【易错题】高中三年级数学下期中试题(含答案)(2)
2020-2021济南市高中三年级数学下期中试卷(含答案)

2020-2021济南市高中三年级数学下期中试卷(含答案)一、选择题1.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .92.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2CD.23.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .04.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .235.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .26.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A.2BC .5D .927.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .1829.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S10.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .811.若01a <<,1b c >>,则( ) A .()1ab c< B.c a cb a b->- C .11a a c b --<D .log log c b a a <12.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .52二、填空题13.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 14.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.15.计算:23lim 123n n nn→+∞-=++++L ________16.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = . 17.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.18.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.不等式211x x --<的解集是 .三、解答题21.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若23b =30A =︒,求角B 的值; (2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 22.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .23.已知等差数列{}n a 的公差为()0d d ≠,等差数列{}n b 的公差为2d ,设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,53A B =. (1)求数列{}n a ,{}n b 的通项公式; (2)设11n n n n c b a a +=+•,数列{}n c 的前n 项和为n S ,证明:2(1)n S n <+.24.已知数列{n a }的前n 项和1*1()2()2n n n S a n N -=--+∈,数列{n b }满足n b =2n n a .(I)求证数列{n b }是等差数列,并求数列{n a }的通项公式; (Ⅱ)设2log n n n c a =,数列{22n n c c +}的前n 项和为T n ,求满足*25()21n T n N <∈的n 的最大值.25.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.等比数列{}n a 中,1752,4a a a ==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记n S 为{}n a 的前n 项和.若126m S =,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q212a a q ===,故选D. 3.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.4.C解析:C 【解析】试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=, ∴1011091040135952S a d ⨯=+⨯=-+=. 考点:等差数列的通项公式和前n 项和公式.5.D解析:D 【解析】由a (a +b +c )+bc =4-23, 得(a +c )·(a +b )=4-23. ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c ≥2423-=2(3-1)=23-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误6.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=,∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .8.B解析:B 【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .9.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.10.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.B解析:B 【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x13=时()11221x xx x-+-的最小值为2,得到f(x)的最小值为f(13)92=,再由题中不等式恒成立可知m≤(1221x x+-)min,由此可得实数m的最大值.【详解】解:设f(x)11222211x x x x=+=+--(0<x<1)而1221x x+=-[x+(1﹣x)](1221x x+-)()1152221x xx x-=++-∵x∈(0,1),得x>0且1﹣x>0∴()11221x xx x-+≥-=2,当且仅当()112211x xx x-==-,即x13=时()11221x xx x-+-的最小值为2∴f(x)1221x x=+-的最小值为f(13)92=而不等式m1221x x≤+-当x∈(0,1)时恒成立,即m≤(1221x x+-)min因此,可得实数m的最大值为9 2故选:B.【点睛】本题给出关于x的不等式恒成立,求参数m的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.二、填空题13.【解析】【分析】根据均值不等式知即再由即可求解注意等号成立的条件【详解】(当且仅当等号成立)(当且仅当等号成立)(当且仅当等号成立)故答案为【点睛】本题主要考查了均值不等式不等式等号成立的条件属于中解析:1 4【解析】【分析】根据均值不等式知,4a b +≥=()2416a b ab +≥,再由41684ab a b +≥=⋅即可求解,注意等号成立的条件. 【详解】4a b +≥=Q (当且仅当4a b =等号成立),()2416a b ab ∴+≥(当且仅当4a b =等号成立),()2444a b a b ∴++≥⋅8=(当且仅当4a b =等号成立), ()224281a a a∴+=⇒=. 故答案为14b =. 【点睛】本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.14.6【解析】【分析】由题意公差d=1na1+=2668∴n (2a1+n-1)=5336=23×23×29得出满足题意的组数即可得出结论【详解】由题意公差d=1na1+=2668∴n (2a1+n-1)=解析:6 【解析】 【分析】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29,得出满足题意的组数,即可得出结论. 【详解】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29, ∵n <2a 1+n-1,且二者一奇一偶,∴(n ,2a 1+n-1)=(8,667),(23,232),(29,184)共三组; 同理d=-1时,也有三组. 综上所述,共6组. 故答案为6. 【点睛】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.15.【解析】【详解】结合等差数列前n 项和公式有:则: 解析:6【解析】 【详解】结合等差数列前n 项和公式有:()11232n n n +++++=L ,则:()()226231362lim lim lim lim61123111n n n n n n n n n n n n n n n→+∞→+∞→+∞→+∞----====+++++++L . 16.10【解析】【分析】根据等差数列的前n 项和公式可得结合等差数列的性质即可求得k 的值【详解】因为且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n 项和公式等差数解析:10 【解析】 【分析】根据等差数列的前n 项和公式可得70a =,结合等差数列的性质即可求得k 的值. 【详解】因为91239S a a a a =+++⋅⋅⋅ 41234S a a a a =+++,且94S S =所以567890a a a a a ++++= 由等差数列性质可知70a = 因为40k a a += 所以4770k a a a a +=+=则根据等差数列性质可知477k +=+ 可得10k = 【点睛】本题考查了等差数列的前n 项和公式,等差数列性质的应用,属于基础题.17.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.18.或【解析】【分析】先画出不等式组所代表的平面区域解释目标函数为直线在轴上的截距由目标函数取得最大值的最优解不唯一得直线应与直线或平行从而解出的值【详解】解:画出不等式组对应的平面区域如图中阴影所示将 解析:2或1-.【解析】【分析】先画出不等式组所代表的平面区域,解释目标函数为直线=+y ax z 在y 轴上的截距,由目标函数=+z ax y -取得最大值的最优解不唯一,得直线=+y ax z 应与直线20x y +-=或220x y -+=平行,从而解出a 的值.【详解】解:画出不等式组20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩对应的平面区域如图中阴影所示将=+z ax y -转化为=+y ax z ,所以目标函数z 代表直线=+y ax z 在y 轴上的截距 若目标函数=+z ax y -取得最大值的最优解不唯一则直线=+y ax z 应与直线20x y +-=或220x y -+=平行,如图中虚线所示 又直线20x y +-=和220x y -+=的斜率分别为1-和2所以2a =或1a =-故答案为:2或1-.【点睛】本题考查了简单线性规划,线性规划最优解不唯一,说明目标函数所代表的直线与不等式组某条边界线平行,注意区分最大值最优解和最小值最优解.19.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题 解析:-4【解析】【分析】根据已知可得6n n b b +=,即可求解.【详解】121,5b b ==且*21()n n n b b b n N ++=-∈,321211n n n n n n n n b b b b b b b b ++++++=-==-=--,63,20166336n n n b b b ++=-==⨯,201663214b b b b b ∴==-=-+=-.故答案为:-4【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.20.【解析】【分析】【详解】由条件可得解析:{}|02x x <<【解析】【分析】【详解】 由条件可得三、解答题21.(1)60B =︒或120︒. (2) 13b =【解析】【分析】(1)根据正弦定理,求得3sin 2B =,进而可求解角B 的大小; (2)根据三角函数的基本关系式,求得3sin 5B =,利用三角形的面积公式和余弦定理,即可求解。
【易错题】高中三年级数学下期中试题(含答案)

【易错题】高中三年级数学下期中试题(含答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .283.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .44.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-315.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,6.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =7.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20178.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .409.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,43a=,4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒ D .60B =︒二、填空题13.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.14.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 15.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________. 16.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 17.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.18.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=L _________. 19.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.20.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______.三、解答题21.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列;(Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值. 22.已知数列{}n a 的首项1122,,1,2,3, (31)n n n a a a n a +===+. (1)证明: 数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 23.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值. 24.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.25.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC边上的中线AM =ABC ∆的面积.26.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1,∴a1=1+2=2,a2=1+2d=3.∵数列1,b1,b2,b3,4成等比数列,设公比为q,则4=q4,解得q2=2,∴b2=q2=2.则21221122a ab--==.本题选择A选项.2.D解析:D【解析】试题分析:由等差数列的性质34544123124a a a a a++=⇒=⇒=,则考点:等差数列的性质3.B解析:B【解析】【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值.【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b--+=,即41a b+=,故()121288444282222b a b aa ba b a b a b a b⎛⎫+=++=++≥+⋅=⎪⎝⎭,当且仅当82b aa b=,即11,82a b==时,取得最小值为8.故选B.【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r-+-=,圆心是(),a b,所以本题的圆心是()4,1--,而不是()4,1.4.C解析:C【解析】【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105SS.【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q qq S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.5.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.6.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 7.C 解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.8.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.9.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 10.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案.由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=, 所以sin 2sin 20B A -=,得22B A =或22180B A +=o , 所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.12.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒Q ,a=4b =由正弦定理得:sin 1sin2b A B a === a b >Q60B ∴<︒ 30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.二、填空题13.【解析】【分析】由题得利用即可得解【详解】由题意知可得又因为所以可求得故答案为:【点睛】本题考查了等比数列的通项公式其前n 项和公式数列极限的运算法则考查了推理能力与计算能力属于中档题解析:110,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U【解析】 【分析】由题得11(1)2a q =-,利用(1,0)(0,1)q ∈-⋃即可得解 【详解】 由题意知,1112a q =-,可得11(1)2a q =-,又因为(1,0)(0,1)q ∈-⋃,所以可求得1110,,122a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U .故答案为:110,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U【点睛】本题考查了等比数列的通项公式其前n 项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.14.【解析】【分析】根据均值不等式知即再由即可求解注意等号成立的条件【详解】(当且仅当等号成立)(当且仅当等号成立)(当且仅当等号成立)故答案为【点睛】本题主要考查了均值不等式不等式等号成立的条件属于中 解析:14【解析】 【分析】根据均值不等式知,4a b +≥=()2416a b ab +≥,再由41684ab a b +≥=⋅即可求解,注意等号成立的条件. 【详解】4a b +≥=Q (当且仅当4a b =等号成立),()2416a b ab ∴+≥(当且仅当4a b =等号成立),()2444a b a b ∴++≥⋅8=(当且仅当4a b =等号成立), ()224281a a a∴+=⇒=. 故答案为14b =. 【点睛】本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.15.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1an+2=2n+解析:512【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈) ∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222nn a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.16.-8【解析】设等比数列的公比为很明显结合等比数列的通项公式和题意可得方程组:由可得:代入①可得由等比数列的通项公式可得【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题解决这类问题的关键在于解析:-8 【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a q a a a q ⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由②①可得:2q =-,代入①可得11a =, 由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.17.()【解析】如图所示延长BACD 交于E 平移AD 当A 与D 重合与E 点时AB 最长在△BCE 中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD 当D 与C 重合时AB 最短此时与AB 交于F 在△B解析:) 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE =,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o 2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想18.【解析】试题分析:所以所以考点:累加法;裂项求和法解析:40322017【解析】试题分析:111,n n n n a a n a a n +--=+-=,所以()11221112n n n n n n n a a a a a a a a ---+=-+-++-+=L ,所以11121n a n n ⎛⎫=- ⎪+⎝⎭,122016111140322120172017a a a ⎛⎫+++=-= ⎪⎝⎭L . 考点:累加法;裂项求和法.19.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果.【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴= ()()222111912092011280222n n n n n n n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n << 又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.20.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题 解析:1941【解析】【分析】 由等差数列的性质和求和公式可得原式1111S T =,代值计算可得. 【详解】∵{a n },{b n }为等差数列, ∴939393657846666222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴661941a b =, 故答案为1941. 【点睛】本题考查等差数列的性质和求和公式,属基础题.三、解答题21.(Ⅰ)证明见解析(Ⅱ)6【解析】【分析】 (Ⅰ)由递推公式凑出1132n n a a ++--与32n n a a --的关系,即可得证 (Ⅱ)由(Ⅰ)可得2111222n n n n n a b a a --=-==--,即可得到{}(21)n n b -⋅的通项公式,再用错位相减法求和,证明其单调性,可得得解.【详解】 解:(Ⅰ)()*164n n n a a n a +-=∈-N Q 1163346224n n n n n n a a a a a a ++----∴=---- 6312628n n n n a a a a --+=--+ 2(3)(2)n n a a --=-- 322n n a a -=- 32n n a a ⎧⎫-∴⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列 (Ⅱ)由(Ⅰ)知,322n n n a a -=-, 即2111222n n n n n a b a a --=-==--, 21212n n n b n ∴-⋅=-⋅()()123S 123252...(21)2n n n =⋅+⋅+⋅++-⋅①23412S 123252...(21)2n n n +=⋅+⋅+⋅++-⋅②,①减②得11231142S 122(22...2)(21)222(21)212n n n n n n n +++--=⋅+++--⋅=+⋅--⋅-1(32)26n n +=-⋅-.1S (23)26n n n +∴=-⋅+2111S S (21)2(23)22210n n n n n n n n ++++∴-=-⋅--⋅=+>(),S n ∴单调递增.76S 92611582019=⨯+=<Q ,87S 112628222019=⨯+=>.故使S 2019n <成立的最大自然数6n =.【点睛】本题考查利用递推公式证明函数是等比数列,以及错位相减法求和,属于中档题.22.(1)证明见解析;(2)24222n n n n n S +++=-. 【解析】试题分析:(1)对121n n n a a a +=+两边取倒数得111111222n n n na a a a ++==+⋅,化简得1111112n n a a +⎛⎫-=- ⎪⎝⎭,所以数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)由(1)11n a ⎧⎫-⎨⎬⎩⎭是等比数列.,求得1112n n a =+,利用错位相减法和分组求和法求得前n 项和24222n n n n n S +++=-. 试题解析:(1)111211111111,?,1112222n n n n n n n n n a a a a a a a a a +++⎛⎫+=∴==+∴-=- ⎪+⎝⎭Q ,又 11211,132a a =∴-=,∴数列11n a ⎧⎫-⎨⎬⎩⎭是以为12首项,12为公比的等比数列. (2)由(1)知,1111111?222n n n a -+-==,即1112n n a =+,设23123 (2222)n n n T =++++, ① 则2311121...22222n n n n n T +-=++++, ② 由①-②得 21111111111122...112222222212nn n n n n n n n n T +++⎛⎫- ⎪⎝⎭=+++-=-=---,11222n n n n T -∴=--.又()1123...2n n n +++++=.∴数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和()2124222222n n n n n n n n n S +++++=-+=-. 考点:配凑法求通项,错位相减法.23.(1)22n a n =+;(2)63【解析】【分析】(1)求出公差d 和首项1a ,可得通项公式;(2)由23,b b 得公比,再得6b ,结合{}n a 通项公式求得k .【详解】(1)由题意等差数列{n a 的公差432d a a =-=,121210a a a d +=+=,14a =, ∴1(1)4(1)222n a a n d n n =+-=+-⨯=+;(2)由(1)23378,16b a b a ====,∴321628b q b ===,446282128b b q ==⨯=, ∴22128k a k =+=,63k =.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.24.(Ⅰ)120°;(Ⅱ)1.【解析】【分析】(Ⅰ)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小;(Ⅱ)由题意结合(Ⅰ)的结论和三角函数的性质可得sin sin B C +的最大值.【详解】(Ⅰ)()()2sin 2sin 2sin a A b c B c b C =+++Q , ()()2222a b c b c b c ∴=+++,即222a b c bc =++.2221cos 22b c a A bc +-=-∴=,120A ∴=︒. (Ⅱ)sin sin sin sin(60)B C B B +=+︒-()1sin sin 602B B B =+=︒+, 060B ︒<<︒Q ,∴当6090B ︒+=︒即30B =︒时,sin sin BC +取得最大值1.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(Ⅰ)3A π=(Ⅱ)S =【解析】【分析】 (Ⅰ)由正弦定理化简得到答案. (Ⅱ)1()2AM AB AC =+u u u u r u u u r u u u r ,平方,代入公式利用余弦定理得到答案. 【详解】(Ⅰ)因为()acos 2cos B c b A =-,由正弦定理得()sin cos cos 2sin sin A B A C B =-,即sin cos cos sin 2sin cos A B A B C A +=,所以()sin 2sinccos A B A +=, 因为()sin sin 0A B C +=≠,所以1cos 2A =, 又因为(0,)A π∈,所以3A π=. (Ⅱ)由M 是BC 中点,得1()2AM AB AC =+u u u u r u u u r u u u r , 即2221(2)4AM AB AC AB AC =++⋅u u u u r u u u r u u u r u u u r u u u r , 所以2232c b bc ++=,①又根据余弦定理,有2222222cos 416a b c bc A b c bc =+-=+-==,②联立①②,得8bc =.所以ABC ∆的面积1S bcsinA 2== 【点睛】本题考查了正弦定理,余弦定理,面积公式,向量加减,综合性强,意在考查学生的综合应用能力.26.(12 【解析】【分析】(1)由A 、B 、C 成等差数列可求得60B =︒,再由正弦定理和余弦定理分别求出a 和c 的值,最后利用三角形面积公式计算即可;(2)由余弦定理可得2222cos b a c ac B =+-,即:2232a c ac ac ac ac =+-≥-=,可求得3ac ≤,进而求得S 的最大值.【详解】(1)因为A 、B 、C 成等差数列,则:2A+C =B ,又A B C π++=,所以60B =︒,因为:sin sin b a a B A=⇒=2222212cos 32102b a c ac B c c c ∴=+-⇒=+-⨯⇒-=⇒,(负值舍);ABC ∆∴的面积11sin 22S ac B ==; (2)2222cos b a c ac B =+-Q ; 即:2232a c ac ac ac ac =+-≥-=,当且仅当a c =时等号成立;1sin 2ABC S ac B ∆∴=≤;即S 【点睛】 本题考查正余弦定理的应用,考查三角形面积公式的应用,考查不等式的应用,考查逻辑思维能力和运算能力,属于常考题.。
【易错题】高中三年级数学下期中试卷带答案(4)

【易错题】高中三年级数学下期中试卷带答案(4)一、选择题1.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1762.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .783.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定4.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .155.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .96.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸8.在ABC V 中,4ABC π∠=,2AB =3BC =,则sin BAC ∠=( )A 10B 10C 310D 5 9.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或710.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .311.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 12.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣二、填空题13.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.14.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________15.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____.16.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 17.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.20.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .三、解答题21.己知数列的前n 项和为,且.(1)求数列的通项公式;(2)设,求数列的前n 项和.22.已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .23.已知S n 为等差数列{a n }的前n 项和,a 1>0,a 8﹣a 4﹣a 3=1,a 4是a 1和a 13的等比中项. (1)求数列{a n }的通项公式;(2)证明:对一切正整数n .有1211134n S S S +++<L L . 24.在ABC ∆中,角,,A B C 的对边分别为,,a b c,且sin 1cos a CA=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积ABC S ∆=a 的值.25.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式;(2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 26.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.2.D解析:D【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.3.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.4.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.5.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+, 联立20x y y k +=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k -=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.6.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
新高中三年级数学下期中试卷含答案

新高中三年级数学下期中试卷含答案一、选择题1.正项等比数列中,的等比中项为,令,则( ) A .6B .16C .32D .642.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞B .(]2,2-C .(][),22,-∞-+∞D .[]22-,3.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.已知数列{}n a 的首项110,211n n n a a a a +==++,则20a =( ) A .99B .101C .399D .4015.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)7.若不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭8.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20479.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .1610.已知{}n a 是等比数列,22a =,514a =,则12231n n aa a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞C .()2,4-D .(][),24,-∞-⋃+∞12.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,43a=,4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒ D .60B =︒二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 15.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.16.在数列{}n a 中,“()n 12n a n N*n 1n 1n 1=++⋯+∈+++,又n n n 11b a a +=,则数列{}n b 的前n 项和n S 为______.17.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.18.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=_________.20.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.三、解答题21.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足22sin sin 1cos A C B =-.(1)若2a =,22c =,求b ; (2)若14sin B =,3a =,求b . 22.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<. 23.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos 5C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长24.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和25.设等差数列{}n a 满足35a =,109a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值26.已知数列{}n a 满足:1=1a ,()*11,2,n n n a n a n N a n ++⎧=∈⎨⎩为奇数为偶数设21n n b a -=. (1)证明:数列{}2n b +为等比数列; (2)求数列3+2n n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】因为,即,又,所以.本题选择D 选项.2.A解析:A 【解析】 【分析】根据题意,作出可行域,分析yx的几何意义是可行域内的点(),x y 与原点O 连线的斜率,根据图象即可求解. 【详解】作出约束条件表示的可行域,如图所示,yx 的几何意义是可行域内的点(),x y 与原点O 连线的斜率,由102x y y -+=⎧⎨=⎩,得点A 的坐标为()1,2,所以2OA k =,同理,2OB k =-,所以yx 的取值范围是()[),22,-∞-+∞.故选:A 【点睛】本题考查简单的线性规划,考查斜率型目标函数问题,考查数形结合思想,属于中等题型.3.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.4.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.5.C解析:C 【解析】 试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=, ∴1011091040135952S a d ⨯=+⨯=-+=.考点:等差数列的通项公式和前n 项和公式.6.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.7.D解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是否一个三角形,我们可以先画出220y x y x y ⎧⎪+⎨⎪-⎩,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫ ⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.8.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.9.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】 由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.A解析:A 【解析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.12.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒,a =4b =由正弦定理得:sin 1sin2b A B a === a b > 60B ∴<︒30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.二、填空题13.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+ 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈ 故答案为:33(0,)(,3)22【点睛】本题考查数列极限以及不等式的性质,属于中档题.14.【解析】【分析】根据均值不等式知即再由即可求解注意等号成立的条件【详解】(当且仅当等号成立)(当且仅当等号成立)(当且仅当等号成立)故答案为【点睛】本题主要考查了均值不等式不等式等号成立的条件属于中解析:14【解析】 【分析】根据均值不等式知,4a b +≥=()2416a b ab +≥,再由41684ab a b+≥=⋅即可求解,注意等号成立的条件. 【详解】4a b +≥=(当且仅当4a b =等号成立),()2416a b ab ∴+≥(当且仅当4a b =等号成立),()2444a b a b ∴++≥⋅421684ab a b⋅=⋅(当且仅当4a b =等号成立), ()224281a a a∴+=⇒=. 故答案为14b =. 【点睛】 本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.15.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最 解析:2【解析】【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案.【详解】由题意,作出不等式组表示的平面区域,如图所示,又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大,又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1y x +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16.【解析】【分析】运用等差数列的求和公式可得可得由数列的裂项相消求和化简可得所求和【详解】解:则可得数列的前n 项和故答案为【点睛】本题考查数列的前项和首先运用数列的裂项法对项进行分解然后重新组合最终达 解析:4n n 1+ 【解析】【分析】 运用等差数列的求和公式可得()n 11n a n n 1n 122=⋅+=+,可得()n n n 11411b 4a a n n 1n n 1+⎛⎫===- ⎪++⎝⎭,由数列的裂项相消求和,化简可得所求和. 【详解】 解:()n 12n 11n a n n 1n 1n 1n 1n 122=++⋯+=⋅+=++++, 则()n n n 11411b 4a a n n 1n n 1+⎛⎫===- ⎪++⎝⎭, 可得数列{}n b 的前n 项和n 1111111S 4122334n n 1⎛⎫=-+-+-+⋯+- ⎪+⎝⎭ 14n 41n 1n 1⎛⎫=-= ⎪++⎝⎭. 故答案为4n n 1+. 【点睛】本题考查数列的前n 项和,首先运用数列的裂项法对项进行分解,然后重新组合,最终达到求和目的,考查化简整理的运算能力,属于基础题. 17.()【解析】如图所示延长BACD 交于E 平移AD 当A 与D 重合与E 点时AB 最长在△BCE 中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD 当D 与C 重合时AB 最短此时与AB 交于F 在△B解析:)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BE E C=∠∠,即o o 2sin 30sin 75BE =,解得BE,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o 2sin 30sin 75BF =,解得AB 的取值范.考点:正余弦定理;数形结合思想18.7【解析】试题分析:根据约束条件画出可行域得到△ABC及其内部其中A (53)B(﹣13)C(20)然后利用直线平移法可得当x=5y=3时z=2x﹣y有最大值并且可以得到这个最大值详解:根据约束条件画解析:7【解析】试题分析:根据约束条件画出可行域,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x﹣y有最大值,并且可以得到这个最大值.详解:根据约束条件2,2,03,x yx yy+≥⎧⎪-≤⎨⎪≤≤⎩画出可行域如图,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0)平移直线l:z=2x﹣y,得当l经过点A(5,3)时,∴Z最大为2×5﹣3=7.故答案为7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.19.【解析】试题分析:所以所以考点:累加法;裂项求和法解析:4032 2017试题分析:111,n n n n a a n a a n +--=+-=,所以()11221112n n n n n n n a a a a a a a a ---+=-+-++-+=,所以11121n a n n ⎛⎫=- ⎪+⎝⎭,122016111140322120172017a a a ⎛⎫+++=-= ⎪⎝⎭. 考点:累加法;裂项求和法.20.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c+++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】 因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a -,b=1a ,即c=-b, 则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -, 当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b -≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞), 故答案为(﹣∞,﹣6]∪[6,+∞).【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.三、解答题21.(1)b =2)b =【分析】(12b =,根据已知可求b 的值.(2)利用同角三角函数基本关系式可求cos B,由余弦定理可得22224a c ac=+-,根据已知可求c ,进而可求b 的值. 【详解】(1)22sin 1cos sin A CB B =-=.∴2b =,2a =,c =b ∴=(2)sin 4B =,cos 4B ∴=, ∴由余弦定理2222cosb ac ac B=+-2224ac ac =+-⋅,又a =c =2b ∴=经检验,b【点睛】本题考查正弦定理,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查计算能力和转化思想,属于基础题.22.(1)证明见解析;(2)证明见解析【解析】【分析】(1)当n ≥2时,S n ﹣S n ﹣121n n S S =-⇒S n ﹣S n ﹣1=S n •S n ﹣1(n ≥2),取倒数,可得111n n S S --=1,利用等差数列的定义即可证得:数列{1nS }是等差数列; (2)利用222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭进行放缩并裂项求和即可证明 【详解】(1)当2n ≥时,211n n n n S S S S --=-, 11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列. (2)由(1)可知,()11111n n n S S =+-⨯=,1n S n ∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S=<满足题意, 【点睛】本题考查数列递推式的应用,考查等差数列的判定,考查等价转化思想,突出裂项法、放缩法应用的考查,属于难题.23.(1)2 (2【解析】【分析】【详解】((1)由cos 05ACB ∠=>可知,ACB ∠是锐角,所以,sin ACB ∠===由正弦定理sin sin AC AB B ACB =∠,sin 2sin 2AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-(cos sin ),210C C =-+=- 由余弦定理:CD===考点:1正弦定理;2余弦定理.24.(1)1232;2,122n nn na b n n--==-⋯(=,,);(2)213312442nnT n n-=+-+.【解析】【分析】(1)根据等比数列的性质得到7a=64,2a=2,进而求出公比,得到数列{a n}的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.【详解】(1)设等比数列{a n}的公比为q.由等比数列的性质得a4a5=27a a=128,又2a=2,所以7a=64.所以公比2q===.所以数列{a n}的通项公式为a n=a2q n-2=2×2n-2=2n-1.设等差数列{12n nb a+}的公差为d.由题意得,公差221111113221122222d b a b a⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以等差数列{12n nb a+}的通项公式为()()11113331122222n nb a b a n d n n⎛⎫+=++-=+-⋅=⎪⎝⎭.所以数列{b n}的通项公式为12313132222222n nn nb n a n n--=-=-⋅=-(n=1,2,…).(2)设数列{b n}的前n项和为T n.由(1)知,2322nnb n-=-(n=1,2,…).记数列{32n}的前n项和为A,数列{2n-2}的前n项和为B,则()33322124n nA n n⎛⎫+⎪⎝⎭==+,()1112122122nnB--==--.所以数列{b n}的前n项和为()1213133112242442n nnT A B n n n n--=-=+-+=+-+.【点睛】这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.25.a n =11-2n,n=5时,S n 取得最大值【解析】试题分析:解:(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9得,a 1+9d=-9,a 1+2d=5,解得d=-2,a 1=9,,数列{a n }的通项公式为a n =11-2n,(2)由(1)知S n =na 1+(1)2n n -d=10n-n 2.因为S n =-(n-5)2+25.所以n=5时,S n 取得最大值.考点:等差数列点评:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.26.(1)见解析(2)1242n n n S -+=-【解析】【分析】(1)根据数列{}n a 的递推公式及21n n b a -=,可表示出1n b +与n b 的等量关系,再将等式变形即可证明数列{}2n b +为等比数列;(2)由(1)可求得数列{}n b 的通项公式,代入后可得3+2n n b ⎧⎫⎨⎬⎩⎭的通项公式,结合错位相减法即可求得前n 项和n S .【详解】(1)()121221212212222n n n n n n b a a a a b ++--===+=+=+, 所以()1222n n b b ++=+,即1222n n b b ++=+, 又因为112230b a +=+=≠,所以数列{}2n b +是以3为首项以2为公比的等比数列.(2)由(1)得,1232n n b -+=⋅,11332322n n n n n n b --==+⋅, 所以02111222n n n n n S ---=+++ 0222222n n n S -=+++则1021122222n n n n n n S S S --⎛⎫=-=-+++ ⎪⎝⎭11111221212n n n --⎛⎫⋅- ⎪⎝⎭=-+- 1242n n -+=-. 【点睛】 本题考查了由递推公式证明数列为等比数列,错位相减法的求和应用,属于中档题.。
2019年高中三年级数学下期中试题(附答案)(2)

18 项
()
,其中 是数列 的前 项和,则数列
A.
B.9
C.18
D.36
9.在等差数列{an}中, a3 a5 2a10 4 ,则此数列的前 13 项的和等于( )
中第
A.16
B.26
C.8
D.13
10.设an是公差不为 0 的等差数列, a1 2 且 a1, a3, a6 成等比数列,则an 的前 n 项和
《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音
(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等
程律”.即一个八度 13 个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个
音的频率的
2
倍.设第三个音的频率为
f1 ,第七个音的频率为
y)
满足
x
2
y
3
0,
则实数
m
的最大值为
x m,
A. 2
B. 1
C.1
D. 3
5.已知数列 an 的前 n 项和为 Sn ,且 Sn 2an 1 n N* ,则 a5 等于( )
A. 16
B.16
C. 31
D. 32
6.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作
令 n 1 ,由 a1 S1 可求出 a1 的值,再令 n 2 ,由 Sn 2an 1 得出 Sn1 2an1 1 ,两
式相减可得出数列 an 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求
出 a5 的值.
【详解】
当 n 1 时, S1 2a1 1 ,即 a1 2a1 1,解得 a1 1; 当 n 2 时,由 Sn 2an 1 ,得 Sn1 2an1 1,两式相减得 an 2an 2an1 ,得 an 2an1 .
【易错题】高中三年级数学下期中一模试题(含答案)

【易错题】高中三年级数学下期中一模试题(含答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为n T ,则2017T =( ) A .2016 B .2017C .2018D .20193.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .104.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( ) A .(4,1)- B .(1,4)- C .(1,4) D .(0,4)5.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .26.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A.2BC .5D .927.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S8.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-9.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .110.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16 B .26C .8D .1311.若ln 2ln 3ln 5,,235ab c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<12.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .23二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S ,且数列{}n S n +也为公差为d 的等差数列,则d =______.15.若关于 x 的不等式 ()2221x ax -< 的解集中的整数恰有 3 个,则实数 a 的取值范围是________________.16.已知()()0f x kx k =>,若正数a 、b 满足()()()()f a f b f a f b +=,且4a b f f k k ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的最小值为1,则实数k 的值为______. 17.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.20.设0x >,0y >,4x y +=,则14x y+的最小值为______.三、解答题21.若0,0a b >>,且11ab a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 22.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 23.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==,求S .24.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++L ,求使1·262n nS n ++>成立的正整数n 的最小值.25.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式; (2)求12111nS S S ++⋯+. 26.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D中,因为0≤<,由不等式的平方法则,22<,即a b <.选D.2.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++L (26b b +)2014b ++L ()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.3.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.5.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误6.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.8.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.9.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.10.D解析:D【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.11.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.12.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以1111111()1001005xy x y x y x y ⎛⎫+=+=+≥ ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.【解析】【分析】表示出再表示出整理并观察等式列方程组即可求解【详解】等差数列的公差为前项和为设其首项为则=又数列也为公差为的等差数列首项为所以=即:整理得:上式对任意正整数n 成立则解得:【点睛】本题 解析:12【解析】 【分析】表示出n S【详解】等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,设其首项为1a , 则n S =()112n n na d -+,又数列也为公差为d=()1n d -()1n d =-=上式对任意正整数n成立,则)2120122d d d da d d⎧=⎪=⎪-+=⎪⎩,解得:12d =,134a =- 【点睛】本题主要考查了等差数列的前n 项和及通项公式,考查了方程思想及转化思想、观察能力,属于中档题.15.【解析】试题分析:关于x 的不等式(2x -1)2<ax2等价于其中且有故有不等式的解集为所以解集中一定含有123可得所以解得考点:含参数的一元二次方程的解法解析:2549,916⎡⎤⎢⎥⎣⎦【解析】试题分析:关于x 的不等式(2x -1)2<ax 2等价于2(4)410a x x -+-+<,其中40a ∆=>且有40a ->,故有04a <<,不等式的解集为22x a a<<+-,所以11422a <<+解集中一定含有1,2,3,可得,所以53{74a a ≥≤,解得2549916a ≤≤. 考点:含参数的一元二次方程的解法.16.9【解析】【分析】由求出满足的关系然后利用基本不等式求出的最小值再由最小值为1可得【详解】∵∴即∴当且仅当时等号成立∴故答案为:9【点睛】本题考查基本不等式求最值解题时需用凑配法凑出基本不等式所需的解析:9 【解析】 【分析】由()()()()f a f b f a f b +=求出,a b 满足的关系,然后利用基本不等式求出4()()a bf f k k +的最小值,再由最小值为1可得k . 【详解】∵()()()()f a f b f a f b +=,()f x kx =,∴ka kb ka kb +=⋅,即11k a b+=, ∴4()()a b f f k k +111144()(4)(5)a b a b a b k a b k b a =+=++=++149(5)a b k b a k≥+⨯=,当且仅当4a b b a=时等号成立. ∴91k=,9k =. 故答案为:9. 【点睛】本题考查基本不等式求最值.解题时需用凑配法凑出基本不等式所需的定值,然后才可用基本不等式求最值,同时还要注意等号成立的条件,等号成立的条件取不到,这个最值也取不到.17.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6 【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 18.10【解析】【分析】【详解】故则故n=10 解析:10 【解析】 【分析】 【详解】1351,14,a a a =+=故126d 14,2a d +=∴=,则()1n 21002n n n S -=+⨯=故n=1019.【解析】【分析】△ACD 中求出AC △ABD 中求出BC △ABC 中利用余弦定理可得结果【详解】解:由已知△ACD 中∠ACD =15°∠ADC =150°∴∠DAC=15°由正弦定理得△BCD 中∠BDC =15 解析:805【解析】 【分析】△ACD 中求出AC ,△ABD 中求出BC ,△ABC 中利用余弦定理可得结果. 【详解】解:由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC=15°由正弦定理得80sin15040sin15AC ===oo,△BCD 中,∠BDC =15°,∠BCD =135°, ∴∠DBC=30°, 由正弦定理,CD BCsin CBD sin BDC=∠∠,所以BC 80sin15160154012CD sin BDC sin sin CBD⋅∠⨯︒===︒=∠;△ABC 中,由余弦定理,AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB=((08116008160216002-+++⨯⨯⨯16001616004160020=⨯+⨯=⨯解得:AB =则两目标A ,B间的距离为.故答案为. 【点睛】本题主要考查了正弦、余弦定理在解三角形中的应用问题,也考查了数形结合思想和转化思想,是中档题.20.【解析】【分析】变形之后用基本不等式:求解即可【详解】原式可变形为:当且仅当时取等故答案为:【点睛】本题考查了基本不等式及其应用属基础题在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等 解析:94【解析】 【分析】变形14141444x y y x x y x y ⎛⎫⎛⎫++=+++ ⎪ ⎪⎝⎭⎝⎭之后用基本不等式:求解即可. 【详解】原式可变形为:()14141914544444x y y x x y x y ⎛⎫⎛⎫++=+++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当43x =,83y =时取等.故答案为:94【点睛】本题考查了基本不等式及其应用,属基础题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(1)42;(2)不存在. 【解析】 【分析】 (1)由已知11ab a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为43,而436>,故不存在. 【详解】 (1)由11ab a b ab=+≥,得2ab ≥,且当2a b ==时取等号.故33+a b 33242a b ≥≥,且当2a b ==时取等号.所以33+a b 的最小值为42;(2)由(1)知,232643a b ab +≥≥. 由于436>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.22.(1)1a =;(2)22. 【解析】 【分析】 【详解】 试题分析:(1)根据单调性求出()f x 的最小值,即可求出a 的值; (2)根据基本不等式的性质求出其最小值即可. 试题解析:(1)f(x)=当x ∈(-∞,0)时,f(x)单调递减; 当x ∈[0,+∞)时,f(x)单调递增;∴当x =0时,f(x)的最小值a =1. (2)由(1)知m 2+n 2=1,则m 2+n 2≥2mn ,得≥2,由于m>0,n>0, 则+≥2≥2,当且仅当m =n =时取等号. ∴+的最小值为2.23.(1)证明解析,(2)22【解析】 【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A=代入即可. (2)因为1c =,3a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,6cos A =2tan A ⇒=,6b =⇒12266S =⨯=. 【详解】(1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b Ac A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =. 因为1c =,3a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2223)9cos 16cos A A =+-,解得:22cos 3A =. 因为3b cosA =,所以cos 0A >,6cos A =. 2tan A ⇒=,6b . 21122tan 66622S b A ==⨯⨯=. 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.24.(1)2nn a =;(2)6.【解析】试题分析:(1)求等比数列的通项公式,关键是求出首项和公比,这可直接用首项1a 和公比q 表示出已知并解出即可(可先把已知化简后再代入);(2)求出n b 的表达式后,要求其前n 项和,需用错位相减法.然后求解不等式可得最小值. 试题解析:(1)∵32a +是24,a a 的等差中项,∴()32422a a a +=+, 代入23428a a a ++=,可得38a =,∴2420a a +=,∴212118{20a q a q a q =+=,解之得122a q =⎧⎨=⎩或132{12a q ==, ∵1q >,∴122a q =⎧⎨=⎩,∴数列{}n a 的通项公式为2nn a = (2)∵1122log 2log 2?2n n nn n n b a a n ===-,∴()21222?2n n S n =-⨯+⨯++L ,...............①()23121222?2?2nn S n n +=-⨯+⨯+++L ,.............②②—①得()2311112122222?2?222?212nn n n n n nS n n n ++++-=+++-=-=---L∵1·262n n S n ++>,∴12262n +->,∴16,5n n +>>, ∴使1·262n n S n ++>成立的正整数n 的最小值为6 考点:等比数列的通项公式,错位相减法.25.(1)n a n =,12n n b -=;(2)21nn + 【解析】 【分析】(1)由题意,要求数列{}n a 与{}n b 的通项公式,只需求公差,公比,因此可将公差,公比分别设为d ,q ,然后根据等差数列的前项和公式,代入226b S =,238b S +=,求出d ,q 即可写出数列{}n a 与{}n b 的通项公式.(2)由(1)可得()11212n S n n n =++⋯+=+,即()121n s n n =+,而要求12111n S S S ++⋯+,故结合1n s 的特征可变形为11121n s n n ⎛⎫=- ⎪+⎝⎭,代入化简即可. 【详解】(1)设等差数列{}n a 的公差为d ,d >0,{}n b 的等比为q则1(1)n a n d =+- ,1n n b q -=,依题意有()26338q d q d ⎧+=⎨++=⎩,解得12d q =⎧⎨=⎩或439d q ⎧=-⎪⎨⎪=⎩(舍去)故1,2n n n a n b -==,(2)由(1)可得()11212n S n n n =++⋯+=+ ∴11121n s n n ⎛⎫=- ⎪+⎝⎭∴1211111111212231n S S S n n ⎡⎤⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ =122111nn n ⎛⎫-=⎪++⎝⎭. 【点睛】本题第一问主要考查了求数列的通项公式,较简单,只要能写出n S 的表达式,然后代入题中的条件正确计算即可得解,但要注意d >0.第二问考查了求数列的前n 项和,关键是要分析数列通项的特征,将()121n s n n =+等价变形为11121n s n n ⎛⎫=- ⎪+⎝⎭,然后代入计算,这也是求数列前n 项和的一种常用方法--裂项相消法! 26.(1)112n a n =+;(2)1422n n n S ++=-. 【解析】 【分析】 (1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出.【详解】方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n , 由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++,12S n =332+442+…+112n n +++222n n ++, 两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++=34+111142n -⎛⎫- ⎪⎝⎭-222n n ++, 所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和. 【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.。
【易错题】高中三年级数学下期中试卷(及答案)

【易错题】高中三年级数学下期中试卷(及答案)一、选择题1.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-2.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .43.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =6.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A.2BC .5D .927.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 4 8)63a -≤≤的最大值为( )A .9B .92C.3 D .29.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ).A .13B .15C .19D .2110.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n11.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,若sin 2sin 0b A B +=,b =,则ca的值为( )A .1B.3CD.7二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.已知不等式250ax x b -+>的解集是{}|32x x -<<-,则不等式250bx x a -+>的解集是_________.15.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.16.设0x >,则231x x x +++的最小值为______.17.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________18.已知函数()3af x x x=++,*x ∈N ,在5x =时取到最小值,则实数a 的所有取值的集合为______.19.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 20.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 三、解答题21.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C的对边,且sin cos 20A a B a --=.(Ⅰ)求B 的大小;(Ⅱ)若b =ABC ∆a c +的值. 22.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2nn n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .23.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 24.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线AM =ABC ∆的面积.25.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V26.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划2.B解析:B 【解析】 【分析】由已知条件得()()113x y +++=,对代数式2211x y y x +++变形,然后利用基本不等式求出2211x y y x +++的最小值,即可得出实数m 的最大值. 【详解】正数x 、y 满足1x y +=,则()()113x y +++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭412533⎛≥⨯+-= ⎝, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.3.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.4.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 5.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 6.C 解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2, ∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013,本题选择D 选项.8.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立,故选B. 【点睛】本题主要考查了均值不等式,属于中档题. 9.A解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以114)PB t=--u u u r (,,14)PC t =--u u u r (,,因此PB PC ⋅u u u r u u u r11416t t =--+117(4)t t =-+,因为144t t +≥=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.10.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式11.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案. 【详解】由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=, 所以sin 2sin 20B A -=,得22B A =或22180B A +=o , 所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.12.D解析:D 【解析】分析:由正弦定理可将sin2sin 0b A B =化简得cosA 2=-,由余弦定理可得222227a b c bccosA c =+-=,从而得解.详解:由正弦定理,sin2sin 0b A B +=,可得sin2sin 0sinB A B +=,即2sin sin 0sinB AcosA B = 由于:0sinBsinA ≠,所以cosA =:, 因为0<A <π,所以5πA 6=.又b =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=. 即227a c =,所以c a =. 故选:D .点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.二、填空题13.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞=故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U 故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.14.【解析】【分析】根据不等式的解集是求得的值从而求解不等式的解集得到答案【详解】由题意因为不等式的解集是可得解得所以不等式为即解得即不等式的解集为【点睛】本题主要考查了一元二次不等式的解法其中解答中根解析:11(,)23--【解析】 【分析】根据不等式250ax x b -+>的解集是{}|32x x -<<-,求得,a b 的值,从而求解不等式250bx x a -+>的解集,得到答案.【详解】由题意,因为不等式250ax x b -+>的解集是{}|32x x -<<-,可得53(2)(3)(2)a b a ⎧-+-=⎪⎪⎨⎪-⨯-=⎪⎩,解得1,6a b =-=-,所以不等式250bx x a -+>为26510x x --->, 即2651(31)(21)0x x x x ++=++<,解得1123x -<<-, 即不等式250bx x a -+>的解集为11(,)23--. 【点睛】本题主要考查了一元二次不等式的解法,其中解答中根据三个二次式之间的关键,求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.15.【解析】【分析】由可知算出用表示的极限再利用性质计算得出即可【详解】显然公比不为1所以公比为的等比数列求和公式且故此时当时求和极限为所以故所以故又故故答案为:【点睛】本题主要考查等比数列求和公式当时解析:12【解析】 【分析】由1345a a a a =+++…可知1q <,算出345a a a +++…用1a 表示的极限,再利用性质计算得出q 即可. 【详解】显然公比不为1,所以公比为q 的等比数列{}n a 求和公式1(1)1-=-n n a q S q, 且1345a a a a =+++…,故01q <<.此时1(1)1-=-n n a q S q 当n →∞时,求和极限为11a q -,所以3345...1a a a a q +++=-,故2311345...=11a a q a a a a q q =+++=--,所以2211101a q a q q q =⇒+-=-,故q =,又01q <<,故q =故答案为:12. 【点睛】本题主要考查等比数列求和公式1(1)1-=-n n a q S q,当01q <<时1lim 1n n a S q →∞=-. 16.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在解析:1【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =1x =时,等号成立.故答案为:1. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属 解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.18.【解析】【分析】先求导判断函数的单调性得到函数的最小值由题意可得取离最近的正整数使达到最小得到解得即可【详解】∵∴当时恒成立则为增函数最小值为不满足题意当时令解得当时即函数在区间上单调递减当时即函数 解析:[]20,30【解析】 【分析】先求导,判断函数的单调性得到函数的最小值,由题意可得x ()f x 达到最小,得到()()56f f ≤,()()54f f ≤,解得即可.【详解】 ∵()3af x x x=++,*x ∈N ,∴()2221a x af x x x-'=-=, 当0a ≤时,()0f x '≥恒成立,则()f x 为增函数, 最小值为()()min 14f x f a ==+,不满足题意,当0a >时,令()0f x '=,解得x =当0x <<()0f x '<,函数()f x 在区间(上单调递减,当x ()0f x '>,函数()f x 在区间)+∞上单调递增,∴当x =()f x 取最小值,又*x ∈N ,∴x ()f x 达到最小, 又由题意知,5x =时取到最小值,∴56<<或45<≤,∴()()56f f ≤且()()54f f ≤,即536356a a ++≤++且534354a a++≤++, 解得2030a ≤≤.故实数a 的所有取值的集合为[]20,30. 故答案为:[]20,30. 【点睛】本题考查了导数和函数的单调性关系,以及参数的取值范围,属于中档题.19.【解析】【详解】总费用为当且仅当即时等号成立故答案为30点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得 解析:30【解析】 【详解】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n 项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力解析:3116【解析】 【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可. 【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1) 23B π=;(2) 3a c +=. 【解析】试题分析:(1)正弦定理得sin sin cos 2sin 0B A A B A --=,sin 16B π⎛⎫-= ⎪⎝⎭,所以23B π=;(2)根据面积公式和余弦定理,得()27a c ac =+-,所以3a c +=. 试题解析:sin sin cos 2sin 0B A A B A --=,因为sin 0A ≠ cos 20B B --=,即sin 1,6B π⎛⎫-= ⎪⎝⎭又()50,,,666B B ππππ⎛⎫∈∴-∈- ⎪⎝⎭, 62B ππ∴-=,所以23B π=.(Ⅱ)由已知11sin 222ABC S ac B ac ac ∆===∴=, 由余弦定理得 2222cos b a c ac B =+-,即()217222a c ac ac ⎛⎫=+--⋅- ⎪⎝⎭, 即()27a c ac =+-,又0,0a c >>所以3a c +=.22.(1)n a n =(2)1(1)22n n T n +=-⋅+【解析】试题分析:(Ⅰ)因为数列是等差数列,所以根据等差数列的通项公式建立关于首项和公差的方程组11246{434102a d a d +=⨯+=,即可解得11{1a d ==,从而写出通项公式n a n =; (Ⅱ)由题意22n n n n b a n =⋅=⋅,因为是等差数列与等比数列相乘的形式,所以采取错位相减的方法,注意错位相减后利用等比数列前n 项和公式,化简要准确得1(1)22n n T n +=-⋅+.试题解析:(Ⅰ)设等差数列{}n a 的公差为d,由2446,10a a S +==,可得11246{434102a d a d +=⨯+=, 即1123{235a d a d +=+=, 解得11{1a d ==, ∴()111(1)n a a n d n n =+-=+-=,故所求等差数列{}n a 的通项公式为n a n =(Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++L231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅L ,又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅L ,两式相减得2311(22222)2n n n n T n -+-=+++++-⋅L()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,∴1(1)22n n T n +=-⋅+考点:1、等差数列通项公式;2、等差数列的前n 项和;3、等比数列的前n 项和;4、错位相减法.23.(1)212n a n =-;(2)4(13)nn S =-.【解析】 【分析】 【详解】本试题主要是考查了等差数列的通项公式的求解和数列的前n 项和的综合运用.、 (1)设{}n a 公差为d ,由已知得1126{50a d a d +=-+=解得110{2a d =-=, 212n a n =-(2)21232324b a a a a =++==-Q ,∴等比数列{}n b 的公比212438b q b -===- 利用公式得到和8(13)4(13)13n n n S -⨯-==--.24.(Ⅰ)3A π=(Ⅱ)S =【解析】 【分析】(Ⅰ)由正弦定理化简得到答案.(Ⅱ)1()2AM AB AC =+u u u u r u u u r u u u r,平方,代入公式利用余弦定理得到答案.【详解】(Ⅰ)因为()acos 2cos B c b A =-,由正弦定理得()sin cos cos 2sin sin A B A C B =-,即sin cos cos sin 2sin cos A B A B C A +=,所以()sin 2sinccos A B A +=, 因为()sin sin 0A B C +=≠,所以1cos 2A =, 又因为(0,)A π∈,所以3A π=. (Ⅱ)由M 是BC 中点,得1()2AM AB AC =+u u u u r u u u r u u u r,即2221(2)4AM AB AC AB AC =++⋅u u u u r u u u r u u u r u u u r u u u r,所以2232c b bc ++=,①又根据余弦定理,有2222222cos 416a b c bc A b c bc =+-=+-==,② 联立①②,得8bc =. 所以ABC ∆的面积1S bcsinA 2== 【点睛】本题考查了正弦定理,余弦定理,面积公式,向量加减,综合性强,意在考查学生的综合应用能力. 25.(1) 12π.(2) 【解析】 【分析】()1由已知利用正弦定理,同角三角函数基本关系式可求1tanB =,结合范围()0,B π∈,可求4B π=,由已知利用二倍角的余弦函数公式可得2210cos A cosA --=,结合范围()0,A π∈,可求A ,根据三角形的内角和定理即可解得C 的值.()2由()1及正弦定理可得b 的值,根据两角和的正弦函数公式可求sinC 的值,进而根据三角形的面积公式即可求解. 【详解】() 1Q 由已知可得ccosB bsinC =,又由正弦定理b csinB sinC=,可得ccosB csinB =,即1tanB =, ()0,B π∈Q ,4B π∴=,2221cosA cos A cos A ==-Q ,即2210cos A cosA --=,又()0,A π∈,12cosA ∴=-,或1(舍去),可得23A π=,12C A B ππ∴=--=.()223A π=Q ,4B π=,2a =, ∴由正弦定理a bsinA sinB=,可得2a sinB b sinA ⨯⋅===,()1sin 22224sinC A B sinAcosB cosAsinB ⎛⎫=+=+=+-⨯=⎪⎝⎭Q ,11222ABC S absinC ∴==⨯=V 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题. 26.(Ⅰ)证明见解析;(II )证明见解析. 【解析】 【分析】 【详解】(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:222a b c ab bc ca ++≥++,由题设得,即2222221a b c ab bc ca +++++=, 所以3()1ab bc ca ++≤,即13ab bc ca ++≤. (Ⅱ)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,所以222()2()a b c a b c a b c b c a+++++≥++,即222a b c a b c b c a++≥++, 所以2221a b c b c a++≥.本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”. 【考点定位】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.。
2020-2021青岛市高中三年级数学下期中试卷及答案

2020-2021青岛市高中三年级数学下期中试卷及答案一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033 B .1034C .2057D .20583.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .104.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .785.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A.2BC .5D .927.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--8.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .169.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1610.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .211.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;14.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1y x +的最大值为_______.15.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______16.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________ 17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .22.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.23.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S24.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)求12111nS S S ++⋯+. 25.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S . 26.已知点(1,2)是函数()(0,1)xf x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .3.C解析:C 【解析】 【详解】 因为直线()10,0x y a b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.D解析:D 【解析】因为11,8m nm n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.5.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大.故答案为32.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.6.C解析:C【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.8.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.9.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.10.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.A解析:A 【解析】 【分析】 分析题意,取3x y +倒数进而求3x y+的最小值即可;结合基本不等式中“1”的代换应用即可求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题】高中三年级数学下期中试题(含答案)(2)一、选择题1.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .112.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .03.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .784.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .25.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =6.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .38.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20479.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4 B .5 C .6 D .4或5 10.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23D .1611.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.15.在钝角ABC V 中,已知7,1AB AC ==,若ABC V 的面积为6,则BC 的长为______.16.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.17.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.18.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.19.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________.20.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得122m n aa a ⋅=,则14m n+的最小值为__________. 三、解答题21.已知在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c 且2cos 2a C c b +=. (1)求角A 的大小;(2)若1a =,求ABC ∆面积的最大值。
22.已知正项等比数列{}n a 满足26S =,314S =. (1)求数列{}n a 的通项公式; (2)若2log n n b a =,已知数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T 证明:1n T <. 23.等差数列{a n }的前n 项和为S n ,且3a =9,S 6=60. (I )求数列{a n }的通项公式;(II )若数列{b n }满足b n+1﹣b n =n a (n∈N +)且b 1=3,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和T n . 24.如图,游客从某旅游景区的景点A 处下上至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50/min m .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C ,假设缆车匀速直线运动的速度为130/min m ,山路AC 长为1260m ,经测量12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问:乙出发多少min 后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?25.如图,在平面四边形ABCD 中,42AB =22BC =4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .26.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 2.C【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.3.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.4.D解析:D 【解析】由a (a +b +c )+bc =4-, 得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误5.A解析:Asin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 6.B 解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.9.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+,令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .10.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.11.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.12.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.15.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】 【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得,11sin sin 22A A =⨯⇒=又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.16.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n -- 【解析】 【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.17.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <, 再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.18.【解析】【分析】△ACD 中求出AC△ABD 中求出BC△ABC 中利用余弦定理可得结果【详解】解:由已知△ACD 中∠ACD=15°∠ADC=150°∴∠DAC=15°由正弦定理得△BCD 中∠BDC=15解析:【解析】 【分析】△ACD 中求出AC ,△ABD 中求出BC ,△ABC 中利用余弦定理可得结果. 【详解】解:由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC=15°由正弦定理得80sin15040sin15AC ===oo,△BCD 中,∠BDC =15°,∠BCD =135°, ∴∠DBC=30°, 由正弦定理,CD BCsin CBD sin BDC=∠∠,所以BC 80sin15160154012CD sin BDC sin sin CBD⋅∠⨯︒===︒=∠;△ABC 中,由余弦定理,AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB=((08116008160216002-+++⨯⨯⨯16001616004160020=⨯+⨯=⨯解得:AB =则两目标A ,B间的距离为.故答案为. 【点睛】本题主要考查了正弦、余弦定理在解三角形中的应用问题,也考查了数形结合思想和转化思想,是中档题.19.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换解析:92【解析】 【分析】 先化简11122(2)2(2)()22a b a b a b a b+=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a+=⋅+⋅=⋅+⋅+=++19(522≥+=. 当且仅当221223222a b a ba b⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.20.【解析】【分析】由求得由可得结合为正整数讨论四种情况可得的最小值【详解】设等比数列的公比为由可得到由于所以解得或因为各项全为正所以由于存在两项使得所以可得当时;当时;当时;当时;综上可得的最小值为故 解析:116【解析】 【分析】由7652a a a =+求得2q =1=可得5m n +=,结合,m n 为正整数,讨论四种情况可得14m n+的最小值. 【详解】设等比数列的公比为q ,由7652a a a =+, 可得到6662a a q a q=+, 由于0n a >,所以21q q=+,解得2q =或1q =-. 因为各项全为正,所以2q =.由于存在两项,m n a a1=,所以,218m n a a a ⋅=,112211188m n m n a q a q a q --+-⋅=∴=,28m n q +-∴=,可得5m n +=.当1,4m n ==时,142m n+=; 当2,3m n ==时,14116m n +=;当3,2m n ==时,1473m n +=; 当4,1m n ==时,14174m n +=; 综上可得 14m n +的最小值为116,故答案为116. 【点睛】本题主要考查等比数列的通项公式和性质,考查了分类讨论思想的应用,属于中档题. 分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.三、解答题21.(1)3π;(2【解析】 【分析】(1)根据2cos 2a C c b +=,利用正弦定理将边化为角,进一步求出角A ; (2)根据条件由余弦定理,可得222212cos 3a b c bc π==+-,再结合222b c bc +≥,求出bc 的范围,进一步求出ABC ∆面积的最大值. 【详解】解:(1)∵2cos 2a C c b +=,∴2sin cos sin 2sin A C C B +=,又∵A B C π++=,∴()2sin cos sin 2sin cos cos sin A C C A C A C +=+, ∴sin 2cos sin C A C =,∴()sin 2cos 10C A -=, ∵sin 0C ≠,∴1cos 2A =, 又()0,A π∈,∴3A π=(2)由(1)知,3A π=,∵1a =,∴由余弦定理,有222212cos 3a b c bc π==+-,∴221bc b c +=+.∵222b c bc +≥, ∴12bc bc +≥,∴1bc ≤,当且仅当1b c ==时等号成立, ∴()max11sin 1sin 2323ABC S bc ππ∆==⨯⨯=, ∴三角形ABC【点睛】本题考查了正弦定理,余弦定理,面积公式和均值不等式,考查了转化思想和计算能力,属中档题.22.(1)2nn a =; (2)见解析.【解析】 【分析】(1)由等比数列前n 项和公式求出公比q 和首项1a ,得通项公式; (2)用裂项相消法求出和n T ,可得结论. 【详解】(1)设等比数列的首项及公比分别为10a >,0q >,26S =Q ,314S =,显然1q ≠,()()21311611141a q q a qq ⎧-⎪=-⎪∴⎨-⎪=⎪-⎩,解得122a q =⎧⎨=⎩, 2n n a ∴=;(2)证明:由(1)知,n b n =,则11111(1)1n n b b n n n n +==-++, 121n n n T b b b b -∴=++⋯⋯++1111111111223111n n n n n =-+-+⋯⋯+-+-=--++, *n N ∈Q ,1n T ∴<.【点睛】本题考查等比数列的前n 项和与通项公式,考查裂项相消法求数列的和.基本量法是解决等差数列和等比数列的常用方法.裂项相消法、错位相减法、分组(并项)求和法是数列求和的特殊方法,它们针对的是特殊的数列求和. 23.(Ⅰ)a n =2n+3;(Ⅱ)31142(1)2(2)n n --++. 【解析】试题分析:(Ⅰ)设出等差数列的首项和公差,利用通项公式、前n 项和公式列出关于首项和公差的方程组进行求解;(Ⅱ)利用迭代法取出数列{}n b 的通项公式,再利用裂项抵消法进行求和.试题解析:(Ⅰ)设等差数列{a n }的公差为d ,∵a 3=9,S 6=60.∴,解得.∴a n =5+(n ﹣1)×2=2n+3. (Ⅱ)∵b n+1﹣b n =a n =2n+3,b 1=3,当n≥2时,b n =(b n ﹣b n ﹣1)+…+(b 2﹣b 1)+b 1 =[2(n ﹣1)+3]+[2(n ﹣2)+3]+…+[2×1+3]+3=.当n=1时,b 1=3适合上式,所以.∴.∴= =点睛:裂项抵消法是一种常见的求和方法,其适用题型主要有: (1)已知数列的通项公式为1(1)n a n n =+,求前n 项和:111(1)1n a n n n n ==-++;(2)已知数列的通项公式为1(21)(21)n a n n =-+,求前n 项和:1111()(21)(21)22121n a n n n n ==--+-+;(3)已知数列的通项公式为1n a n n =++n 项和:.11n a n n n n ==+++24.(1)=1040AB m (2)3537(3)1250625[,]4314(单位:m/min ) 【解析】 【分析】 【详解】(1)在ABC ∆中,因为12cos 13A =,3cos 5C =,所以5sin 13A =,4sin 5C =, 从而[]sin sin ()B A C π=-+sin()A C =+5312463sin cos sin cos 13513565A C C A =+=⨯+⨯=.由正弦定理sin sin AB AC C B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=(m ). (2)假设乙出发min t 后,甲、乙两游客距离为d ,此时,甲行走了(10050)m t +,乙距离A 处130t m , 所以由余弦定理得22212(10050)(130)2130(10050)13d t t t t =++-⨯⨯+⨯2200(377050)t t =-+, 由于10400130t ≤≤,即08t ≤≤, 故当35min 37t =时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=, 得12605sin 50063sin 1365AC BC A B=⨯=⨯=(m ). 乙从B 出发时,甲已走了50(281)550⨯++=(m ),还需走710m 才能到达C . 设乙步行的速度为/min vm ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤, 所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:/min m )范围内. 考点:正弦、余弦定理在实际问题中的应用. 【方法点睛】本题主要考查了正弦、余弦定理在实际问题中的应用,考查了考生分析问题和利用所学知识解决问题的能力,属于中档题.解答应用问题,首先要读懂题意,设出变量建立题目中的各个量与变量的关系,建立函数关系和不等关系求解.本题解得时,利用正余弦定理建立各边长的关系,通过二次函数和解不等式求解,充分体现了数学在实际问题中的应用. 25.(1)8;(2)CD =5 【解析】【分析】(1)直接利用余弦定理求cos∠BAC;(2)先求出sin∠DAC=528,再利用正弦定理求CD . 【详解】(1)在△ABC 中,由余弦定理得:222cos 2AB AC BC BAC AB AC+-∠=⋅321685282442+-==⨯⨯. (2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=528, 所以在△ACD 中由正弦定理得:sin sin45CD ACDAC =∠︒,452282CD =,所以CD =5. 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力. 26.(1)(2)57【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =或cos A =-2(舍去).因为0<A<π,所以A =. (2)由S =bcsin A =bc×=bc =5,得bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bccos A =25+16-20=21,故a =. 从而由正弦定理得sin B sin C =sin A×sin A =sin 2A =×=.考点:1.二倍角公式;2.正余弦定理;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.。