绍兴县安昌中学2012年八年(下)数学竞赛试题(含答案)

合集下载

浙江省绍兴县2012-2013学年八年级数学竞赛模拟试题

浙江省绍兴县2012-2013学年八年级数学竞赛模拟试题

八年级数学竞赛模拟试题一.选择题:(每题5分,共30分)1.a 、b 、c 是正整数,a>b ,且27a ab ac bc --+=,则a c -等于( )A.1-B. 1-或7-C.1D.1或72.学科整合是新课程的重要理念之一,仔细观察会发现各门学科都与数学有着密切的联系,彬彬同学把26个英语字母按图形的变换分为5类:①HX ;②NSZ ;③BCDK ;④MTVWY ;⑤FGJLPQR .你能把剩下的5个元音字母:AEIOU 依次归类吗?( )A .①③④③④B .④③①①④C .⑤③①③④D .④③⑤①④3.已知a 为整数,关于x 的方程2200a x -=的根是质数,且满足27ax a ->,则a 等于( )A.2B.2或5C.±2D.-24.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形5.若不等式组⎩⎨⎧>++<+-m x x m x 1104的解集是4>x ,则( ) (A )29≤m (B )5≤m (C )29=m (D )5=m6.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )1二.填空题:(每题5分,共30分)7.、已知一个凸n 边形的n 个内角与某一个外角之和为1350°,则n 为8.将一个大正方体切割成27个大小相同的小正方体,并将大正方体各面上的某些小方格涂上黑色,而且上与下、前与后、左与右相对两个面上的涂色方式相同,如图所示.这时,至少有一个面上涂有黑色的小正方体的个数是_____________.9、设a ,b 是方程26810x x ++=的两个根,c ,d 是方程28610x x -+=的两个根,则(a+ c )( b + c )( a − d )( b − d )的值 。

初二下学期数学竞赛试题

初二下学期数学竞赛试题

初二下学期数学竞赛试题一、选择题(每题2分,共10分)1. 若a,b,c为正整数,且满足a^2 + b^2 = c^2,那么a,b,c称为勾股数。

下列哪组数不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 152. 已知x^2 - 5x + 6 = 0,求x的值。

A. x = 2B. x = 3C. x = 1 或 x = 6D. 无解3. 一个圆的半径为r,其面积的公式为S = πr^2。

若半径增加1,则新的面积与原面积的比值是多少?A. πB. 1 + πC. 1 + 2πD. 1 + 2πr4. 一个长方体的长、宽、高分别为a、b、c,其体积为V = abc。

若长增加1,宽和高不变,新的体积与原体积的比值是多少?A. 1 + 1/aB. 1 + 1/bC. 1 + 1/cD. 1 + a/b + a/c5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第五项是多少?A. 4B. 5C. 6D. 7二、填空题(每题3分,共15分)6. 一个分数的分子与分母之和为21,分子比分母小8,该分数是________。

7. 若一个等差数列的首项为a,公差为d,且前n项和为S_n,已知S_5 = 25,S_10 = 100,求a的值。

8. 一个正六边形的内角为120°,边长为1,求其外接圆的半径。

9. 一个函数f(x) = 2x - 3,求f(2)的值。

10. 一个直角三角形的两直角边分别为3和4,求斜边的长度。

三、解答题(每题10分,共30分)11. 证明:若a,b,c为正整数,且a^3 + b^3 = c^3,则a + b = c。

12. 解不等式:2x + 5 > 3x - 2。

13. 一个班级有30名学生,其中15名男生和15名女生。

如果从班级中随机选择3名学生,求至少有1名女生的概率。

四、综合题(每题15分,共30分)14. 在平面直角坐标系中,点A(2,3),点B(-1,-2),求直线AB的方程,并求出与x轴平行且经过点A的直线方程。

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为 .9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为.风味试卷试题根据语境9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.D10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.的小伙子化学教案他离开公司后化学教案会去哪(第10(甲)题)10(乙.已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O 的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012年全国初中数学竞赛试题(副题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1. 小王在做数学题时,发现下面有趣的结果:由上,我们可知第100行的最后一个数是().(A)10000 (B)10020 (C)10120 (D)102002. 如图,在3×4表格中,左上角的1×1小方格被染成黑色,则在这个表格中包含黑色小方格的矩形个数是().(A)11 (B)12 (C)13 (D)14(第2题)3.如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是().(A)1 (B)2 (C)3 (D)44. 若函数y=(k2-1)x2-(k+1)x+1(k为参数)的图象与x轴没有公共点,则k的取值范围是().(A)k>,或k<-1 (B)-1<k<,且k≠1(C)k>,或k≤-1 (D)k≥,或k≤-15. △ABC中,,分别为上的点,平分,BM=CM,为上一点,且,则与的大小关系为().(A)(B)(C)(D)无法确定二、填空题(共5小题,每小题7分,共35分)6. 如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为.(第6题)7.甲、乙、丙三辆车都匀速从A地驶往B地.乙车比丙车晚5分钟出发,出发后40分钟追上丙车;甲车比乙车晚20分钟出发,出发后100分钟追上丙车,则甲车出发后分钟追上乙车.8. 设a n=(n为正整数),则a1+a2+…+a2012的值 1.(填“>”,“=”或“<”)9.红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有种放法.10. △ABC中,已知,且b=4,则a+c= .②将醚层依次用饱和亚硫酸三、解答题(共4题,每题20分,共80分)11. 已知c≤b≤a,且,求的最小值.12. 求关于a,b,c,d的方程组的所有正整数解.13. 如图,梯形ABCD中,AB∥CD,AC,BD相交于点O.P,Q分别是AD,BC上的点,且,.求证:OP=OQ.(第13题)14.(1)已知三个数中必有两个数的积等于第三个数的平方,求的值.(2)设为非零实数,为正整数,是否存在一列数满足首尾两项的积等于中间项的平方?(3)设为非零实数,若将一列数中的某一项删去后得到又一列数(按原来的顺序),满足首尾两项的积等于中间项的平方. 试求的所有可能的值.2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.41。

浙江省绍兴市2012-2013学年八年级数学竞赛模拟试题

浙江省绍兴市2012-2013学年八年级数学竞赛模拟试题

浙江省绍兴市2012-2013学年⼋年级数学竞赛模拟试题⼋年级优秀⽣数学知识检测试题⼀、选择题(每题5分,共30分)1、在19991002,1001,1000 这1000个⼆次根式中,与2000是同类⼆次根式的个数共有……………………()A 、3B 、4C 、5D 、62、在凸四边形ABCD 中,AB=BC=BD ,∠ABC=70°,则∠ADC 等于…………()(A )145° (B)150° (C)155° (D)160°3、线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平⾯区域的⾯积为 ………………………………………… ()A .6B .8C .9D .104、如图1,梯形ABCD 中,AB //CD ,且CD =3AB ,EF //CD ,EF 将梯形ABCD 分成⾯积相等的两部分,则AE :ED 等于…………()。

(A )2 (B )23(C )215+ (D )215-5、如图2,已知四边形ABCD 中,AD ∥BC ,若∠DAB 的⾓平分线AE 交C D 于E ,连接BE ,且BE 恰好平分∠ABC ,则AB 的长与AD +BC 的长的⼤⼩关系是 ……………………()A .AB >AD +BC B .AB =AD +BC. C .AB <AD +BC D .⽆法确定6、有铅笔、练习本、圆珠笔三种学习⽤品,若购铅笔3⽀,练习本7本,圆珠笔1⽀共需3.15元;若购铅笔4⽀,练习本8本,圆珠笔2⽀共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A .1.2元B .1.05元C .0.95元D .0.9元7、已知实数a 、b 、c 满⾜a+b =5,c2=ab+b-9,则c=8、如图3,∠A =60°,线段BP 、BE 把∠ABC 三等分,线段CP 、CE 把∠ACB 三等分,则∠BPE 的⼤⼩是______图49、已知关于x 的⼀元⼆次⽅程x2-2x+a=0只有正整数根,则⾮负整数a 的值为í1A B CDEF10、已知:如图4,长⽅形ABCD 中,F 是CD 若长⽅形的⾯积是300平⽅⽶,则阴影部分的⾯积等于____平⽅⽶11、已知线段AB 的两个端点分别为A (0,1),B (1,0),P (x ,y )为线段AB 上不与端点重合的⼀个动点,则的最⼩值为____12、如图所⽰,AE ⊥AB ,BC ⊥CD 且AB=AE ,BC=CD ,F 、A 、G 、C 、H 在同⼀直线上,如按照图中所标注的数据及符号,则图中实线所围成的图形⾯积是____三:简答题13、(8分)令a ,b ,c 为整数,并且满⾜a+b+c=0.假设d=a1999+b1999+c1999.请问:(a )有没有可能d=2?(b )有没有可能d 是个质数?(⼤于1的整数,如果只有1及本⾝的因⼦,称它为质数.)14、(10分)n ⽀⾜球队参加循环赛,每两⽀⾜球队之间都要进⾏⽐赛,在循环过程中,第⼀⽀球队胜1x 场,负1y 场,第⼆⽀球队胜2x 场,负2y 场,依次类推到第n ⽀球队(不考虑平局),求证:2222122221n n y y y x x x +++=+++15、(12分)如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,求∠FPC 的值.16、(15分)在平⾯直⾓坐标系中,O 为原点,点A (2,m )在直线y =2x 上,在x 轴上有点B (10,0)连接AB ,直线AB 交y 轴于点C 。

2012年下学期八年级数学竞赛试题.doc

2012年下学期八年级数学竞赛试题.doc

2012年下学期八年级数学竞赛试题 姓名____________ 班级__________一、 选择题(每小题3分,共30分)1、函数y=121--x ,自变量x 的取值范围是( )A.x >1B.x ≠1C.x ≥1且x ≠5D.x >1且x ≠52、关于函数y= -x -5的图像,有如下说法:①.图像过点(0,-5) , ②图像与x 轴的交点是(-5,0), ③ 由图象可知y 随x 的增大而增大 , ④图像不经过第一象限 , ⑤图像是与y= -x+2平行的直线 ,其中正确说法有( )A .5个 B. 4个 C. 3个 D. 2个3、已知x1+y 1=3,则y xy x y xy x +-++33的值等于 ( ) A 、5 B 、10 C 、15 D 、204、已知整数a 、b 满足ab=12,则a +b 结果的可能值的个数是( )A 、3个B 、4个C 、5个D 、6个5、一次函数y=kx-b 和正比例函数y=kbx 在同一坐标系内的大致图像不可能...的是( )6、形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为d cb a =ad -bc ,依此法则计算4132-的结果为( )A .11B .-11C .5D .-27、由4个2组成的数中,最大的一个数是 ( )A 、2222B 、2222C 、2222D 、22228、的值( )(A )在1到2之间(B )在2到3之间(C )在3到4之间(D )在4到5之间9、已知⊿ABC 中AB=10,BC=15,CA=20,O 是⊿ABC 内角平分线的交点,则⊿ABO,⊿BCO,⊿CAO 的面积比是 ( )A 、1:1:1;B 、1:2:3;C.2:3:4; D.3:4:5 10、对于任意x 的允许取值范围,p=∣1-2x ∣+∣1-3x ∣+∣1-4x ∣+∣1-5x ∣+∣1-6x ∣+∣1-7x ∣+∣1-8x ∣+∣1-9x ∣+∣1-10x ∣是一个定值,则这个定值是( )A 、2B 、3C 、4D 、5二、填空题(每小题3分,共30分)11、等腰三角形一腰的高等于腰的一半,则顶角是______________度。

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。

八年级(下)数学竞赛试卷及答案

八年级(下)数学竞赛试卷及答案

八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

学科竞赛题

学科竞赛题

2012—2013学年下期学科竞赛试卷八年级数学一、填空题(每小题2分,共20分)1、在式子2111331,,,;,22x xyax x y mπ+++中,分式的个数是 ;2、2005年新版人民币中一角硬币的直径约为0.022m,用科学记数法表示为 m.3、梯形ABCD中,BCAD//,1===ADCDAB,︒=∠60B,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PDPC+的最小值。

4、如图,菱形ABCD的对角线AC=8,BD=6,则菱形的周长L=___ _____.5、如图,点P在双曲线(0)ky kx=≠上,点(12)P',与点P关于y轴对称,则此双曲线的解析式为.6、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是度.7、已知:24111A Bx x x=+--+是一个恒等式,则A=______,B=________。

8、如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.ABMNCD9、如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为2,L 2、L 3的距离为4,则正方形的边长为 .10、如图,已知∠AOB,OA =OB ,点E 在OB 边上,四边形AEBF 是矩形.请你只用无. 刻度..的直尺在图中画出∠AOB 的平分线(请保留画图痕迹). 二、选择题 (每小题2分,共12分)11、15、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处, 已知OA=8,OC=4则点A 1的坐标为 ;A (4.8 ,6.4)B (4 ,6)C (5.4 ,5.8)D (5 ,6)12、如图,函数y =k (x +1)与(0)ky k x=<在同一坐标系中,图象只能是下图中的 ;13、下列语句中,不是命题的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学竞赛卷
一、 填空题(每题4分,共40分):
1、已知:三个数a 、b 、c 的积为负数,和为正数,且x =
a a +
b b +
c c +ab ab +ac ac +c
b bc
,则ax 3+bx 2
+cx +1的值为_________.
2、一个多边形的内角和为12600 ,则它的边数是____________.
3、已知:a -
a 1=1,则a 8
+81a
=________. 4、某种商品的进货价是每件a 元,零售件是每件1100元,商店按零售价的80%降价出售,仍可获利10%(相对于进货价),则a =___ __元.
5、把99拆成四个数,使得第一个数加上2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,那么这四个数是___ _______.
6、若|a +b |<|a |+|b |,则
b
b a a
||||-
的值等于_________或_________. 7、已知b -a >0且a ≥0,那么||222b a b ab a +-+-化简为___________. 8、一个等腰三角形的周长为16,底边上的高是4,则这个三角形的三边长分别 是______,_____,_______。

9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是___ ____.
10、一辆卡车在公路上匀速行使,起初看到里程碑上的数字为AB ,过了一小时里程碑上的
数字为BA ,又行使了一小时里程碑上的数字为三位数A 0B ,则第三次看到里程碑上的数字是____ _____. 二、选择题(每题4分,共40分):
11、ΔABC 中三边之比为1: 1:
,则ΔABC 形状一定不是 ( )
A 、等腰三角形
B 、直角三角形
C 、等腰直角三角形
D 、锐角三角形
12、数学大师陈省身于2004年12月3日在天津逝世.陈省身教授在微分几何等领域做出了杰出贡献,是获得沃尔夫奖的惟一华人.他曾经指出,平面几何中有两个重要定理,一个是勾股定理,另一个是三角形内角和定理,后者表明平面三角形可以千变万化,但是三
个内角的和是不变量.下列几个关于不变量的叙述:
(1)边长确定的平行四边形ABCD ,当∠A 变化时,其任意一组对角之和不变; (2)当多边形的边数不断增加时,它的外角和不变; (3)当△ABC 绕顶点A 旋转时,△ABC 各内角的大小不变; (4)在放大镜下观察,含角a 的图形放大时,角a 的大小不变; (5)当圆的半径变化时,圆的周长与半径的比值不变; (6)当圆的半径变化时,圆的周长与面积的比值不变, 其中,错误的叙述有 ( )
(A)2个 (B)3个 (C)4个 (D)5个 13、将右图中的图案甲变成图案乙,正确的说法是 ( ) A 、“扶正”后即可 B 、“扶正”后向右平移即可
C 、“扶正”后作直线 MN 的轴对称图形即可
D 、以上三种方法都可
14、已知x 1,x 2, x 3的平均数为5,y l ,y 2,y 3的平均数为7,则2x l +3y l ,2x z +3y 2,2x 3+3y 3
的平均数为 ( ) (A) 31 (B)
331 (C) 5
93 (D) 17 15、如图,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( ) A 、3cm 2 B 、4cm 2 C 、5cm 2 D 、2cm 2
16、在凸四边形ABCD 中,AB =BC =BD ,∠ABC =700,则∠ADC 等于 ( ) (A) 1450 (B) 1500 (C) 1550 (D) 1600 17、.如图,△ABC 为等边三角形,且BM =CN ,AM 与BN 相交于
点P ,则∠APN ( )
(A)等于700 (B)等于600 (C)等于500 (D)大小不确定 18、如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置 ( )
(A) 3个球 (B) 4个球 (C) 5个球 (D) 6个球
A
B C D
F
E
M
A
B
C P
N
19、已知(a +b )2
=8,(a -b )2
=12. 则a 2
+b 2
的值为( )
A 、10
B 、8
C 、20
D 、4
20、某种细胞在分裂过程中,每个细胞一次分裂为2个.1个细胞第1次分裂为2个,第2
次继续分裂为4个,第3次继续分裂为8个,……则第50次分裂后细胞的个数最接近( )
(A)1015 (B)1012 (C)lO 8 (D)lO 5 三、解答题
21、如图, 已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过 A 作AG ⊥EB ,垂足为G ,AG 交 BD 于点 F ,则 OE =OF .(对上述命题,可证 RtΔBOE ≌ Rt ΔAOF ,可得OE =OF .) 若点 E 在 AC 的延长线上,AG ⊥ EB 交 EB 的延长线于点 G ,AG 的延长线交 DB 的延长线于点F ,其他条件不变,则结论“OE = OF ”还成立吗 ? 如果成立,请说明理由;如果不成立,也请说明理由.
O G
F E D C
B
A
O
G
F
E
D C B A
22、在公路沿线有若干个黄沙供应站,每两个黄沙供应站之间有一个建筑工地.一辆载着黄
沙的卡车从公司出发,到达第1个黄沙供应站装沙,使车上的黄沙增加1倍,到达第1个建筑工地卸下黄沙2吨.以后每到达黄沙供应站装沙,使车上黄沙增加1倍,每到达建筑工地卸下黄沙2吨.这样到达第3个建筑工地正好将黄沙卸光.求卡车上原来有多少吨的黄沙?
23、当x=20时,一个关于x的二次三项式的值等于694.若该二次三项式的各项系数及常
数项都是绝对值小于10的整数,求满足条件的所有二次三项式.
24、(本题满分14分)某超市对顾客实行优惠购物,规定如下:
(1)若一次性购物少于200元,则不予优惠;
(2)若一次性购物满200元,但不超过500元,按标价给予9折优惠;
(3)若一次性购物超过500元,其中500元以下部分(包括500元)按标价给予9折优惠,超过500元部分按标价给予8折优惠。

李明两次去超市购物,分别付款198元和554元,现在王娟准备一次性地购买和李明分两次购买同样多的物品,她需付款多少元?
参考答案
一、
1、解:由a 、b 、c 的积为负数,又a +b +c 为正数, 可知a 、b 、c 中必有一负两正,不妨设a 为负数,所以为bc 正数,ab 为负数, ac 为负数,从而 x =
a a +
b b +
c c +ab ab +ac ac +c
b b
c =(-1)+1+1+(-1)+(-1)+1=0。

所以ax 3
+bx 2
+cx +1=1 2、9 3、解:∵a -
a 1=1 ∴(a -a 1)2=1 ∴a 2-2·a ·a 1+21a =1 即a 2
+21a =3 ∴(a 2+21a )2=32 即a 4+41a =9-2=7 ∴(a 4+41a )2=72
即a 8
+81a
=49-2=47
4、解:根据题意,得方程 1100×80%-a =10%·a 解之,得a =800元
5、解:设相等的这个数为x , 根据题意,得(x -2)+(x +2)+2
x
+2x =99 解之得x =22 ∴这四个数依次是20,24,11,44 6、1或-1 7、-2a 8、5,5,6 9、11
10、解:设里程碑上的数字为AB 的十位上的数字为x ,个位上的数y ,则(100x +y )-(10y +x )= (10y +x )-(10x +y ),化简得6x =y , 由于x , y 均为1—9的数,所以x =1,y =6, 所以第三次看到里程碑上的数字是106 二
11——15、DACAD 16——20、ABCAA 三、 21、略
22、设卡车上原有黄沙x 吨,根据题意得方程2[(2x -2)-2]-2=O ,解得x =1.75(吨). 23、将x =20代入ax 2+bx +c 得400a +20b +c =694. ①
于是400a=694-(206+c).……5分
由-10<b<10,-10<c<10得-210<20b+c<210.故484<400a<904,
又a为整数,所以a=2.……7分
将a=2代入①,得20b+c=106,②
于是20b=-106-c,又-10<c<10.故-116<20b<-96,
而b为整数,故6=-5,代入②得c=-6.……10分将x=20代入2x2-5x-6得其值为694.
所以满足条件的二次三项式只有2x2-5x-6……12分
20.20人围成一圈,任选一人开始,依顺时针方向(亦可依逆时针方向)20人所取本数分别为a l,a2,a3,a4,…,a20.
令S1=a1,S2=a l+a2…
S k=a l+a2+a3+a4+…+a k(k=1,2,3,…,20).……3分如果S k中有1个数为20的倍数,则本结论成立.
若S k中没有1个数是20的倍数,则S k被20除必有余数,令其余数为r k(k=1,2, (24)。

相关文档
最新文档