2017-2018学年湖北省黄冈市英才学校九年级(上)第一次月考数学试卷

合集下载

湖北省黄冈市九年级上学期数学第一次月考试卷

湖北省黄冈市九年级上学期数学第一次月考试卷

湖北省黄冈市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(4分×10=40分) (共10题;共40分)1. (4分)已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是()A . 点A在⊙O内B . 点A在⊙O上C . 点A在⊙O外D . 不能确定2. (4分)对于y=x2-6x+11的图象,下列叙述正确的是()A . 顶点坐标是(-3,2)B . 对称轴为x=-3C . 当时,y随x的增大而增大D . 函数有最大值3. (4分)将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是()A . y=6(x-2)2+3B . y=6(x+2)2+3C . y=6(x-2)2-3D . y=6(x+2)2-34. (4分)(2018·镇平模拟) 四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A .B .C .D .5. (4分)如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A 在量角器上对应读数分别为45°,70°,160°,则∠B的度数为()A . 20°B . 30°C . 45°D . 60°6. (4分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A . b=2a+kB . a=b+kC . a>b>0D . a>k>07. (4分) (2019九上·东城期中) 如图,AB为⊙O的直径,CD是弦,AB⊥CD于E ,若AB=10,OE=3,则弦CD的长为()A . 4B . 8C .D . 28. (4分)(2020·遂宁) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论错误的是()A . b2>4acB . abc>0C . a﹣c<0D . am2+bm≥a﹣b(m为任意实数)9. (4分)(2015·温州) 如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y= 的图象经过点B,则k的值是()A . 1B . 2C .D . 210. (4分)(2017·平顶山模拟) 如图,已知直线y= x﹣4与x轴、y轴分别交于A、B两点,以C(0,1)为圆心,1为半径的圆上找一动点P,连接PA、PB,则△PAB面积的最大值是()A . 10B . 9C . 6+D . 9二、填空题(5分×6=30分) (共6题;共30分)11. (5分)(2020·硚口模拟) 已知抛物线C1:y=x2-3x-10及抛物线C2:y=x2-(2a+2)x+a2+2a(a为常数),当-2<x<a+2时,C1 , C2图象都在x轴下方,则a的取值范围是________.12. (5分)(2018·贺州) 某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为________元.13. (5分) (2016九上·门头沟期末) “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.14. (5分) (2020九下·丹江口月考) 如图,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC+∠BOC=180°,BC=2 cm,则⊙O的半径为________cm.15. (5分) (2019九下·富阳期中) 袋内装有标号分别为1,2,3,4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为________。

黄冈市英才学校届九级上期中数学试卷含答案解析

黄冈市英才学校届九级上期中数学试卷含答案解析

2016-2017学年湖北省黄冈市英才学校九年级(上)期中数学试卷一、选择题:(本大题满分18分,共6小题,每题3分.)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C. D.2.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x3.关于x的方程2x2﹣4=0解为()A.2 B.±2 C.D.4.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)5.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)6.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(本大题满分24分,共8小题,每题3分.)7.方程x2=2x的根为.8.抛物线y=2x2的顶点坐标为.9.已知抛物线y=ax2的开口向下,且|a|=3,则a=.10.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在第象限.11.已知关于x的一元二次方程有解,求k的取值范围.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.13.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.三、解答题:(本大题满分78分,共9小题)15.解方程:(1)x(2x+3)=4x+6.(2)x2﹣2x﹣8=0(用因式分解法)16.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O中心对称的图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.17.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.18.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.19.景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?20.如图所示,将正方形ABCD中的△ABD绕对称中心O 旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想AM与GN有怎样的数量关系?并证明你的结论.21.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是ycm2,设金色纸边的宽为xcm,要求纸边的宽度不得少于1cm,同时不得超过2cm.(1)求出y关于x的函数解析式,并直接写出自变量的取值范围;(2)此时金色纸边的宽应为多少cm时,这幅挂图的面积最大?求出最大面积的值.22.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?23.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②过点M作PM⊥x轴交线段AC于点P,求出线段PM长度的最大值.2016-2017学年湖北省黄冈市英才学校九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分18分,共6小题,每题3分.)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.【解答】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选C.2.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x【考点】一元二次方程的一般形式.【分析】根据方程的一般形式,找出二次项系数与一次项系数即可.【解答】解:一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为5,﹣4,故选C3.关于x的方程2x2﹣4=0解为()A.2 B.±2 C.D.【考点】一元二次方程的解.【分析】把四个选项分别代入方程的左右两边,能够使方程左右两边相等的未知数的值就是方程的解.【解答】解:把x=±代入方程2x2﹣4=0的左边=4﹣4=0=右边,所以关于x的方程2x2﹣4=0解为x=±.故选D.4.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣l)【考点】坐标与图形变化-旋转.【分析】将矩形0ABC绕点O顺时针旋转180°,就是把矩形0ABC上的每一个点绕点O顺时针旋转180°,求点B1的坐标即是点B关于点O的对称点B1点的坐标得出答案即可.【解答】解:∵点B的坐标是(2,1),∴点B关于点O的对称点B1点的坐标是(﹣2,﹣1).故选C.5.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为的是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,﹣3).故选B.6.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由图象的开口方向可判断①;由图象与y轴的交点在x轴的下方可判断②;由图象与x轴有两个交点可判断③;由图象的对称轴在y轴的右侧及开口方向可判断④,可得出答案.【解答】解:∵图象开口向下,∴a<0,故①正确;∵图象与y轴的交点坐标在x轴的下方,∴c<0,故②不正确;∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故③正确;∵图象对称轴在y轴的右侧,∴﹣>0,∴ab<0,故④不正确;∴正确的有两个,故选B.二、填空题(本大题满分24分,共8小题,每题3分.)7.方程x2=2x的根为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.8.抛物线y=2x2的顶点坐标为(0,0).【考点】二次函数的性质.【分析】根据二次函数的顶点式解析式写出即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0).故答案为:(0,0).9.已知抛物线y=ax2的开口向下,且|a|=3,则a=﹣3.【考点】二次函数的性质.【分析】由抛物线y=ax2的开口向下,得出a<0,再由|a|=3,a=±3,由此得出答案即可.【解答】解:∵抛物线y=ax2的开口向下,∴a<0,∵|a|=3,∴a=±3,∴a=﹣3.故答案为:﹣3.10.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在第四象限.【考点】关于原点对称的点的坐标.【分析】利用关于原点对称点的性质得出P′点坐标,进而得出其所在象限.【解答】解:∵点P(﹣a2,﹣a+1)关于原点的对称点为P′,∴P′(a2,a﹣1),∵a<0,∴a﹣1<0,a2>0,∴P′在第四象限.故答案为:四.11.已知关于x的一元二次方程有解,求k的取值范围0≤k≤且k≠1.【考点】根的判别式.【分析】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.依此建立关于k的不等式,求得k 的取值范围.【解答】解:∵a=k﹣1,b=,c=2,∴△=b2﹣4ac=k﹣4×(k﹣1)×2≥0,整理得:△=﹣7k+8≥0,k≤,且k≥0,又∵k﹣1≠0,∴k≠1,,0≤k≤且k≠1.故答案为:0≤k≤且k≠1.12.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.【考点】旋转的性质;等边三角形的性质.【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.【解答】解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.13.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=7或﹣1.【考点】一元二次方程的应用.【分析】根据公式a2+2b﹣3,可将(m,﹣3m)代入得出m2+2×(﹣3m)﹣3=4,解方程即可.【解答】解:根据题意得,m2+2×(﹣3m)﹣3=4,解得m1=7,m2=﹣1,故答案为:7或﹣1.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【考点】二次函数图象与几何变换.【分析】根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.三、解答题:(本大题满分78分,共9小题)15.解方程:(1)x(2x+3)=4x+6.(2)x2﹣2x﹣8=0(用因式分解法)【考点】解一元二次方程-因式分解法.【分析】(1)移项后提公因式因式分解法求解可得;(2)十字相乘法因式分解后求解即可.【解答】解:(1)x(2x+3)﹣2(2x+3)=0,(x﹣2)(2x+3)=0,∴x﹣2=0或2x+3=0,解得:x=2或x=﹣;(2)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4.16.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O中心对称的图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【考点】作图-旋转变换.【分析】(1)将△ABC的三点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形△A′B′C′;(2)将△ABC的三点与点O连线并绕原点O按顺时针方向旋转90°找对应点,然后顺次连接得△A1B1C1.【解答】解:(1)正确画出图形(2)正确画出图形A1(﹣1,1).17.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(0,﹣4),求这个二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】根据二次函数顶点坐标设出顶点形式,把(0,﹣4)代入求出a的值,即可确定出解析式.【解答】解:设抛物线解析式为y=a(x﹣3)2﹣1,把(0,﹣4)代入得:﹣4=9a﹣1,即a=﹣,则抛物线解析式为y=﹣(x﹣3)2﹣1.18.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【考点】一元二次方程的应用.【分析】(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.19.景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【考点】一元二次方程的应用.【分析】(1)设每千克杏脯应降价x元,则每天销售可增加10x千克,根据每天获利2240元,列方程求解;(2)根据题意,为尽可能让利于顾客,应该降价6元,求出此时的折扣.【解答】解:(1)设每千克杏脯应降价x元,则每天销售可增加10x千克,由题意得,(60﹣x﹣40)═2240,解得:x1=4,x2=6.答:每千克杏脯应降价4元或6元;(2)每千克杏脯降价6元,此时每千克54元,54÷60=0.9.答:该店应按原售价的9折出售.20.如图所示,将正方形ABCD中的△ABD绕对称中心O 旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想AM与GN有怎样的数量关系?并证明你的结论.【考点】旋转的性质;正方形的性质.【分析】先根据正方形的性质得到OB=OD,AD=AB,∠BDA=∠ABD=45°,再根据旋转的性质得OF=OD,∠F=∠BDA,GF=AD,则OB=OF,∠F=∠ABD,然后根据“AAS”可判断△OBM≌△OFN,所以BM=FN,再利用AB=AD=GF,即可得到AM=GN.【解答】解:AM=GN.理由如下:∵点O为正方形ABCD的中心,∴OB=OD,AD=AB,∠BDA=∠ABD=45°,∵△ABD绕对称中心O 旋转至△GEF的位置,∴OF=OD,∠F=∠BDA,GF=AD,∴OB=OF,∠F=∠ABD,在△OBM和△OFN中,∴△OBM≌△OFN(ASA),∴BM=FN,∵AB=AD=GF,∴AB﹣BM=GF﹣FN,即AM=GN.21.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是ycm2,设金色纸边的宽为xcm,要求纸边的宽度不得少于1cm,同时不得超过2cm.(1)求出y关于x的函数解析式,并直接写出自变量的取值范围;(2)此时金色纸边的宽应为多少cm时,这幅挂图的面积最大?求出最大面积的值.【考点】二次函数的应用.【分析】(1)用含x的代数式表示出镶纸边后矩形的长和宽,根据矩形的面积公式即可得出y关于x的函数解析式,结合题意标明x的取值范围即可;(2)根据二次函数的性质确定在自变量的取值范围内函数的单调性,由此即可解决最值问题.【解答】解:(1)镶金色纸边后风景画的长为(80+2x)cm,宽为(50+2x)cm,∴y=(80+2x)•(50+2x)=4x2+260x+4000(1≤x≤2).(2)∵二次函数y=4x2+260x+4000的对称轴为x=﹣=﹣,∴在1≤x≤2上,y随x的增大而增大,∴当x=2时,y取最大值,最大值为4536.答:金色纸边的宽为2cm时,这幅挂图的面积最大,最大面积的值为4536cm2.22.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?【考点】二次函数的应用.【分析】(1)本题是通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出S与t之间的函数关系式;(2)把S=30代入累计利润S=t2﹣2t的函数关系式里,求得月份;(3)分别t=7,t=8,代入函数解析S=t2﹣2t,再把总利润相减就可得出.【解答】解:(1)由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S=a(t﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a(0﹣2)2﹣2=0,解得a=.∴所求函数关系式为:S=(t﹣2)2﹣2,即S=t2﹣2t.答:累积利润S与时间t之间的函数关系式为:S=t2﹣2t;(2)把S=30代入S=(t﹣2)2﹣2,得(t﹣2)2﹣2=30.解得t1=10,t2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得S=×72﹣2×7=10.5,把t=8代入关系式,得S=×82﹣2×8=16,16﹣10.5=5.5,答:第8个月公司所获利是5.5万元.23.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②过点M作PM⊥x轴交线段AC于点P,求出线段PM长度的最大值.【考点】二次函数综合题.【分析】(1)直接将C点坐标代入函数关系式,进而得出k的值即可;(2)利用当A,P,C在一条直线上时PA+PC的值最小,进而结合相似三角形的性质得出答案;(3)①表示出M点坐标,进而表示出△AMB的面积,进而利用二次函数最值求法得出答案;②表示出M点、P点的坐标,进而表示出PM的长,进而利用二次函数最值求法得出答案.【解答】解:(1)∵抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C(0,﹣3),∴﹣3=(0+1)2+k,解得:k=﹣4,∴抛物线的解析式为:y=(x+1)2﹣4,故对称轴为:直线x=﹣1;(2)存在.如图,连接AC,交对称轴于点P,此时PA+PC的值最小,当y=0,则0=(x+1)2﹣4,解得:x1=1,x2=﹣3,由题意可得:△ANP∽△AOC,则=,故=,解得:PN=2,则点P的坐标为:(﹣1,﹣2);(3)点M是抛物线上的一动点,且在第三象限,故﹣3<x<0;①如图,设点M的坐标为:[x,(x+1)2﹣4],∵AB=4,=×4×|(x+1)2﹣4|=2|(x+1)2﹣4|,∴S△AMB∵点M在第三象限,=8﹣2(x+1)2,∴S△AMB∴当x=﹣1时,即点M的坐标为(﹣1,﹣4)时,△AMB的面积最大,最大值为8;②设点M的坐标为:[x,(x+1)2﹣4],设直线AC的解析式为:y=ax+d,将(﹣3,0),(0,﹣3)代入得:,解得:.故直线AC:y=﹣x﹣3,设点P的坐标为:(x,﹣x﹣3),故PM=﹣x﹣3﹣(x+1)2+4=﹣x2﹣3x=﹣(x+)2+,当x=﹣时,PM最大,最大值为.2016年12月24日。

2017至2018学年上学期九年级月考数学试卷

2017至2018学年上学期九年级月考数学试卷

2017至2018学年上学期九年级月考数学试卷(一)班级: 姓名: 得分一、填空题(本大题共6个小题,每小题3分,满分18分) 1、一元二次方程05232=-+x x 的二次项系数是 ,一次项系数是 , 常数项是 。

2、已知方程032=++px x 的一个根为-3,则p = 。

3、一元二次方程01522=+-x x 的根的情况是 。

4、如果函数()723--=m x m y 是二次函数,那么m = 。

5、抛物线142-=x y 与y 轴的交点坐标是 。

6、已知抛物线()3122-+-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是 。

二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7、方程的根为( )A.=1,=2B. =0,=1C. =0,=2D. =,=2 8、抛物线()322+-=x y 的对称轴是( )220x x -=1x 2x 1x 2x 1x 2x 1x 122xA 、直线2-=xB 、直线2=xC 、直线3-=xD 、直线3=x 9、二次函数()212+--=x y 的图象的顶点坐标是( )A 、(1,2)B 、(-1,2)C 、(-1,-2)D 、(1,-2) 10、用配方法解方程0582=--x x ,则配方结果正确的是( ) A 、()1142=+x B 、()2142=-x C 、()1682=-x D 、()6982=+x 11、一元二次方程0652=+-x x 的两根分别是1x 、2x 则=+21x x ( ) A 、 5 B 、6 C 、-5 D 、-6 12、将抛物线221x y =向左平移3个单位长度,再向下平移2个单位长度后,所得的抛物线是( )A 、()232--=x yB 、()232++=x yC 、()23212+-=x y D 、()23212-+=x y13、某商品原价为200元,连续两次降价00a 后售价为148元,下列方程中正确的是( )A 、()1481200200=+aB 、()14821200200=-aC 、()14812002002=+a D 、()1481200200=-a14、如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A 、B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A 、(2,3) B 、(3,2) C 、(3,3) D 、(4,3)三、解答题(本大题共9个小题,满分70分) 15、用适当方法解下列方程(每小题3分,共12分) (1)0812=-x (2)0422=-+x x(3)()22-=-x x x (4)01422=--x x (用配方法)16、关于x 的一元二次方程()011222=++++k x k x 有两个不相等的实数根1x ,2x (6分)(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足2121x x x x -=+,求k 的值。

湖北省黄冈市九年级上学期数学第一次月考试卷

湖北省黄冈市九年级上学期数学第一次月考试卷

湖北省黄冈市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·淮南月考) 若是二次函数,则m的值为()A . 2B . -1C . -1或2D . 以上都不对2. (2分)从下图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是()A .B .C .D . 13. (2分) (2018九上·营口期末) 中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A . 300(1+x)2=1500B . 300(1+2x)=1500C . 300(1+x2)=1500D . 300+2x=15004. (2分)(2020·旌阳模拟) 已知二次函数的图象与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,且,则m的值为()A . ±4B . ±2C .D .5. (2分)①4的算术平方根是±2;②与-是同类二次根式;③点P(2,3)关于原点对称的点的坐标是(-2,-3);④抛物线y=-(x-3)2+1的顶点坐标是(3,1).其中正确的是()A . ①②④B . ①③C . ②④D . ②③④6. (2分) (2020·北辰模拟) 抛物线(,,是常数,)经过点A(,)和点 B (,),且抛物线的对称轴在轴的左侧. 下列结论:① ;② 方程有两个不等的实数根;③ . 其中,正确结论的个数是()A . 0B . 1C . 2D . 37. (2分) (2018九上·濮阳月考) 若A(-4,y1),B(-2,y2),C(1,y3)为二次函数y=x2+4x的图象上的三点,则y1 , y2 , y3的大小关系是()A .B .C .D .8. (2分) (2018九上·宁波期中) 甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A . 掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B . 抛一枚质地均匀的硬币,出现正面朝上的概率C . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率9. (2分)(2019·大连模拟) 将抛物线y=x2向左平移2个单位,所得抛物线的解析式为()A . y=x2﹣2B . y=x2+2C . y=(x+2)2D . y=(x﹣2)210. (2分)下列游戏公平的是()A . 掷一个硬币两次,出现两次正面甲胜,出现两次反面乙胜B . 掷一个硬币两次,出现一次正面甲胜,出现两次反面乙胜C . 掷一个硬币两次,至少出现一次正面甲胜,出现一次反面一次正面乙胜D . 掷一个硬币两次,出现相同面甲胜,至少出现一次正面乙胜二、填空题 (共10题;共11分)11. (1分) (2019九上·湖州月考) 请写出一个开口向下,且顶点坐标为(-3,2)的抛物线解析式________.12. (1分)(2019·锡山模拟) 三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为________.13. (1分)已知二次函数的图象开口向下,则m的值为________.14. (1分) (2019九上·湖州月考) 函数图像的顶点坐标是________15. (2分)(2017·吉林模拟) 已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b=________,c=________.16. (1分)(2020·北辰模拟) 不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出一个球,则取出的这个球是红球的概率是________.17. (1分) (2017九上·重庆开学考) 已知抛物线y=(x﹣2)2﹣3的部分图象如图所示,若y≤0,则x的取值范围为________.18. (1分)(2019·长春模拟) 把方程x2﹣4x+1=0化成(x﹣m)2=n的形式,m,n均为常数,则mn的值为________.19. (1分)请写出一个以直线x=-2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式可以是________ .20. (1分) (2018九上·天台月考) 抛物线的对称轴是直线x= ________三、解答题 (共6题;共66分)21. (15分)(2018·重庆模拟) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y 轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作P D∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.22. (15分) (2016九上·利津期中) 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23. (10分)已知二次函数的图像上部分点的坐标满足下表:…………(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数图像的顶点坐标和对称轴.24. (11分)在一个不透明的口袋里,装有9个颜色不同其余都相同的球,其中有6个红球,2个蓝球和1个白球,将它们在口袋里搅匀;(1)从口袋一次任意取出4个球,一定有红球,这是一个________事件(2)从口袋任意取出1个球,恰好红球的概率是多少?(3)从上述9个球中任取几个来设计一个游戏,使得摸到红球的概率为.写出你的设计方案.25. (5分) (2016九上·杭锦后旗期中) 某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.①写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式,并写出x的取值范围.②若商场要每天获得销售利润2000元,销售单价应定为多少元?③求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. (10分)(2016·黔南) 已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共66分)21-1、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、26-1、26-2、第11 页共11 页。

2017-2018九年级数学(上)月考试卷(一)

2017-2018九年级数学(上)月考试卷(一)

2017-2018学年度第一学期九年级数学月考试卷(一)一、选择题(本大题10小题,每小题3分,共30分) 1.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 2. 已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C . D3. 如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若2.5DB C ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( ) A .6个 B .5个 C .4个 D .3个4. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD的周长为( ) A .16a B .12aC .8aD .4a5、方程x x =2的根是( )(A )01=x (B )11=x (C )01=x ,12=x (D )01=x ,12-=x6. 方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根7、若方程07532=--x x 的两根为21x x 、,下列表示根与系数关系的等式中,正确的是( )(A )121257x x x x +=⋅=-, (B )12125733x x x x +=-⋅=, (C )12125733x x x x +=⋅=, (D )12125733x x x x +=⋅=-,8、关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( )(A )49-≤k (B )904k k ≥-≠且 (C )94k ≥- (D )904k k >-≠且B C ' B AC 1 2 B AD C B A C 1 2D 1 2 BA D C9、茂名市2015年平均房价为每平方米5500元.连续两年增长后,2017年平均房价达到每平方米7500元,10、若αβ,是方程2220050x x +-=的两个实数根,则23ααβ++的值为( )(A )2005 (B )2003 (C )-2005 (D )4010二、填空题(本大题6小题,每小题4分,共24分)11、边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 . 12、当m 时,方程()05122=+--mx x m 不是一元二次方程.13、如果()51222+++-m x m x 是一个完全平方式,则=m _____. 14、已知方程022=-+kx x 的一个根是1,则另一个根是 ,k 的值是 .15、如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .16、如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC上,则AC 的长是 .第15题第16题 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、解方程:(1)x x 4)1(2=+ (2)01072=+-x x18、已知:如图,正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG ⊥AE 于G ,DG 交OA于F .求证:OE=OF .BC D A P AB CDE19、如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20、某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21、如图,矩形中,是与的交点,过点的直线与的延长线分别交于.(1)求证:;(2)当与满足什么关系时,以为顶点的四边形是菱形?证明你的结论.22、已知关于x 的一元二次方程()241210x m x m +++-=.(1)求证:不论m 为任何实数,方程总有两个不相等的实数根. (2)若方程两根为21x x 、,且满足121112x x +=-,求m 的值.ABCD O AC BD O EF AB CD ,E F ,BOE DOF △≌△EF AC A E C F ,,,FDOC B EA五、解答题(三)(本大题3小题,每小题9分,共27分)23、在△ABC 中,∠B=90º,AB=6cm ,BC=8cm ,点P 从点A 开始沿AB 边向终点B 以1cm/s 的速度移动,与此同时,点Q 从点C 开始沿CB 边向终点B 以2cm/s 的速度移动,如果P ,Q 分别从A ,C 同时出发。

新人教版2017-2018学年九年级上第一次月考数学试题含答案

新人教版2017-2018学年九年级上第一次月考数学试题含答案

新人教版2017-2018学年九年级上第一次月考数学试题含答案2017—2018学年度(上)学期9月份阶段验收九年级数学试卷2017.9.29一、选择题(每小题3分,共计30分)1.点M(-1,2)关于x轴对称的点的坐标为()(A)(-1,-2)(B)(-1,2)(C)(1,-2)(D)(2,-1)2.下列计算正确的是()(A)235a a a+=(B)()326a a=(C)326aaa=÷(D)aaa632=⨯3.下列图案中,既是轴对称图形又是中心对称图形的是()4.抛物线()2345y x=-+的顶点坐标是()(A)(4,5)(B)(-4,5)C、(4,-5)(D)(-4,5)5.等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为()(A)13cm(B)17cm(C)22cm(D)17cm或22cm6.已知反比例函数kyx=的图象经过点P(-l,2),则这个函数的图象位于()(A)第二、三象限(B)第一、三象限(C)第三、四象限(D)第二、四象限7.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()(A)12.1%(B)20%(C)21%(D)10%8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点A顺时针旋转900得到,点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是()(A)45°(B)30°(C)25°(D)15°9.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=600,AB=5,则AD的长是()(A)53(B)52(C)5(D)1010.甲乙两车分别从M、N两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,(A)(B)(C)(D)(第8题图)(第9题图)(第10题图)两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S(千米)与甲车所用时间t(小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是()(A )M 、N 两地的路程是1000千米;(B )甲到N 地的时间为4.6小时;(C )甲车的速度是120千米/小时;(D )甲乙两车相遇时乙车行驶了440千米.二、填空题(每小题3分,共计30分)11.将2580000用科学记数法表示为.12.函数12y x =-的自变量x 的取值范围是.13.计算:82+=.14.分解因式:322_____________x x x ---=.15.抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为.16.如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB =cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是.18.如图,在⊙O 中,圆心角∠BOC=60°,则圆周角∠BAC 的度数为度.19.在ΔABC 中,若AB=34,AC=4,∠B=30°,则ABC S ∆=.20.如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为.三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21.先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+.22.如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所(第16题图)(第18题图)(第20题图)画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1图223.某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24.已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).图1图225.哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26.如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ;(2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1)(第26题图2)(第26题图3)27.已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM、PA,设点P 的横坐标为t,△PAM 的面积为S,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G,若ON∶CG=1∶4,求点P 的坐标.答案一、ABCACDDDAC二、11、2.58×10612、x ≠213、2314、-x(x+1)215、-416、817、x ≥518、3019、34或3820、22三、21、(7分)原式=2211=-x 22、(1)(3分)(2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略(2)略(3)AC ∥BE ,△CNG≌△BFH,设GN=x,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x (3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为正方形△AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1)直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y解得P (6193-7-,18193-25-)。

九年级数学上学期第一次月考10月试题扫描版新人教版

九年级数学上学期第一次月考10月试题扫描版新人教版

湖北省黄石市下陆区2018届九年级数学上学期第一次月考(10月)试题一、选择题1. C2. D3. B4. B5. C6. A7. B8. B9. D 10. D二、填空题11. x1=0,x2=212. 2)1x13. -1 14. 2 15. (0,2),(-2,0)16.5(m+a三、解答题17.(1)x 1=-5,x 2=5 ; (2)x 1=0,x 2=-1(3)x 1=x 2=218. 设有x 个同窗,那么x (x -1)=1560,x=4019.设二次函数c bx ax y ++=2过A,B,D.得65-y 2+=x x ,当2-=x 时,20y =因此存在那个二次函数65-y 2+=x x 过A 、B 、C 、D 四个点20.(1)x 1=-3,x 2=1 ; (2)x 1=1,x 2=2 21.(1)△=2)23-k 4(+4>0 ;(2)由题意可求得k 1=3,k 2=-2(舍去),那么原方程为x 2 -7x+9=0, ∴b+c=7, ∴△ABC 的周长为7+.22.解:(1)原先每件商品的利润是2元;涨价后每件商品的实际利润是2+x 元;故答案为:2,(2+x );(2)依照题意,得 (2+x )(200-20x )=700.整理,得x 2-8x +15=0,解那个方程得x 1=3 x 2=5,因此10+3=13,10+5=15.答:售价应定为13元或15元; (3)设利润为w ,由题意得,天天利润为w =(2+x )(200-x ).w =(2+x )(200-x )=-20x 2+160x +400,=-20(x -4)2+720.因此当涨价4元(即售价为14元)时,天天利润最大,最大利润为720元.23.(1)当t=2秒或4秒时,△PBQ 的面积等于8平方厘米(2)不存在t 的值,得△PQB 的面积等于12cm 2.理由:由(1)知:S △P B Q = t(6−t),整理得t 2-6t+12=0,∵△=-12<0,∴该方程无解,∴不存在t 的值,使得△PQB 的面积等于12cm 2.24.解:(1)当0≤x≤50时,设商品的售价y 与时刻x 的函数关系式为y=kx+b (k 、b 为常数且k≠0), ∵y=kx+b 通过点(0,40)、(50,90),∴,解得:,∴售价y 与时刻x 的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y 与时刻x 的函数关系式为y=.由表格可知天天的销售量p与时刻x成一次函数关系,设天天的销售量p与时刻x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,天天的销售利润w与时刻x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天取得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤60 当0≤x≤50时,∴30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售进程中,共有24天天天的销售利润不低于5600元.25.给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)解:∵l:y=kx,C:y=ax2+bx+1,当b=1时有A,B两交点,∴A,B两点的横坐标知足kx=ax2+x+1,即ax2+(1﹣k)x+1=0.∵B与A关于原点对称,∴0=x A+x B=,∴k=1.∵y=ax2+x+1=a(x+)2+1﹣,∴极点(﹣,1﹣)在y=x上,∴﹣=1﹣,解得 a =﹣.(2)①解:∵不管非零实数k 取何值,直线r 与抛物线C 都只有一个交点,∴k =1时,k =2时,直线r 与抛物线C 都只有一个交点. 当k =1时,r :y =x +2,∴代入C :y =ax 2+bx +1中,有ax 2+(b ﹣1)x ﹣1=0, ∵△=a 41-b 2+)(=0, ∴(b ﹣1)2+4a =0, 当k =2时,r :y =2x +5,∴代入C :y =ax 2+bx +1中,有ax 2+(b ﹣2)x ﹣4=0,∵△=a 162-2+)(b =0, ∴(b ﹣2)2+16a =0,∴联立得关于a ,b 的方程组 , 解得 或 .∵r :y =kx +k 2+1代入C :y =ax 2+bx +1,得ax 2+(b ﹣k )x ﹣k 2=0, ∴△=224-ak k b +)(. 当时,△=22k 41-(4)-)(+k =0,故不管k 取何值,直线r 与抛物线C 都只有一个交点. 当时,△=91638-982+k k ,显然虽k 值的转变,△不恒为0,因此不合题意舍去.∴C :y =﹣x 2+1.②证明:依照题意,画出图象如图1,由P 在抛物线y =﹣x 2+1上设P 坐标为(x ,﹣x 2+1),连接OP ,过P 作PQ ⊥直线y =2于Q ,作PD ⊥x 轴于D , ∵PD =|﹣x 2+1|,OD =|x |,∴OP ====, PQ =2﹣y P =2﹣(﹣x 2+1)=, ∴OP =PQ .。

湖北省黄冈市九年级上学期数学第一次月考考试试卷

湖北省黄冈市九年级上学期数学第一次月考考试试卷

湖北省黄冈市九年级上学期数学第一次月考考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)(2017·新乡模拟) 下列运算正确的是()A . 6 =B . ﹣2 =C . a2 =D . ﹣ =2. (2分)(2016·贵港) 式子在实数范围内有意义,则x的取值范围是()A . x<1B . x≤1C . x>1D . x≥13. (2分)已知(a+b)2-2ab=5,则a2+b2的值为()。

A . 10B . 5C . 1D . 不能确定4. (2分)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A . 7B . ﹣7C . 11D . ﹣115. (2分)已知(x+m)2=x2+nx+36,则n的值为()A . ±6B . ±12C . ±18D . ±726. (2分)下列算式不成立的是()A . (3a﹣b)2=9a2﹣6ab+b2B . (a+b﹣c)2=(c﹣a﹣b)2C . (x﹣y)2=﹣xy+y2D . (x+y)(x﹣y)(x2﹣y2)=x4﹣y47. (2分)如图,在长方形ABCD中,CD与BC的长度比为5:12,若该长方形的周长为34,则BD的长为()A . 13B . 12C . 8D . 108. (2分) (2019八下·武昌月考) 如图,在平面直角坐标系xOy中,,,点D在x轴上,若在线段包括两个端点上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个,下列选项中满足上述条件的点D坐标不可以是A .B .C .D .9. (2分) (2016八下·周口期中) 等腰三角形的腰长为5,底边长为8,则该三角形的面积等于()A . 6B . 12C . 24D . 4010. (2分)已知|a+13|+|b﹣10|=0,则a+b的值是()A . -3B . 3C . 23D . -2311. (2分) (2017七下·梁子湖期中) 如图,三角形ABC中,∠C=90°,AC=3,AB=6,点P是边BC上的动点,则AP的长不可能是()A . 2.5B . 3C . 4D . 5二、填空题 (共9题;共9分)12. (1分) (2019八上·陇西期中) 平面直角坐标系内,点P(3,﹣4)到y轴的距离是________.13. (1分) (2019八上·法库期末) 若最简二次根式与能合并成一项,则a=________.14. (1分)到原点距离等于的实数为________15. (1分)(2017·江东模拟) 规定用符号[m]表示一个实数m的整数部分,例如:[ ]=0,[3.14]=3.按此规定,则[ + ]的值为________.16. (1分)已知m是方程2x2+3x﹣1=0的根,求 m2+ m的值为________.17. (1分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是________.18. (1分) (2017八下·海安期中) 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是________19. (1分)如图,为测量小区内池塘最宽处A、B两点间的距离,在池塘边定一点C,使∠BAC=90°,并测得AC的长18m,BC的长为30m,则最宽处AB的距离为________.20. (1分)(2018·黄梅模拟) 已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=________cm.三、解答题 (共7题;共35分)21. (5分)(2017·岳阳模拟) 已知x2﹣3x+2=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.22. (5分) (2016七上·同安期中) 当x=2时,代数式px3+qx+1的值等于2016,那么当x=﹣2时,求px3+qx+1 的值.23. (5分) (2017八上·鄞州月考) 如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省黄冈市英才学校九年级(上)第一次月考数学试卷一、选择题(每题3分,共30分)1.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或22.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005 B.2003 C.﹣2005 D.40103.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠04.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=05.某城市2017年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2017年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300 6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=67.关于x的方程x2+px+q=0的两根同为负数,则()A.p>0且q>0 B.p>0且q<0 C.p<0且q>0 D.p<0且q<08.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+4=0 B.4x2﹣4x+1=0 C.x2+x+3=0 D.x2+2x﹣1=09.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1 B.m<﹣2 C.m≥0 D.m<010.已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3 C.6 D.9二、填空题(每题3分,共24分)11.方程(x﹣1)2=4的解为.12.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.13.关于x的代数式x2+(m+2)x+9中,当m=时,代数式为完全平方式.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.15.已知3x2﹣x=7的二次项系数是,一次项系数是,常数项是.16.方程x2+3x+1=0的两个根为α、β,则+的值为.17.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则+=.18.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为.三、解关于x的方程(每小题16分,共16分):19.解关于x的方程.(1)(5x﹣3)2=(x+1)2(2)(配方法)2x2+3=7x(3)x2﹣5x﹣6=0(4)(x+3)2+3(x+3)﹣4=0.四、解答题(共50分):20.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.21.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?22.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.23.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.25.如图.A、B、C、D为矩形的4个顶点:AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止:点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?2017-2018学年湖北省黄冈市英才学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或2【考点】换元法解一元二次方程.【分析】设t=x+y,则原方程转化为关于t的一元二次方程,通过解该方程求得t即x+y的值即可.【解答】解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.2.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005 B.2003 C.﹣2005 D.4010【考点】根与系数的关系;一元二次方程的解.【分析】根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=,x1x2=.而α2+3α+β=α2+2α+(α+β),即可求解.【解答】解:α,β是方程x2+2x﹣2005=0的两个实数根,则有α+β=﹣2.α是方程x2+2x﹣2005=0的根,得α2+2α﹣2005=0,即:α2+2α=2005.所以α2+3α+β=α2+2α+(α+β)=α2+2α﹣2=2005﹣2=2003.故选B.3.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0【考点】根的判别式.【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=0;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:当k=0时,方程为3x﹣1=0,有实数根,当k≠0时,△=b2﹣4ac=32﹣4×k×(﹣1)=9+4k≥0,解得k≥﹣.综上可知,当k≥﹣时,方程有实数根;故选C.4.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0【考点】根与系数的关系.【分析】解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.【解答】解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B.5.某城市2017年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2017年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300 【考点】由实际问题抽象出一元二次方程.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.【解答】解:设绿化面积平均每年的增长率为x,根据题意即可列出方程300(1+x)2=363.故选B.6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.7.关于x的方程x2+px+q=0的两根同为负数,则()A.p>0且q>0 B.p>0且q<0 C.p<0且q>0 D.p<0且q<0【考点】根与系数的关系.【分析】由于只有方程△≥0、两根之积>零、两根之和<零时,方程x2+px+q=0的两根才同为负数,由此得到关于p,q的不等式,然后确定它们的取值范围.【解答】解:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=﹣p,x1x2=q∴﹣p<0,q>0∴p>0,q>0.故选A.8.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+4=0 B.4x2﹣4x+1=0 C.x2+x+3=0 D.x2+2x﹣1=0【考点】根的判别式.【分析】根据一元二次方程根的判别式,分别计算△的值,根据△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根,进行判断.【解答】解:A、△=﹣16<0,方程没有实数根;B、△=0,方程有两个相等的实数根;C、△=1﹣12=﹣11<0,方程没有实数根;D、△=4+4=8>0,方程有两个不相等的实数根.故选D.9.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是()A.m>﹣1 B.m<﹣2 C.m≥0 D.m<0【考点】根的判别式.【分析】因为关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,所以△=4+4m>0,解此不等式即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,∴△=4+4m>0,即m>﹣1.故选A.10.已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3 C.6 D.9【考点】勾股定理;根与系数的关系.【分析】根据根与系数的关系,求出两根之积与两根之和的值,再根据勾股定理列出直角三角形三边之间的关系式,然后将此式化简为两根之积与两根之和的形式,最后代入两根之积与两根之和的值进行计算.【解答】解:设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2﹣2ab=16﹣7=9,∴c=3,故选B.二、填空题(每题3分,共24分)11.方程(x﹣1)2=4的解为3或﹣1.【考点】解一元二次方程-直接开平方法.【分析】观察方程的特点,可选用直接开平方法.【解答】解:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.12.若关于x的方程2x2﹣3x+c=0的一个根是1,则另一个根是.【考点】一元二次方程的解;根与系数的关系.【分析】根据根与系数的关系列出关于另一根x的方程,解方程即可.【解答】解:∵关于x的方程2x2﹣3x+c=0的一个根是1,∴x=1满足关于x的方程2x2﹣3x+c=0,1+x=,解得,x=;故答案是:.13.关于x的代数式x2+(m+2)x+9中,当m=4或﹣8时,代数式为完全平方式.【考点】完全平方式.【分析】先根据乘积二倍项确定出这两个数是x和±3,再根据完全平方公式:(a±b)2=a2±2ab+b2,求出答案即可.【解答】解:∵x2+(m+2)x+9为完全平方式,∴这两个数是x、±3,∴m+2=2×1×(±3),即m=4或﹣8.故答案为:4或﹣8.14.关于x的方程(m﹣)﹣x+3=0是一元二次方程,则m=.【考点】一元二次方程的定义.【分析】由一元二次方程的定义回答即可.【解答】解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1且m﹣≠0.解得m=.故答案为:.15.已知3x2﹣x=7的二次项系数是3,一次项系数是﹣1,常数项是﹣7.【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式,可得答案.【解答】解:化为一般式,得3x2﹣x﹣7=0,二次项系数是3,一次项系数是﹣1,常数项是﹣7,故答案为:3,﹣1,﹣7.16.方程x2+3x+1=0的两个根为α、β,则+的值为3.【考点】根与系数的关系.【分析】根据根与系数的关系可得出α+β=﹣3、α•β=1,将+转化为代入数据即可得出结论.【解答】解:∵方程x2+3x+1=0的两个根为α、β,∴α+β=﹣3,α•β=1,∴+======3.故答案为:3.17.已知实数m、n满足m2﹣4m﹣1=0,n2﹣4n﹣1=0,则+=2或﹣18.【考点】根与系数的关系.【分析】分类讨论:当m=n时,易得原式=2;当m≠n时,则可把m、n看作方程x2﹣4x﹣1=0的两根,根据根与系数的关系得到m+n=4,mn=﹣1,再把原式变形得到=,然后利用整体代入的方法计算即可.【解答】解:当m=n时,原式=1+1=2;当m≠n时,m、n可看作方程x2﹣4x﹣1=0的两根,则m+n=4,mn=﹣1,所以原式====﹣18.故答案为2或﹣18.18.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为10或6或12.【考点】等腰三角形的性质;一元二次方程的应用;三角形三边关系.【分析】根据方程y2﹣6y+8=0得出两边边长,再根据等腰三角形的性质和三边关系讨论求解.【解答】解:∵y2﹣6y+8=0∴y=2,y=4∴分情况讨论:当三边的边长为2,2,4,不能构成三角形;当三边的边长为2,4,4能构成三角形,三角形的周长为10;当三边都是2时,三角形的周长是6;当三角形的三边都是4时,三角形的周长是12.故此三角形的周长为10或6或12.三、解关于x的方程(每小题16分,共16分):19.解关于x的方程.(1)(5x﹣3)2=(x+1)2(2)(配方法)2x2+3=7x(3)x2﹣5x﹣6=0(4)(x+3)2+3(x+3)﹣4=0.【考点】换元法解一元二次方程;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)先把方程的右边化为0,再把左边因式分解即可;(2)移项、二次项系数化成1,两边加上一次项系数一半的平方,则左边是一次式的平方,右边是常数,即可利用直接开平方法求解;(3)利用因式分解法解方程即可;(4)把x+3看作一个整体,利用因式分解法解方程即可.【解答】解:(1)(5x﹣3)2=(x+1)2,移项,得:(5x﹣3)2﹣(x+1)2=0,因式分解,得:(5x﹣3+x+1)(5x﹣3﹣x﹣1)2=0,6x﹣2=0,或4x﹣4=0,解得x1=,x2=1;(2)(配方法)2x2+3=7x,移项,得:2x2﹣7x=﹣3,二次项系数化成1,得:x2﹣x=﹣,配方,得:x2﹣x+=﹣+,即(x﹣)2=,则x﹣=±,则x1=3,x2=;(3)x2﹣5x﹣6=0,因式分解,得:(x﹣6)(x+1)=0,x﹣6=0,或x+1=0,解得x1=6,x2=﹣1;(4)(x+3)2+3(x+3)﹣4=0,因式分解,得:(x+3﹣1)(x+3+4)=0,x+2=0,或x+7=0,解得x1=﹣2,x2=﹣7.四、解答题(共50分):20.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.21.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(3﹣0.5x)元,由题意得(x+3)(3﹣0.5x)=10求出即可.【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.22.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】(1)根据题意得出AB、AC的长,再由根与系数的关系得出k的值;(2)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值.【解答】解:(1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2﹣2AB•AC,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或﹣5(不合题意舍去);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16.23.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)因为方程有两个实数根,所以△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=﹣3,x1x2=m﹣1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.【解答】解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤;(2)∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.(1)要使每天获得利润700元,请你帮忙确定售价;(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.【考点】二次函数的应用;二次函数的最值.【分析】(1)如果设每件商品提高x元,可先用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x ﹣8),然后化简配方,即可求得答案.【解答】解:(1)设每件商品提高x元,则每件利润为(10+x﹣8)=(x+2)元,每天销售量为件,依题意,得:(x+2)=700.整理得:x2﹣8x+15=0.解得:x1=3,x2=5.∴把售价定为每件13元或15元能使每天利润达到700元;答:把售价定为每件13元或15元能使每天利润达到700元.(2)设应将售价定为x元时,才能使得所赚的利润最大为y元,根据题意得:y=(x﹣8),=﹣20x2+560x﹣3200,=﹣20(x2﹣28x)﹣3200,=﹣20(x2﹣28x+142)﹣3200+20×142=﹣20(x﹣14)2+720,∴x=14时,利润最大y=720.答:应将售价定为14元时,才能使所赚利润最大,最大利润为720元.25.如图.A、B、C、D为矩形的4个顶点:AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止:点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?【考点】一元二次方程的应用.【分析】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,表示出PB、BQ,利用勾股定理建立方程求得答案即可.【解答】解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,则PB=16﹣3t,BQ=6﹣2t,∵PB2+BQ2=PQ2,∴(16﹣3t)2+(6﹣2t)2=102,解得t1=,t2=.∵0<t<3,∴t1=(不合题意,舍去).答:P,Q两点从出发经过秒时,点P,Q间的距离是10cm.2017年1月7日。

相关文档
最新文档