2018全国Ⅱ卷理科数学及解析

合集下载

2018年高考理科数学新课标全国2卷逐题解析

2018年高考理科数学新课标全国2卷逐题解析

2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及稿本纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。

1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案1.已知复数 $\frac{1+2i}{1-2i}=\frac{-43}{55}$,求其值。

2.已知集合 $A=\{(x,y)|x+y^2\leq 3,x\in Z,y\in Z\}$,求$A$ 中元素的个数。

3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为什么样子?4.已知向量 $a,b$ 满足 $|a|=1$,$a\cdot b=-1$,求 $a\cdot (2a-b)$ 的值。

5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为 $3$,求其渐近线方程。

6.在$\triangle ABC$ 中,$\cos A=\frac{4}{5}$,$BC=1$,$AC=5$,求 $AB$ 的值。

7.设计一个程序框图来计算 $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{100}$。

8.XXX猜想是“每个大于 $2$ 的偶数可以表示为两个素数的和”,在不超过 $30$ 的素数中,随机选取两个不同的数,其和等于 $30$ 的概率是多少?9.在长方体 $ABCD-A_1B_1C_1D_1$ 中,$AB=BC=1$,$AA_1=3$,求异面直线$AD_1$ 和$DB_1$ 所成角的余弦值。

10.若 $f(x)=\cos x-\sin x$ 在 $[-a,a]$ 上是减函数,求$a$ 的最大值。

11.已知 $f(x)$ 是定义域为 $(-\infty,+\infty)$ 的奇函数,满足 $f(1-x)=f(1+x)$,且 $f(1)=2$,求$f(1)+f(2)+f(3)+\cdots+f(50)$ 的值。

12.已知 $F_1,F_2$ 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点,$A$ 是椭圆的左顶点,点 $P$ 在过 $A$ 且斜率为 $3$ 的直线上,$\triangle PF_1F_2$ 是等腰三角形,且 $\angleF_1PF_2=120^\circ$,求椭圆的离心率。

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)

2018年全国二卷数学一、选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为 A .15BCD10.假设()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.假设(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:此题共4小题,每题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.假设,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,假设SAB △的面积为__________.三、解答题:共70分。

2018年高考理科数学全国卷2(含答案解析)

2018年高考理科数学全国卷2(含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)2018年全国二卷数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=-A .43i 55-- B .43i 55-+ C .34i 55--D .34i 55-+2.已知集合(){}223A x y x y x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>3线方程为 A .2y x= B .3y x= C .2y =D .3y x =6.在ABC△中,5cos2C 1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的开始0,0N T ==S N T =-S 输出1i =100i <1N N i=+11T T i =++结束是否上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。

2018高考全国新课标2卷理科数学版和答案解析

2018高考全国新课标2卷理科数学版和答案解析

WORD 格式整理绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.1 2i1 2iA.4 35 5i B.4 35 5i C.3 45 5i D.3 45 5i2.已知集合 2 2 3A x,y x y ≤,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.4x xe e3.函数 2f xx的图像大致为4.已知向量a,b满足|a| 1 ,a b 1 ,则a(2a b)A.4 B.3 C.2 D.02 2x y5.双曲线2 2 1( 0, 0)a ba b的离心率为3,则其渐近线方程为A.y 2x B.y 3x C.2y x D.23y x26.在△ABC 中,cos C52 5,BC 1 ,AC 5 ,则ABA.4 2 B.30 C.29 D.2 5分享专业知识WORD 格式整理1 1 1 1 17.为计算S 1 ⋯,设计了右侧的程序框图,2 3 4 99 100开始N 0,T 0 则在空白框中应填入i 1 A.i i 1B.i i 2 是否i 100C.i i 3D.i i 4 N N 1iS N T 1输出ST Ti 1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.112B.114C.115D.1189.在长方体A BCD A1B1C1D1 中,AB BC 1 ,A A ,则异面直线AD1 与1 3 DB 所成角的余弦值为1A.15B.56C.55D.2210.若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A.π4B.π2C.3π4D.π11.已知 f (x) 是定义域为( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) ⋯ f (50)A.50 B.0 C.2 D.5012.已知F1 ,2 2x yF 是椭圆:的左,右焦点,A是C 的左顶点,点P 在过A且斜率C 2 2 1(a b 0)2a b为36的直线上,△PF1F2 为等腰三角形,F1 F2 P 120 ,则C 的离心率为A.23B.12C.13D.14二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2018高考全国2卷理科数学带详细标准答案

2018高考全国2卷理科数学带详细标准答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己地姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹地签字笔书写,字体工整、笔迹清楚. 3.请按照题号顺序在各题目地答题区域内作答,超出答题区域书写地答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹地签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素地个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=地图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>A.y =B.y =C.y x =D.y = 6.在ABC △中,cos2C =1BC =,5AC =,则AB = A..7.为计算11111123499100S =-+-++-,设计了右侧地程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想地研究中取得了世界领先地成果.哥德巴赫猜想是“每个大于2地偶数可以表示为两个素数地和”,如30723=+.在不超过30地素数中,随机选取两个不同地数,其和等于30地概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角地余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 地最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞地奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:地左,右焦点,A 是C 地左顶点,点P 在过A地直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 地离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处地切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+地最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥地顶点为S ,母线SA ,SB 所成角地余弦值为78,SA 与圆锥底面所成角为45°,若SAB △地面积为,则该圆锥地侧面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答.(一)必考题:共60分. 17.(12分)记n S 为等差数列{}n a 地前n 项和,已知17a =-,315S =-. (1)求{}n a 地通项公式; (2)求n S ,并求n S 地最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)地折线图.为了预测该地区2018年地环境基础设施投资额,建立了y 与时间变量t 地两个线性回归模型.根据2000年至2016年地数据(时间变量t 地值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年地数据(时间变量t 地值依次为1,2,,7)建立模型②:ˆ9917.5yt =+.(1)分别利用这两个模型,求该地区2018年地环境基础设施投资额地预测值; (2)你认为用哪个模型得到地预测值更可靠?并说明理由. 19.(12分)设抛物线24C y x =:地焦点为F ,过F 且斜率为(0)k k >地直线l 与C 交于A ,B 两点,||8AB =.(1)求l 地方程;(2)求过点A ,B 且与C 地准线相切地圆地方程. 20.(12分)如图,在三棱锥P ABC -中,AB BC == 4PA PB PC AC ====,O 为AC 地中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角地正弦值. 21.(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 地参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩(θ为参数),直线l 地参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 地直角坐标方程;(2)若曲线C 截直线l 所得线段地中点坐标为(1,2),求l 地斜率. 23.[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥地解集; (2)若()1f x ≤,求a 地取值范围. 绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B8.C9.C10.A11.C12.D二、填空题13.2y x = 14.9 15.12-16.三、解答题 17.解:(1)设{}n a 地公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 地通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为−16. 18.解:(1)利用模型①,该地区2018年地环境基础设施投资额地预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年地环境基础设施投资额地预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到地预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年地数据对应地点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年地数据建立地线性模型①不能很好地描述环境基础设施投资额地变化趋势.2010年相对2009年地环境基础设施投资额有明显增加,2010年至2016年地数据对应地点位于一条直线地附近,这说明从2010年开始环境基础设施投资额地变化规律呈线性增长趋势,利用2010年至2016年地数据建立地线性模型ˆ9917.5yt =+可以较好地描述2010年以后地环境基础设施投资额地变化趋势,因此利用模型②得到地预测值更可靠.(ⅱ)从计算结果看,相对于2016年地环境基础设施投资额220亿元,由模型①得到地预测值226.1亿元地增幅明显偏低,而利用模型②得到地预测值地增幅比较合理.说明利用模型②得到地预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)由题意得(1,0)F ,l 地方程为(1)(0)y k x k =->. 设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 地方程为1y x =-.(2)由(1)得AB 地中点坐标为(3,2),所以AB 地垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆地圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆地方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.解:(1)因为4AP CP AC ===,O 为AC 地中点,所以OP AC ⊥,且OP = 连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r地方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u r取平面PAC 地法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r.设平面PAM 地法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|2OB =uu u r n ..解得4a =-(舍去),43a =.所以4()333=--n.又(0,2,PC =-u u u r,所以cos ,4PC =uu u r n . 所以PC 与平面PAM.21.解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞地最小值.①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->.故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.22..解:(1)曲线C 地直角坐标方程为221416x y +=.当cos 0α≠时,l 地直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 地直角坐标方程为1x =.(2)将l 地参数方程代入C 地直角坐标方程,整理得关于t 地方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段地中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 地斜率tan 2k α==-.23.解:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥地解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 地取值范围是(,6][2,)-∞-+∞.21(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a . 解:(1)()e 2x f x x '=-,()e 2x f x ''=-.当ln2x <时,()0f x ''<,当ln2x >时,()0f x ''>,所以()f x '在(,ln 2)-∞单调递减,在(ln 2,)+∞单调递增,故()(ln 2)22ln 20f x f ''≥=->,()f x 在(,)-∞+∞单调递增.因为0x ≥,所以()(0)1f x f ≥=.(2)当0x >时,设2e ()xg x a x=-,则2()()f x x g x =,()f x 在(0,)+∞只有一个零点等价于()g x 在(0,)+∞只有一个零点.3e (2)()x x g x x -'=,当02x <<时,()0g x '<,当2x >时,()0g x '>,所以()g x 在(0,2)单调递减,在(2,)+∞单调递增,故2e ()(2)4g x g a ≥=-.若2e 4a <,则()0g x >,()g x 在(0,)+∞没有零点.若2e 4a =,则()0g x ≥,()g x 在(0,)+∞有唯一零点2x =.若2e 4a >,因为(2)0g <,由(1)知当0x >时,2e 1x x >+,22e 1()1x g x a a x x =->+-,故存在1(0,2)x ∈⊆,使1()0g x >. 4422e e (4)1616a ag a a a a a=->- 2e x x >,版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.LDAYt 。

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)

2018年全国二卷数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和",如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.A .B .C .D .2.已知集合,则中元素的个数为A .9B .8C .5D .43.函数的图像大致为4.已知向量,满足,,则 A .4B .3C .2D .05.双曲线A .B .C .D . 6.在中,,,则 A .BCD .12i12i+=-43i 55--43i 55-+34i 55--34i 55-+(){}223A x y xy x y =+∈∈Z Z ,≤,,A ()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 22221(0,0)x y a b a b-=>>y =y =y x =y =ABC △cos2C =1BC =5AC =AB =7.为计算,设计了右侧的程序框图,则在空白框中应填入 A . B . C . D .8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .B .C .D .9.在长方体中,,与所成角的余弦值为A .BCD10.若在是减函数,则的最大值是A .B .C .D .11.已知是定义域为的奇函数,满足.若,则A .B .0C .2D .5012.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为 A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分. 13.曲线在点处的切线方程为__________.11111123499100S =-+-++-…1i i =+2i i =+3i i =+4i i =+30723=+1121141151181111ABCDA B C D -1AB BC ==1AA 1AD 1DB 15()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 231213142ln(1)y x =+(0,0)14.若满足约束条件 则的最大值为__________.15.已知,,则__________. 16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:共60分。

17.(12分)记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.,x y 25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,z x y =+sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=S SA SB 78SA SAB△n S {}n a n 17a =-315S =-{}n a n S n Sy y t t 1217,,…,ˆ30.413.5y t =-+t 127,,…,ˆ9917.5yt =+19.(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程(2)求过点,且与的准线相切的圆的方程. 20.(12分)如图,在三棱锥中,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.21.(12分)已知函数.(1)若,证明:当时,; (2)若在只有一个零点,求.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率. 23.[选修4-5:不等式选讲](10分)24C y x =:F F (0)k k >l C A B ||8AB =l A B C P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC M PA C --30︒PC PAM 2()e x f x ax =-1a =0x ≥()1f x ≥()f x (0,)+∞a xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l设函数.(1)当时,求不等式的解集; (2)若,求的取值范围.()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B8.C9.C10.A11.C12.D二、填空题 13. 14.915.16.三、解答题 17.解:(1)设的公差为d ,由题意得. 由得d =2.所以的通项公式为. (2)由(1)得. 所以当n =4时,取得最小值,最小值为−16. 18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数2y x =12-{}n a 13315a d +=-17a =-{}n a 29n a n =-228(4)16n S n n n =-=--n S ˆ30.413.519226.1y=-+⨯=ˆ9917.59256.5y=+⨯=30.413.5y t =-+据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:(1)由题意得,l 的方程为. 设, 由得.,故. 所以.由题设知,解得(舍去),. 因此l 的方程为.(2)由(1)得AB 的中点坐标为,所以AB 的垂直平分线方程为,即.设所求圆的圆心坐标为,则解得或 因此所求圆的方程为或. 20.解:(1)因为,为的中点,所以,且ˆ9917.5yt =+(1,0)F (1)(0)y k x k =->1221(,),(,)A y x y x B 2(1),4y k x y x=-⎧⎨=⎩2222(24)0k x k x k -++=216160k ∆=+>122224kx k x ++=122244||||||(1)(1)x k AB AF BF k x +=+=+++=22448k k+=1k =-1k =1y x =-(3,2)2(3)y x -=--5y x =-+00(,)x y 00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩003,2x y =⎧⎨=⎩0011,6.x y =⎧⎨=-⎩22(3)(2)16x y -+-=22(11)(6)144x y -++=4AP CP AC ===O AC OP AC ⊥OP =连结.因为,所以为等腰直角三角形, 且,. 由知. 由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知可得..解得(舍去),.所以. OB AB BC AC ==ABC △OB AC ⊥122OB AC ==222OP OB PB +=PO OB ⊥,OP OB OP AC ⊥⊥PO ⊥ABC O OB uu u rx O xyz -(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u rPAC (2,0,0)OB =u u u r(,2,0)(02)M a a a -<≤(,4,0)AM a a =-u u u rPAM (,,)x y z =n 0,0AP AM ⋅=⋅=u u u r u u u r n n 20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,)a a =--n cos ,OB =uu u rn |cos ,|2OB =uu u r n 4a =-43a =4()3=-n又,所以所以与平面. 21.解:(1)当时,等价于.设函数,则. 当时,,所以在单调递减. 而,故当时,,即. (2)设函数.在只有一个零点当且仅当在只有一个零点.(i )当时,,没有零点; (ii )当时,.当时,;当时,. 所以在单调递减,在单调递增. 故是在的最小值. ①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以. (0,2,PC =-u u u r cos ,PC =uu u r n PC PAM 1a =()1f x ≥2(1)e 10x x -+-≤2()(1)e 1x g x x -=+-22()(21)e (1)e x x g'x x x x --=--+=--1x ≠()0g'x <()g x (0,)+∞(0)0g =0x ≥()0g x ≤()1f x ≥2()1e x h x ax -=-()f x (0,)+∞()h x (0,)+∞0a ≤()0h x >()h x 0a >()(2)e x h'x ax x -=-(0,2)x ∈()0h'x <(2,)x ∈+∞()0h'x >()h x (0,2)(2,)+∞24(2)1eah =-()h x [0,)+∞(2)0h >2e 4a <()h x (0,)+∞(2)0h =2e 4a =()h x (0,)+∞(2)0h <2e 4a >(0)1h =()h x (0,2)0x >2e x x >33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.22.解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.23.解:(1)当时,可得的解集为. (2)等价于.而,且当时等号成立.故等价于. 由可得或,所以的取值范围是()h x (2,4)a ()h x (0,)+∞()f x (0,)+∞2e 4a =C 221416x y +=cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=1224(2cos sin )13cos t t ααα++=-+2cos sin 0αα+=l tan 2k α==-1a =24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞。

相关文档
最新文档