是直角三角形,①错;②由A =2C ,由正弦定asin A =bsin B =csin C ,可得c cos C =3,结合b =54c ,由余弦定理c 2=a2+b2−2ab cos C,解之得c=4,b=5,∴△ABC的周长为15,②对;③当A=2C时,由②知c=4,b=5,若O为△ABC的内心,则设△ABC的内接圆半径为r,由c cos C=3,可得cos C=34,sin C=√74,故12absicC=12(a+b+c)r,∴r=√72,∴S△AOB=12cr=√7,③对.三、解答题(共3小题,满分0分)某校高一(1)班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如图1和图2所示,据此解答如下问题:(1)计算频率分布直方图中[80, 90)间的小长方形的高;(2)根据频率分布直方图估计这次测试的平均分.【答案】分数在[50, 60)的频率为0.008×10=0.08,由茎叶图知,分数在[50, 60)之间的频数为2,所以全班人数为20.08=25,所以分数在[80, 90)之间的人数为25−21=4,则对应的频率为425=0.16.所以[80, 90)间的小长方形的高为0.16÷10=0.016.全班共25人,根据各分数段人数得各分数段的频率为:所以估计这次测试的平均分为55×0.08+65×0.28+75×0.4+85×0.16+95×0.08=73.8.【考点】众数、中位数、平均数茎叶图【解析】(1)由直方图在得到分数在[50, 60)的频率,求出全班人数;由茎叶图求出分数在[80, 90)之间的人数,进一步求出概率;(2)分别算出各段的概率,计算平均分.【解答】分数在[50, 60)的频率为0.008×10=0.08,由茎叶图知, 分数在[50, 60)之间的频数为2,所以全班人数为20.08=25,所以分数在[80, 90)之间的人数为25−21=4, 则对应的频率为425=0.16.所以[80, 90)间的小长方形的高为0.16÷10=0.016. 全班共25人,根据各分数段人数得各分数段的频率为:所以估计这次测试的平均分为55×0.08+65×0.28+75×0.4+85×0.16+95×0.08=73.8.已知向量m →=(√3sin x4, 1),n →=(cos x4, cos 2x4),记f(x)=m →⋅n →.(Ⅰ)若f(x)=1,求cos (x +π3)的值;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a −c)cos B =b cos C ,求f(2A)的取值范围. 【答案】(1)向量m →=(√3sin x4, 1),n →=(cos x4, cos 2x4),记f(x)=m →⋅n →=√3sin x4cos x4+cos 2x4=√32sin x 2+12cos x 2+12=sin (x 2+π6)+12,因为f(x)=1,所以sin (x2+π6)=12, 所以cos (x +π3)=1−2sin 2(x2+π6)=12,(2)因为(2a −c)cos B =b cos C ,由正弦定理得(2sin A −sin C)cos B =sin B cos C所以2sin A cos B −sin C cos B =sin B cos C所以2sin A cos B =sin (B +C)=sin A ,sin A ≠0, 所以cos B =12,又0<B <π2,所以B =π3,则A +C =2π3,即A =2π3−C ,又0<C <π2,则π6<A <π2,得π3<A +π6<2π3,所以√32<sin (A +π6)≤1,又f(2A)=sin (A +π6)+12,所以f(2A)的取值范围(√3+12,32]. 【考点】平面向量数量积的性质及其运算 【解析】(Ⅰ)利用向量的数量积公式求出f(x)的解析式,然后求值;(Ⅱ)由正弦定理将边角的混合等式化为角的等式,利用三角函数公式化简求出角A 的范围,然后求三角函数值的范围. 【解答】(1)向量m →=(√3sin x4, 1),n →=(cos x4, cos 2x4),记f(x)=m →⋅n →=√3sin x4cos x4+cos 2x4=√32sin x 2+12cos x 2+12=sin (x 2+π6)+12,因为f(x)=1,所以sin (x2+π6)=12, 所以cos (x +π3)=1−2sin 2(x2+π6)=12,(2)因为(2a −c)cos B =b cos C ,由正弦定理得(2sin A −sin C)cos B =sin B cos C所以2sin A cos B −sin C cos B =sin B cos C所以2sin A cos B =sin (B +C)=sin A ,sin A ≠0, 所以cos B =12,又0<B <π2,所以B =π3, 则A +C =2π3,即A =2π3−C ,又0<C <π2,则π6<A <π2,得π3<A +π6<2π3,所以√32<sin (A +π6)≤1,又f(2A)=sin (A +π6)+12,所以f(2A)的取值范围(√3+12,32].如图,旅客从某旅游区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从A 乘缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130米/分钟,山路AC 长1260米,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短? 【答案】在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin [π−(A +C)]=sin (A +C)=sin A cos C +cos A sin C =513×35+1213×45=6365, 由正弦定理ABsin C =ACsin B ,得AB =AC⋅sin C sin B=1260×456365=1040m .所以索道AB 的长为1040m .假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t)m ,乙距离A 处130tm ,所以由余弦定理得:d 2=(100+50t)2+(130t)2−2×130t ×(100+50t)×1213=200(37t 2−70t +50)=200[37(t −3537)2+62537],因0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.【考点】 正弦定理 余弦定理 【解析】(1)根据正弦定理即可确定出AB 的长;(2)设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t)m ,乙距离A 处130tm ,由余弦定理即可得解. 【解答】在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin [π−(A +C)]=sin (A +C)=sin A cos C +cos A sin C =513×35+1213×45=6365, 由正弦定理ABsin C =ACsin B ,得AB =AC⋅sin C sin B=1260×456365=1040m .所以索道AB 的长为1040m .假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t)m ,乙距离A 处130tm ,所以由余弦定理得:d 2=(100+50t)2+(130t)2−2×130t ×(100+50t)×1213=200(37t 2−70t +50)=200[37(t −3537)2+62537],因0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.。
【35套精选试卷合集】广东省深圳市红岭中学2019-2020学年数学高一下期末模拟试卷含答案

高一下学期期末数学试卷一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合=M {0lg |>x x },{2|x x ≤4},则=N M IA .(1,2]B .[1,2)C .(1,2)D .[1,2]2.如图,21,e e ρρ是互相垂直的单位向量,则向量a ρ可以表示为 A .32e ρ-1e ρB .21e ρ-42e ρC .1e ρ-32e ρD .31e ρ-2e ρ3.下列函数中既是奇函数又是增函数的为 A .1+=x yB .xy 1-=C .2x y -=D .x x y =4.如图,正六边形ABCDEF 中,=++ A .B .BEC .D .5.圆台母线与底面成45°角,侧面积为π23,则它的轴截面面积是 A .2B .3C .2D .236.在底面直径和高都为2R 的圆柱21O O 内任取一点P ,则点P 到线段21O O 中点的距离小于等于R 的概率为 A .32 B .31 C .43 D .21 7.如图,茎叶图记录了甲、乙两组各四名同学的植树棵数,乙 组记录中有一个数糊,无法确认,在图中用x 表示。
若 甲、乙两组共有8名同学植树棵数的平均数为9,则x 为 A .3B .4C .5D .68.执行如图所示的程序框图,若输出的结果为35,则判断框中应填 A .n ≤5? B .n >5? C .n ≤4?D .n >4?9.要得到函数x y 2sin 2=的图像,只需要将函数)62sin(2π-=x y 的图像A .向左平移12π个单位 B .向右平移12π个单位 A B CD F E甲组 乙组9 9 0 x 8 9 1 1 1 0 1e ρ2e ρa ρC .向左平移6π个单位 D .向右平移6π个单位 10.函数x x f x-=)31()(的零点所在的区间为A .(0,31)B .(31,21)C .(21,1) D .(1,2) 11.设函数=)(x f 若)()(a f a f ->,则实数a 的取值范围是A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)12.对于函数)23sin()2cos()(x x x f ++=ππ,给出下列四个结论: ①函数)(x f 的最小正周期为π2 ②函数)(x f 在]2,6[ππ上的值域是]21,43[③函数)(x f 在]43,4[ππ上是减函数④函数)(x f 的图象关于点)0,2(π-对称;其中正确结论的个数是A .1个B .2个 C.3个 D.4个第Ⅱ卷 非选择题 (共72分)二、填空题(本题共4小题,每小题4分,共16分)13.有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,求2个人在不同层离开的概率 。
深圳市重点名校2019-2020学年高一下学期期末统考数学试题含解析

【答案】C
【解析】
,故选C。
11.已知角 以坐标系中 为始边,终边与单位圆交于点 ,则 的值为()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意可知 的值,从而可求 的值.
【详解】
因为 , ,则 .
故选A.
【点睛】
本题考查任意角的三角函数的基本计算,难度较易.若 终边与单位圆交于点 ,则 .
12.过点 作圆 的切线 ,且直线 与 平行,则 与 间的距离是()
A. B. C. D.
【答案】D
【解析】
由题意知点 在圆C上,圆心坐标为 ,
所以 ,
故切线的斜率为 ,
所以切线方程为 ,即 .
因为直线l与直线 平行,
所以 ,解得 ,
所以直线 的方程是-4x+3y-8=0,即4x-3y+8=0.
所以直线 与直线l间的距离为 .选D.
6.正三角形 的边长为 ,如图, 为其水平放置的直观图,则 的周长为()
A. B. C. D.
【答案】C
【解析】
【分析】
根据斜二测画法以及正余弦定理求解各边长再求周长即可.
【详解】
由斜二测画法可知, , , .
所以
.故 .
.故 .
所以 的周长为 .
故选:C
【点睛】
本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.
深圳市重点名校2019-2020学年高一下学期期末统考数学试题
一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一组数据1,3,2,5,4,那么这组数据的方差为()
广东省深圳市2019-2020年度高一下学期数学期末考试试卷B卷

广东省深圳市2019-2020年度高一下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高一上·武威期末) 若某直线过(3,2),(4,2+ )两点,则此直线的倾斜角为().A . 30°B . 60°C . 120°D . 150°2. (2分)在中,边a,b,c所对的角分别为A,B,C,若,则b=()A .B .C .D . 23. (2分)下列命题中假命题是()A . 离心率为的双曲线的两渐近线互相垂直B . 过点(1,1)且与直线x-2y+=0垂直的直线方程是2x + y-3=0C . 抛物线y2 = 2x的焦点到准线的距离为1D . +=1的两条准线之间的距离为4. (2分)已知a和b是成60°角的两条异面直线,则过空间一点且与a、b都成60°角的直线共有()A . 1条B . 2条C . 3条D . 4条5. (2分)已知是两条不同的直线,是三个不同的平面,下列命题正确的是()A . 若,则.B . 若,则.C . 若,则.D . 若,则.6. (2分)下列叙述中正确的是()A . 从频率分布表可以看出样本数据对于平均数的波动大小B . 频数是指落在各个小组内的数据C . 每小组的频数与样本容量之比是这个小组的频率D . 组数是样本平均数除以组距7. (2分)我舰在敌岛A处南偏西50°的B处,且AB距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为()A . 28海里/小时B . 14海里/小时C . 14 海里/小时D . 20海里/小时8. (2分)在二面角α-l-β中,A∈α,AB⊥平面β于B,BC⊥平面α于C,若AB=6,BC=3,则二面角α-l-β的平面角的大小为()A . 30°B . 60°C . 30°或150°D . 60°或120°9. (2分)已知棱长为1的正方体ABCD A1B1C1D1中, P,Q是面对角线A1C1上的两个不同动点.①存在P,Q两点,使BP DQ;②存在P,Q两点,使BP,DQ与直线B1C都成450的角;③若|PQ|=1,则四面体BDPQ的体积一定是定值;④若|PQ|=1,则四面体BDPQ在该正方体六个面上的正投影的面积的和为定值.以上命题为真命题的个数是()A . 1B . 2C . 3D . 410. (2分) (2019高三上·郑州期中) 已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆与轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则()A .B .C .D . 与关系不确定二、填空题 (共6题;共6分)11. (1分)(2016·上海理) 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是________(米).12. (1分)(2018·中山模拟) 中, , 为边上的点,且 , ,则的面积最大值为________.13. (1分) (2016高二下·揭阳期中) 已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V=________.14. (1分) (2019高二下·太原月考) 在极坐标系中,直线与圆相交于两点,则 ________.15. (1分) (2018高二上·武邑月考) 棱长为1的正方体中,分别是的中点.① 在直线上运动时,三棱锥体积不变;② 在直线上运动时,始终与平面平行;③平面平面;④连接正方体的任意的两个顶点形成一条直线,其中与棱所在直线异面的有条;其中真命题的编号是________.(写出所有正确命题的编号)16. (1分) (2019高二上·南宁月考) 已知x,y满足方程(x﹣2)2+y2=1,则的最大值为________三、解答题 (共4题;共20分)17. (5分)(2018高一下·柳州期末) 在中,角所对的边分别为,且.(1)求角的值;(2)若,求边的长.18. (5分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.19. (5分)(2016·赤峰模拟) 如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.(1)求证:SB⊥平面SAD;(2)求二面角D﹣SC﹣B的余弦值.20. (5分) (2019高二上·南充期中) 已知的三顶点坐标分别为,,.(1)求的外接圆圆M的方程;(2)已知动点P在直线上,过点P作圆M的两条切线PE,PF,切点分别为E,F.①记四边形PEMF的面积分别为S,求S的最小值;②证明直线EF恒过定点.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共20分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、。
2024届深圳市高级中学数学高一第二学期期末预测试题含解析

2024届深圳市高级中学数学高一第二学期期末预测试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.长方体1111ABCD A B C D -,AB 1=,AD 2=,1AA 3=,则异面直线11A B 与1AC 所成角的余弦值为( )A .1414B .19214C .1313D .132.函数3()arctan f x x x =+的定义域为R ,数列{}n a 是公差为d 的等差数列,若10091a =-,m =12320162017()()()()()f a f a f a f a f a +++++,则( )A .m 恒为负数B .m 恒为正数C .当0d >时,m 恒为正数;当0d <时,m 恒为负数D .当0d >时,m 恒为负数;当0d <时,m 恒为正数3.已知等边三角形ABC 的边长为1,,,BC a CA b AB c ===,那么a b b c c a ⋅+⋅+⋅=( ). A .3B .-3C .32D .32-4.己知x 与y 之间的几组数据如下表: x 0 1 3 4 y1469则y 与x 的线性回归直线必过点( ) A .B .C .D .5.在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为 A .16B .13C .23D .456.已知向量(),1a k =-,()3,4b =-,如果向量2a b +与3a b -平行,则实数k 的值为( )A .14B .34C .14-D .34-7.已知直线3230x y +-=和610x my ++=互相平行,则它们之间的距离是( )A .51313B .91326C .41313D .713268.若直线2y x =-的倾斜角为α,则sin 2α的值为( ) A .45B .45-C .45±D .359.己知数列{}n a 和{}n b 的通项公式分別内3n a n =+,24n b n =,若,,n n n n n n na abc b a b ≥⎧=⎨⎩<,则数列{}n c 中最小项的值为( ) A .463+B .24C .6D .710.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为 A .3B 2C 3D .13二、填空题:本大题共6小题,每小题5分,共30分。
2019-2020学年广东省高一下学期期末数学试卷 (解析版)

2019-2020学年广东省高一第二学期期末数学试卷一、选择题(共12小题).1.已知集合A={x|x2﹣4x﹣5<0},B={﹣1,0,1,2,3,5},则A∩B=()A.{﹣1,0}B.{﹣1,0,1}C.{0,1,2}D.{0,1,2,3} 2.在等差数列{a n}中,若a3=﹣1,公差d=2,则a7=()A.7B.9C.11D.133.在容量为50的样本中,某组的频率为0.18,则该组样本的频数为()A.9B.10C.18D.204.下列各组平面向量中,可以作为基底的是()A.1=(0,0),2=(1,﹣2)B.1=(﹣1,2),2=(5,7)C.1=(3,5),2=(6,10)D.1=(2,﹣3),2=(,﹣)5.已知a=log32,b=()﹣0.1,c=,则()A.b>c>a B.b>a>c C.a>b>c D.c>b>a6.已知平面向量=(3,0),=(,),则与的夹角为()A.B.C.D.7.在△ABC中,角A,B,C所对的边分别是a,b,c.若A=,B=,a=6,则b =()A.3B.2C.6D.8.在正项等比数列{a n}中,若a6=3,则log3a1+log3a2+log3a3+…+log3a11=()A.5B.6C.10D.119.某商场为了迎接周年庆开展抽奖活动,奖项设置一等奖、二等奖、三等奖,其他都是幸运奖.设事件A={抽到一等奖},事件B={抽到二等奖},事件C={抽到三等奖},且已知P(A)=0.1,P(B)=0.25,P(C)=0.4,则事件“抽到三等奖或者幸运奖”的概率为()A.0.35B.0.25C.0.65D.0.610.等边三角形ABC的边长为1,=,=,=,那么•+•+•等于()A.3B.﹣3C.D.11.已知具有线性相关关系的两个变量x,y之间的一组数据如表:x01234y 2.2n 4.5 4.8 6.7若回归直线方程是=0.95x+2.6,则下列说法不正确的是()A.n的值是4.3B.变量x,y呈正相关关系C.若x=6,则y的值一定是8.3D.若x的值增加1,则y的值约增加0.9512.在△ABC中,角A,B,C所对的边分别是a,b,c.已知a=3,b∈(2,3),且a2=3b cos B+b2cos A,则cos A的取值范围为()A.[,]B.(,)C.[,]D.(,)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知a>0,则5a+的最小值是.14.某学校高一、高二、高三共有3600名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为90的样本.已知高一有1280名学生,高二有1200名学生.则在该学校的高三学生中应抽取名.15.在相距3千米的A,B两个观察点观察目标点C,其中观察点B在观察点A的正东方向,在观察点A处观察,目标点C在北偏东15°方向上,在观察点B处观察,目标点C 在西北方向上,则A,C两点之间的距离是千米.16.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲,乙产品都需要在A,B两种设备上加工,在每台A,B设备上加工1件甲产品所需工时分别为1h,2h,加工1件乙产品所需工时分别为2h,1h,A,B两种设备每月有效使用时数分别为400h和500h.若合理安排生产可使收入最大为元.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)已知向量,满足||=,=(1,2),且∥,求的坐标;(2)已知A(﹣1,﹣4),B(5,2),C(3,4),判断并证明以A,B,C为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.18.为研究某农作物的生长状态,某研究机构在甲、乙两块试验田中各随机抽取了6株农作物,并测量其株高(单位:cm),得到如图茎叶图:(1)分别求甲、乙两块试验田中被抽取的农作物株高的平均值,并比较它们的大小;(2)分别求甲、乙两块试验田中被抽取的农作物株高的方差,并说明哪块试验田的此种农作物长得相对较齐.19.设等差数列{a n}的前n项和为S n,已知a8=3a3,a1+a2=4.(1)求数列{a n}的通项公式;(2)若2S n=23+a2n+4,求n.20.某家庭2015~2019年的年收入和年支出情况统计如表:2015年2016年2017年2018年2019年年份收入和支出收入x(万元)99.61010.411支出y(万元)7.37.588.58.7(1)已知y与x具有线性相关关系,求y关于x的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2020年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2020年的年支出金额.(参考公式:回归方程=x +中斜率和截距的最小二乘估计分别为==,=﹣)21.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.22.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m ≥T n恒成立,求m的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣4x﹣5<0},B={﹣1,0,1,2,3,5},则A∩B=()A.{﹣1,0}B.{﹣1,0,1}C.{0,1,2}D.{0,1,2,3}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|﹣1<x<5},B={﹣1,0,1,2,3,5},∴A∩B={0,1,2,3}.故选:D.2.在等差数列{a n}中,若a3=﹣1,公差d=2,则a7=()A.7B.9C.11D.13【分析】根据题意,由等差数列的性质可得a7=a3+4d,代入数据计算可得答案.解:根据题意,等差数列{a n}中,若a3=﹣1,公差d=2,则a7=a3+4d=(﹣1)+2×4=7;故选:A.3.在容量为50的样本中,某组的频率为0.18,则该组样本的频数为()A.9B.10C.18D.20【分析】由样本的频数等于样本容量与频率的乘积可得所求.解:频数为50×0.18=9.故选:A.4.下列各组平面向量中,可以作为基底的是()A.1=(0,0),2=(1,﹣2)B.1=(﹣1,2),2=(5,7)C.1=(3,5),2=(6,10)D.1=(2,﹣3),2=(,﹣)【分析】不共线的两个向量才可作为基底,从而判断每个选项的两个向量是否共线,这样即可找出能作为基底的一组向量.解:A.,∴共线,不能作为基底;B.﹣1×7﹣2×5≠0;∴不共线,可以作为基底;C.;∴共线,不能作为基底;D.;∴共线,不能作为基底.故选:B.5.已知a=log32,b=()﹣0.1,c=,则()A.b>c>a B.b>a>c C.a>b>c D.c>b>a【分析】利用对数函数、指数函数、幂函数的单调性直接求解.解:∴0=log31<a=log32<log33=1,b=()﹣0.1>()0=1,c=<0,∴b>a>c.故选:B.6.已知平面向量=(3,0),=(,),则与的夹角为()A.B.C.D.【分析】根据条件可求出,,然后即可求出的值,从而得出与的夹角.解:∵,,∴,且,∴.故选:D.7.在△ABC中,角A,B,C所对的边分别是a,b,c.若A=,B=,a=6,则b =()A.3B.2C.6D.【分析】由已知利用正弦定理即可计算求解.解:因为A=,B=,a=6,则由正弦定理,可得b===2.故选:B.8.在正项等比数列{a n}中,若a6=3,则log3a1+log3a2+log3a3+…+log3a11=()A.5B.6C.10D.11【分析】由题意利用等比数列的性质,对数的运算性质,求得结果.解:因为a6=3,所以,log3a1+log3a2+log3a3+...+log3a11=log3(a1a2a3 (11)==log3311=11,故选:D.9.某商场为了迎接周年庆开展抽奖活动,奖项设置一等奖、二等奖、三等奖,其他都是幸运奖.设事件A={抽到一等奖},事件B={抽到二等奖},事件C={抽到三等奖},且已知P(A)=0.1,P(B)=0.25,P(C)=0.4,则事件“抽到三等奖或者幸运奖”的概率为()A.0.35B.0.25C.0.65D.0.6【分析】设事件D为“抽到幸运奖”,则事件A,B,C,D互为互斥事件,记事件M ={抽到三等奖或幸运奖},则P(M)=1﹣P(A)﹣P(B).解:奖项设置一等奖、二等奖、三等奖,其他都是幸运奖.设事件A={抽到一等奖},事件B={抽到二等奖},事件C={抽到三等奖},设事件D为“抽到幸运奖”,则事件A,B,C,D互为互斥事件,记事件M={抽到三等奖或幸运奖},P(A)=0.1,P(B)=0.25,P(C)=0.4,则P(M)=1﹣P(A)﹣P(B)=1﹣0.1﹣0.25=0.65.故选:C.10.等边三角形ABC的边长为1,=,=,=,那么•+•+•等于()A.3B.﹣3C.D.【分析】先确定出各向量的夹角,然后根据向量的数量积的定义即可求解解:由题意可得,=∴==﹣故选:D.11.已知具有线性相关关系的两个变量x,y之间的一组数据如表:x01234y 2.2n 4.5 4.8 6.7若回归直线方程是=0.95x+2.6,则下列说法不正确的是()A.n的值是4.3B.变量x,y呈正相关关系C.若x=6,则y的值一定是8.3D.若x的值增加1,则y的值约增加0.95【分析】由已知求得样本点的中心的坐标,代入线性回归方程求得n,然后逐一核对四个选项得答案.解:,,∴样本点的中心为(2,),代入=0.95x+2.6,得,解得n=4.3.故A正确;∵y关于x的线性回归方程为,∴变量x,y呈正相关关系,故B正确;若x=6,则求得,但不能断定y的值一定是8.3,故C错误;若x的值增加1,则y的值约增加0.95,故D正确.故选:C.12.在△ABC中,角A,B,C所对的边分别是a,b,c.已知a=3,b∈(2,3),且a2=3b cos B+b2cos A,则cos A的取值范围为()A.[,]B.(,)C.[,]D.(,)【分析】由已知利用余弦定理可求c=,可求cos A=,由已知可求范围b2∈(12,18),求得范围b2+∈(,),即可得解cos A的范围.解:因为a=3,a2=3b cos B+b2cos A,所以9=3b•+b2•,所以bc=9,所以c=,则cos A==.因为b∈(2,3),所以b2∈(12,18),所以b2+∈(,),则cos A∈(,).故选:B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知a>0,则5a+的最小值是10.【分析】直接使用基本不等式即可求出答案.解:∵a>0,∴5a+≥2=10(当且仅当5a=也即a=1时,等号成立).故答案为:10.14.某学校高一、高二、高三共有3600名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为90的样本.已知高一有1280名学生,高二有1200名学生.则在该学校的高三学生中应抽取28名.【分析】根据分层抽样的定义建立比例关系即可.解:高三学生人数:3600﹣1280﹣1200=1120.∴该学校的高三学生中应抽取:1120×15.在相距3千米的A,B两个观察点观察目标点C,其中观察点B在观察点A的正东方向,在观察点A处观察,目标点C在北偏东15°方向上,在观察点B处观察,目标点C 在西北方向上,则A,C两点之间的距离是千米.【分析】由题意可知,在△ABC中,∠CAB=75°,∠CBA=45°,利用三角形内角和定理可求∠ACB=60°,由正弦定理即可求解AC的值.解:由题意可知,在△ABC中,∠CAB=75°,∠CBA=45°,所以∠ACB=60°,所以由正弦定理=,可得=,可得AC==.故答案为:.16.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲,乙产品都需要在A,B两种设备上加工,在每台A,B设备上加工1件甲产品所需工时分别为1h,2h,加工1件乙产品所需工时分别为2h,1h,A,B两种设备每月有效使用时数分别为400h和500h.若合理安排生产可使收入最大为800000元.【分析】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为z=3000x+2000y.写出约束条件,由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解:设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为z=3000x+2000y.需要满足的条件是,作出可行域如图,作直线z=3000x+2000y,当直线过点A时,z取最大值.联立,解得A(200,100),则z的最大值为800000元.故答案为:800000.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)已知向量,满足||=,=(1,2),且∥,求的坐标;(2)已知A(﹣1,﹣4),B(5,2),C(3,4),判断并证明以A,B,C为顶点的三角形是否为直角三角形,若是,请指出哪个角是直角.【分析】(1)设=(x,y),由题意可得,解得x,y的值即可得解.(2)由已知可求,的坐标,利用平面向量数量积的坐标运算可求•=0,可得,即可得解.解:(1)设=(x,y),则,解得,或,于是=(1,2),或=(﹣1,﹣2).(2)△ABC是直角三角形,∠B为直角.证明:∵=(﹣1,﹣4)﹣(5,2)=(﹣6,﹣6),=(3,4)﹣(5,2)=(﹣2,2),∴•=﹣6×(﹣2)+(﹣6)×2=0,∴,即△ABC是直角三角形,∠B为直角.18.为研究某农作物的生长状态,某研究机构在甲、乙两块试验田中各随机抽取了6株农作物,并测量其株高(单位:cm),得到如图茎叶图:(1)分别求甲、乙两块试验田中被抽取的农作物株高的平均值,并比较它们的大小;(2)分别求甲、乙两块试验田中被抽取的农作物株高的方差,并说明哪块试验田的此种农作物长得相对较齐.【分析】(1)根据茎叶图的概念和平均数的计算方法即可得解;(2)根据方差的计算分别求出和,而方差越小,农作物长得越齐.解:(1)==30cm,==30cm.∴甲、乙两块试验田中被抽取的农作物株高的平均值相等.(2)==,==.∴<,即甲试验田的此种农作物长得相对较齐.19.设等差数列{a n}的前n项和为S n,已知a8=3a3,a1+a2=4.(1)求数列{a n}的通项公式;(2)若2S n=23+a2n+4,求n.【分析】(1)依题意结合数列的通项公式,能列出两个关于基本量首项a1和公差d的两个方程,解方程即可得数列{a n}的通项公式;(2)将2S n=23+a2n+4转化为关于n的一元二次方程,解方程即可得答案.解:(1)设数列{a n}的公差为d,依题意得,所以,解得,所以a n=2n﹣1.(2)由(1)得,因为2S n=23+a2n+4,所以2n2=23+2×(2n+4)﹣1,化简得n2﹣2n﹣15=0,解得n=5或n=﹣3(舍去).20.某家庭2015~2019年的年收入和年支出情况统计如表:2015年2016年2017年2018年2019年年份收入和支出收入x(万元)99.61010.411支出y(万元)7.37.588.58.7(1)已知y与x具有线性相关关系,求y关于x的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2020年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2020年的年支出金额.(参考公式:回归方程=x +中斜率和截距的最小二乘估计分别为==,=﹣)【分析】(1)由已知表格中的数据求得与的值,可得y关于x的线性回归方程;(2)在(1)中求得的线性回归方程中,取x=9.5求得y值即可.解:(1)由题意可得,=,,,=1.8,,≈0.24.∴y关于x的线性回归方程为;(2)当2020年的年收入为9.5万元时,.∴预测该家庭2020年的年支出金额为7.65万元.21.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.【分析】(1)利用两角和的正弦函数公式,正弦定理化简已知等式可得b2=ac,结合a =2c,利用余弦定理可求cos B=,结合范围利用同角三角函数基本关系式可求sin B的值.(2)由已知利用三角形的面积公式可求c的值,结合a=2c,可求a的值,由(1)可求b的值,即可得解三角形的周长.解:(1)因为b sin(A+C)=a sin C,可得b sin B=a sin C,所以b2=ac…因为a=2c,所以cos B====,…因为0<B<π,所以sin B===…(2)因为△ABC的面积为ac sin B=c2=4,所以c=4…因为a=2c,所以a=8…因为b2=ac=32,所以b=4…故△ABC的周长为a+b+c=8+4+4=12+4…22.在数列{a n}中,a1=14,a n+1﹣3a n+4=0.(1)证明:数列{a n﹣2}是等比数列.(2)设b n=,记数列{b n}的前n项和为T n,若对任意的n∈N*,m ≥T n恒成立,求m的取值范围.【分析】(1)由已知数列递推式直接利用构造新数列的方法证明数列{a n﹣2}是等比数列;(2)利用(1)的结论求得a n,进一步利用裂项相消法分类求出数列{b n}的前n项和为T n,再分类求出T n的最大值,即可求得m的取值范围.【解答】(1)证明:∵数列{a n}满足a n+1﹣3a n+4=0,∴a n+1﹣2=3(a n﹣2),即=3(常数).数列{a n﹣2}是以12为首项,3为公比的等比数列;(2)解:由(1)知,即.∴b n==.当n为偶数时,=;当n为奇数时,﹣…+=.当n为偶数时,是递减的,此时当n=2时,T n取最大值﹣,则m ≥﹣;当n为奇数时,T n=﹣是递增的,此时T n<﹣,则m≥﹣.综上,m的取值范围是[﹣,+∞).。
2019-2020学年深圳市新高考高一数学下学期期末联考试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{a n }为等差数列,S n 是它的前n 项和.若1a =2,S 3=12,则S 4=( ) A .10B .16C .20D .242.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若||23MN ≥.则k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎡⎤⎢⎥⎣⎦C .3,0⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦3.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ). A .1-B .1C .3D .74.设n S 为数列{}n a 的前n 项和,()4n n a S n N *+=∈,则4S的值为( )A .3B .72C .154D .不确定5.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为 A .5B .10C .4D .206.已知向量1a =,2b =,a ,b 的夹角为45°,若c a b =+,则a c ⋅=( ) A .2B .322C .2D .37.设定义域为R 的奇函数()f x 是增函数,若()2cos 2(2sin 2)0f m f m θθ-+-<对R θ∈恒成立,则实数m 的取值范围是( ) A .(1)-∞2,+B .[1)-∞2,+C .1,2⎛⎫-+∞ ⎪⎝⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩CB .B ∪C=CC .ACD .A=B=C9.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是( ).A .B .C .D .10.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A .23B .43C .83D .16311.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移π8个单位,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .3π4B .π4C .π3D .π612.对于一个给定的数列{}n a ,定义:若()11n n n a a a n ∆+=-∈*N ,称数列{}1na ∆为数列{}na 的一阶差分数列;若()2111n n n a a a n ∆∆∆+=-∈*N,称数列{}2na ∆为数列{}na 的二阶差分数列.若数列{}na 的二阶差分数列{}2n a ∆的所有项都等于1,且1820170a a ==,则2018a =( ) A .2018B .1009C .1000D .500二、填空题:本题共4小题13.过点13P (,)作圆221x y +=的两条切线,切点分别为,A B ,则PA PB ⋅= . 14.不等式103x x -≥+的解集是_______. 15.设,x y 满足约束条件210,{0,0,0,x y x y x y --≤-≥≥≥若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________. 16.已知数列{}n a 满足111n na a n n+-=+且12a =,则50a =____________. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
【精选3份合集】深圳市2019-2020学年高一数学下学期期末联考试题

2019-2020学年高一下学期期末数学模拟试卷一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角α的终边上一点()1,m ,且6sin α=,则m =( ) A .2± B .2 C .2-D .6 2.已知函数()x f x e x =+,()ln g x x x =+,()h x x x =+的零点分别为a ,b ,c ,则( )A .a b c >>B .b c a >>C .c a b >>D .a c b >>3.已知椭圆C 的方程为22218x y m +=(0m >),如果直线2y x =与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为() A .2B .22C .4D .84.点()1,1-到直线10x y -+=的距离是( ) A .32B .2C .3D .3225.设a ,b ,c 为ABC 的内角所对的边,若()()3a b c b c a bc +++-=,且3a =,那么ABC 外接圆的半径为( ) A .1B .2C .2D .46.某学校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( ) A .193B .192C .191D .1907.已知非零向量a 与b 的夹角为23π,且1,22b a b =+=,则a ( ) A .1B .2C .3D .238.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为A 3B 2C 3D .139.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.310.把函数sin2)6y xπ=+(的图象沿x轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x=的图象,则()g x的解析式为()A.()sin(4)12g x xπ=-B.()sin(4)6g x xπ=-C.()sin(4)3g x xπ=-D.2()sin(4)3g x xπ=-11.在三棱锥S ABC-中,2,1SA SB AC BC SC=====,二面角S AB C--的大小为60︒,则三棱锥S ABC-的外接球的表面积为()A.43πB.4πC.12πD.523π12.已知角α的终边过点P(2sin 60°,-2cos 60°),则sin α的值为()A.32B.12C.-32D.-12二、填空题:本题共4小题13.下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________.14.已知函数()sin()f x xωϕ=+π2,ωϕ⎛⎫><⎪⎝⎭一个周期的图象(如下图),则这个函数的解析式为__________.15.在△ABC中,若a2=b2+bc+c2,则A=________.16.若锐角αβ、满足()35cos cos513ααβ=+=-,,则cosβ=______.三、解答题:解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC∆中,角A ,B,C所对的边分别为a,b,c,若23a=,60A=,则23sin2sin3sina b cA B C++++等于( )A.1 B.2 C.43D.42.设等比数列{}n a的公比2q,前n项和为nS,则52Sa=()A.2 B.4 C.172D.3123.已知数列{}n a的前n项和为n S,且24n nS a=-,则64SS=( )A.5B.132C.172D.2154.若,则向量的坐标是()A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)5.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;136.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A.1(0,0)e=,2(1,2)e=-B.1(1,2)e=-,2(5,7)e=C.1(3,5)e=,2(6,10)e=D.1(2,3)e=-,213,24e⎛⎫=-⎪⎝⎭7.数列{}n a的通项公式cos2nna nπ=,其前n项和为nS,则2017S等于()A.1006B.1008C.1006-D.1008-8.在数列{a n}中,a n=31﹣3n,设b n=a n a n+1a n+2(n∈N*).T n是数列{b n}的前n项和,当T n取得最大值时n的值为()A.11 B.10 C.9 D.89.为了得到函数的图像,只需将函数的图像()A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位10.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .11.设等差数列{}n a 的前n 项和为n S ,若112,0,3m m m S S S -+=-==,则m =( ) A .3B .4C .5D .612.已知等差数列{}n a 中,34568a a a a +-+=, 则7S =( ) A .8 B .21 C .28D .35二、填空题:本题共4小题 13.已知数列中,11a =-,11n n n n a a a a ++⋅=-,则数列通项n a =___________14.定义N *在上的函数()f x ,对任意的正整数12,n n ,都有()()()12121f n n f n f n +=++,且()11f =,若对任意的正整数n ,有()21nn a f =+,则na=___________.15.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即ABC ∆的222222142a c b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中,,a b c 分别为ABC ∆内角,,A B C 的对边.若2b =3tan 13cos C B=-则ABC ∆的面积S 的最大值为____.16.如图所示,E ,F 分别是边长为1的正方形ABCD 的边BC ,CD 的中点,将其沿AE ,AF ,EF 折起使得B ,D ,C 三点重合.则所围成的三棱锥的体积为___________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.设角arcsin tα=,()2arccos1tβ=--,其中[]0,1t∈:(1)若sin21α=,求角β的值;(2)求αβ+的值.18.如图所示,已知Rt ABC∆的斜边长2AB=,现以斜边AB横在直线为轴旋转一周,得到旋转体.(1)当30A∠=︒时,求此旋转体的体积;(2)比较当30A∠=︒,45A∠=︒时,两个旋转体表面积的大小.19.(6分)已知扇形的面积为6π,弧长为6π,设其圆心角为α(1)求α的弧度;(2)求()cos sin2119cos sin22παπαππαα⎛⎫+--⎪⎝⎭⎛⎫⎛⎫-+⎪ ⎪⎝⎭⎝⎭的值.20.(6分)某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数y 关于昼夜温差x 的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想? 参考公式:回归直线的方程y bx a =+,其中1122211()()()ˆn niii ii i nni ii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,a y bx =-.21.(6分)已知公差为正数的等差数列{}n a ,12a =,且248,,a a a 成等比数列. (1)求n a ;(2)若12n n n b a +=⋅,求数列{}n b 的前n 项的和n T .22.(8分)已知2,3,(23)(2)7a b a b a b ==-⋅+=-. (1)求||a b +;(2)求向量a 与a b +的夹角的余弦值.参考答案一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D 【解析】【分析】直接利用正弦定理得到4sin ,4sin ,4sin a A b B c C ===,带入化简得到答案. 【详解】 正弦定理:4sin sin sin a b cA B C=== 即:4sin ,4sin ,4sin a A b B c C ===234(sin 2sin 3sin )4sin 2sin 3sin sin 2sin 3sin a b c A B C A B C A B C++++==++++故选D 【点睛】本题考查了正弦定理,意在考查学生的计算能力. 2.D 【解析】 【分析】设首项为1a ,利用等比数列的求和公式与通项公式求解即可. 【详解】 设首项为1a ,因为等比数列{}n a 的公比2q,所以()5152112311222a S a a --==, 故选:D. 【点睛】本题主要考查等比数列的求和公式与通项公式,熟练掌握基本公式是解题的关键,属于基础题. 3.D 【解析】 【分析】通过{}n a 和n S 关系,计算{}n a 通项公式,再计算n S ,代入数据得到答案. 【详解】24n n S a =-,取114n a =⇒=24n n S a =-,1124n n S a --=-两式相减得:11222n n n n n n a a a a a a --=-⇒=⇒是首项为4,公比为2的等比数列.21242412nn n S +-==--86642421245S S -==- 故答案选D 【点睛】本题考查了等比数列的通项公式,前N 项和,意在考查学生的计算能力. 4.D 【解析】 【分析】直接利用向量的坐标运算法则化简求解即可. 【详解】 解:向量(3,2),(0,﹣1),则向量22(0,﹣1)﹣(3,2)=(﹣3,﹣4).故选D . 【点睛】本题考查向量的坐标运算,考查计算能力. 5.D 【解析】分析:根据频率分布直方图中众数与中位数的定义和计算方法,即可求解频率分布直方图的众数与中位数的值.详解:由题意,频率分布直方图中最高矩形的底边的中点的横坐标为数据的众数, 所以中间一个矩形最该,故数据的众数为101512.52+=, 而中位数是把频率分布直方图分成两个面积相等部分的平行于y 轴的直线横坐标, 第一个矩形的面积为0.2,第二个矩形的面积为0.3,故将第二个矩形分成3:2即可, 所以中位数是13,故选D.点睛:本题主要考查了频率分布直方图的中位数与众数的求解,其中频率分布直方图中小矩形的面积等于对应的概率,且各个小矩形的面积之和为1是解答的关键,着重考查了推理与计算能力. 6.B 【解析】 【分析】以作为基底的向量需要是不共线的向量,可以从向量的坐标发现A ,C , D 选项中的两个向量均共线,得到正确结果是B . 【详解】解:可以作为基底的向量需要是不共线的向量,A 中一个向量是零向量,两个向量共线,不合要求B 中两个向量是1(1,2)e =-,2(5,7)e =,则2517⨯≠-⨯故1(1,2)e =-与2(5,7)e =不共线,故B 正确; C 中两个向量是1212e e =,两个向量共线,D 项中的两个向量是124e e =,两个向量共线,故选:B . 【点睛】本题考查平面中两向量的关系,属于基础题. 7.B 【解析】 【分析】依据cos 2y x π=为周期函数, 得到()*4041()42()043()n n n k k N n k k N a n n k k N n k k N ⎧=∈⎪⎪=+∈=⎨-=+∈⎪⎪=+∈⎩,并项求和,即可求出2017S 的值。
【详解】因为cos 2y x π=为周期函数,周期为4,所以()*4041()42()043()n n n k k N n k k N a n n k k N n k k N ⎧=∈⎪⎪=+∈=⎨-=+∈⎪⎪=+∈⎩,201724681012201420162017()()()()S a a a a a a a a a =+++++++++()24(68)(1012)(20142016)=-++-++-+++-+25041008=⨯=,故选B 。
【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。
8.B 【解析】 【分析】由已知得到等差数列{}n a 的公差0d <,且数列{}n a 的前11项大于1,自第11项起小于1,由12n n n n b a a a ++=,得出从1b 到8b 的值都大于零,9n =时,90,10b n <=时,100b >,且109b b >,而当11n ≥时,0n b <,由此可得答案. 【详解】由313n a n =-,得1280a =>,等差数列{}n a 的公差30d =-<, 由3130n a n =->,得313n <,则数列{}n a 的前11项大于1,自第11项起小于1. 由12,()n n n n b a a a n N *++=∈,可得从1b 到8b 的值都大于零,当9n =时,90,10b n <=时,100b >,且109b b >,当11n ≥时,0n b <, 所以n T 取得最大值时n 的值为11. 故选:B . 【点睛】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列{}n b 的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题. 9.A 【解析】 【分析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题. 10.D 【解析】 【分析】求出阴影部分的面积,然后与圆面积作比值即得. 【详解】圆被8等分,其中阴影部分有3分,因此所求概率为.故选D . 【点睛】本题考查几何概型,属于基础题. 11.C 【解析】 【分析】由0m S =()112m m m a a S S -⇒=-=--=-又113m m m a S S ++=-=,可得公差11m m d a a +=-=,从而可得结果. 【详解】{}n a 是等差数列()102ms m m a a S +∴==()112m m m a a S S -⇒=-=--=-又113m m m a S S ++=-=, ∴公差11m m d a a +=-=,11325m a a m m m +==+=-+⇒=,故选C .【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题. 12.C 【解析】 【分析】 【详解】53456353528a a a a a a a a a +-++-=+==,173********a a a aS ++=⋅=⋅=. 故选C.二、填空题:本题共4小题 13.1n-【解析】分析:在已知递推式两边同除以1n n a a +,可得新数列1{}n a 是等差数列,从而由等差数列通项公式求得1na ,再得n a .详解:∵11n n n n a a a a ++⋅=-, ∴两边除以1n n a a +⋅得,1111n n a a +-=,即1111n na a +-=-, ∵11a =-,∴111a =-, ∴1n a ⎧⎫⎨⎬⎩⎭是以1-为首项,以1-为公差的等差数列, ∴()()1111nn n a =-+-⨯-=-, ∴1n a n =-. 故答案为1n-.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握. 14.12n + 【解析】 【分析】根据条件求出()21nn a f =+的表达式,利用等比数列的定义即可证明{}na 为等比数列,即可求出通项公式. 【详解】令121n n ==,得()()()2111f f f =++,则()23f =,()1214a f =+=, 令122n n ==,得()()()4122f f f =++,则()47f =,()2418a f =+=,令122nn n ==,得()()()22122n nnnf f f +=++,即()()12122n nf f +=+,则()()121212n nf f +⎡⎤+=+⎣⎦,即 12,n n a a +=所以,数列{}n a 是等比数列,公比2q =,首项14a =.所以11422n n n a -+=⨯=,故答案为:12n + 【点睛】本题主要考查等比数列的判断和证明,综合性较强,考查学生的计算能力,属于难题.15.2【解析】 【分析】由已知利用正弦定理可求c =,代入“三斜求积”公式即可求得答案. 【详解】因为tan C =,所以sin cos C C =整理可得()sin C B C A =+ ,由正弦定理得c =因为b =所以S ===所以当a =ABC ∆的面积S 的最大值为2【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力. 16.124【解析】 【分析】根据折叠后不变的垂直关系,结合线面垂直判定定理可得到AP 为三棱锥的高,由此可根据三棱锥体积公式求得结果. 【详解】设点,,B D C 重合于点P ,如下图所示:AB BE ⊥,AD DF ⊥ AP PE ∴⊥,AP PF ⊥又,PE PF ⊂平面PEF ,PEPF P = AP ∴⊥平面PEF ,即AP 为三棱锥的高1111111133322224A PEF PEF CEF V S AP S AB -∆∆∴=⋅=⋅=⨯⨯⨯⨯=故答案为:124【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.三、解答题:解答应写出文字说明、证明过程或演算步骤。