第一讲_对称分量法的基本原理
对称分量法(零序,正序,负序)的理解与计算

对称分量法(零序,正序,负序)的理解与计算对称分量法(零序,正序,负序)的理解与计算1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A 相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数。
负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;负序电流常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
(这句话对吗?)前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对称分量法的内容

对称分量法一、什么是对称分量法对称分量法(Symmetrical Component Method,简称SCM)是一种用于解决三相电力系统中不平衡故障问题的分析方法。
在电力系统中,由于各种原因(例如电力负载变化、设备故障等),电源产生的三相电流和电压可能会失去平衡,从而引发各种故障。
对称分量法通过将不平衡信号分解为对称和非对称分量,可以准确地计算电力系统中发生的不平衡故障。
二、对称分量法的基本原理2.1 对称分量的定义在对称分量法中,将三相电源的电压和电流分解为正序、负序和零序三个互相独立的分量。
正序分量表示电压和电流的幅值和相位全都相同,负序分量表示电压和电流的幅值相同但相位互差120度,零序分量表示电压和电流的幅值都为零。
2.2 不平衡故障的分析利用对称分量法,可以将不平衡故障分解为正序、负序和零序三个分量。
通过分析这三个分量在电力系统中的传输和变化,可以准确地确定故障的发生位置和类型。
2.3 对称分量的计算方法对称分量的计算主要基于对称分量正负序的定义和性质。
对于三相对称装置,其中包括电源和电路中没有接地的中性点,正序分量可以通过直接测量获得;负序分量可以通过将三相电流线电压和120度相位互差的关系应用于电压计算得到;零序分量可以通过将三相电压和电流进行相加、平均得到。
三、对称分量法的应用3.1 故障分析与检测对称分量法广泛应用于电力系统中不平衡故障的分析与检测。
通过分析电力系统中各个节点的对称分量,可以判断故障的类型、发生位置以及对系统的影响程度。
这对于保护装置的及时动作以及减小故障对电力系统的影响具有重要意义。
3.2 故障定位与隔离利用对称分量法,可以准确地定位和隔离电力系统中的故障。
通过分析故障点处不同分量的幅值和相位变化,可以确定故障的位置,并采取相应的措施进行隔离和修复。
这可以减少故障造成的停电时间和电力系统的恢复成本。
3.3 电力系统设计和优化对称分量法对于电力系统的设计和优化也具有重要意义。
对称分量法

如存在另外的中性点,则变压器零序等值如图所示(除
了有外接电抗外类似于 YN、d 连接)。
零序电抗为: x ≈ x + x (非三相三柱式变压器)
(0)
I
II
总结:双绕组变压器提供零序电流一侧必须为 YN 连
接,另外一侧的接线方式有三种:
(1)delta连接:零序电抗为 x ≈ x +x = x = x 。
第一节 对称分量法
对称分量法:在三相对称网络中出现局部不对称情 况(短路)时,分析计算其三相不对称电气量(电 压或电流等)。(即将不对称量分解变换为对称分量)
对于任何三相不对称相量均可分解为:
•
•
•
•
F = F + F + F ⎫ a
a (1)
a(2)
a(0)
⎪ •
•
•
•
F = F + F + F ⎪⎬ b
相”的 3 个序电压和序电流;
4) 求得各相电压和电流
关键在于元件序网的建立。
下面首先介绍各个元件的正、负、零序电抗。最后再
介绍各个序网的生成。
序参数归类说明:
1)旋转元件(发电机、电动机、调相机):x(1)
≠
x (2)
≠
x (0)
2)静止磁耦合元件(输电线、变压器):
x =x ≠x
(1)
(2)
(0)
在中性点接地时: x =(0.15~0.6)x "
(0)
d
在中性点不接地时: x = ∞ (0)
第四节 异步电动机的负序和零序电抗
1、正序电抗:扰动瞬时的正序电抗为 x″; 2、负序电抗:异步电动机的负序参数可以按负序转差 率 2-s 来确定, x ≈ x"
对称分量法(零序,正序,负序)的理解与计算

对称份量法(零序,正序,负序)的理解与计较之五兆芳芳创作1)求零序份量:把三个向量相加求和.即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不克不及转动.同办法把C相的平移到B相的顶端.此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和.最后取此向量幅值的三分一,这就是零序份量的幅值,标的目的与此向量是一样的.2)求正序份量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图.按上述办法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的办法辨别画出B、C两相.这就得出了正序份量.3)求负序份量:注意原向量图的处理办法与求正序时不一样.A 相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图.下面的办法就与正序时一样了.对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不合错误称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不合错误称时也成立;因此,零序电流通常作为漏电毛病判断的参数.负序电流则不合,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不合错误称时也会产生负序电流;负序电流常作为电机毛病判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不合错误称.注意了:三相不服衡与零序电流不成混合呀!三相不服衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的.(这句话对吗?)前面好几位把两者混合了吧!正序、负序、零序的出现是为了阐发在系统电压、电流出现不合错误称现象时,把三相的不合错误称份量分化成对称份量(正、负序)及同向的零序份量.只要是三相系统,一般针对三相三线制的电机回路,就能分化出上述三个份量(有点象力的分解与分化,但良多情况下某个份量的数值为零).对于理想的电力系统,由于三相对称,因此负序和零序份量的数值都为零(这就是我们常说正常状态下只有正序份量的原因).当系统出现毛病时,三相变得不合错误称了,这时就能分化出有幅值的负序和零序份量度了(有时只有其中的一种),因此通过检测这两个不该正常出现的份量,就可以知到系统出了毛病(特别是单相接地时的零序份量).下面再介绍用作图法复杂得出各份量幅值与相角的办法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各份量的.由于上不了图,请大家按文字说明在纸上绘图. 从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端).总之,零序电流通常作为漏电毛病判断的参数;负序电流常作为电机毛病判断;正序电流对电机运行质量是一种评估.注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不合错误称.三相不服衡与零序电流不成混合呀!三相不服衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的.两者不克不及混合!三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零.当电路中产生触电或漏电毛病时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子缩小电路,与庇护区装置预定动作电流值相比较,如大于动作电流,即便灵敏继电器动作,作用于执行元件掉闸.这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流.产生零序电流的两个条件:1、无论是纵向毛病、仍是横向毛病、仍是正常时和异常时的不合错误称,只要有零序电压的产生;2、零序电流有通路.以上两个条件缺一不成.因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题.零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC弥补:正序、负序、零序的出现是为了阐发在系统电压、电流出现不合错误称现象时,把三相的不合错误称份量分化成对称份量(正、负序)及同向的零序份量.只要是三相系统,就能分化出上述三个份量(有点象力的分解与分化,但良多情况下某个份量的数值为零).对于理想的电力系统,由于三相对称,因此负序和零序份量的数值都为零(这就是我们常说正常状态下只有正序份量的原因).当系统出现毛病时,三相变得不合错误称了,这时就能分化出有幅值的负序和零序份量度了(有时只有其中的一种),因此通过检测这两个不该正常出现的份量,就可以知到系统出了毛病(特别是单相接地时的零序份量).三相电路不合错误称时,电流均可分化正序、负序和零序电流.正序指正常相序的三相交换电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分化出来三个大小相同、相位相同的相量.零序电流互感器套在三芯电缆上,三相不服衡时在外部就表示出零序电流(因为相量相同增强)正常电流(理想情况):只有正序电流单相接地短路:毛病相正序、负序、零序电流相等两相短路:毛病点零序电流为零,正序和负序电流互为相反数两相短路接地:毛病点正序、负序、零序电流均有三相对称短路:只有正序三相对称接地短路:有正序和零序三相不合错误称短路:有正序和负序三相不合错误称接地短路:有正序负序和零序一相断线:断口电流有正序、负序和零序两相断线:断口上各序电流相等上述不雅点仅作参考,欢送列位持续讨论!。
对称分量法(零序,正序,负序)的理解与计算

对称分量法(零序,正序,负序)的理解与计算(一)1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数。
负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;负序电流常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
(这句话对吗?)前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对称分量法(零序,正序,负序)的理解与计算教学文案

对称分量法(零序,正序,负序)的理解与计算对称分量法(零序,正序,负序)的理解与计算1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B 相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数。
负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;负序电流常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
(这句话对吗?)前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
《对称分量法》课件

06
总结
对称分量法的核心思想与价值
核心思想
对称分量法是一种将不对称分量转换为对称分量的方法,通 过对称性原理,将不对称的电气量转换为三相对称的电气量 ,便于分析和处理。
价值
对称分量法的应用,使得在处理不对称电气量时,能够简化 计算过程,提高分析的准确性和效率,对于电力系统中的故 障诊断、保护和控制等方面具有重要的应用价值。
03
对称分量法在电力系统无功补 偿、继电保护、故障定位等方 面具有广泛的应用。
信号处理中的对称分量法应用
在信号处理中,对称分量法常用于分 析非线性信号,如音频、图像等。
对称分量法在音频处理、图像识别、 雷达信号处理等领域有重要的应用价 值。
通过将非线性信号分解为对称分量, 可以更好地揭示信号的内在结构和特 征。
控制系统中的对称分量法应用
01
在控制系统中,对称分量法主要用于分析系统的稳定性和动态 特性。
02
通过将系统的状态变量或输出分解为对称分量,可以更准确地
描述系统的行为和性能。
对称分量法在控制系统设计、优化和控制算法开发等方面具有
03
广泛的应用。
05
对称分量法的挑战与展望
对称分量法面临的挑战
数学模型的复杂性
对称分量法在各领域的应用前景
电力系统
对称分量法在电力系统中广泛应用于故障诊断、 保护和控制等方面。通过对电气量的对称分量分 析,能够快速准确地定位故障位置,提高电力系 统的稳定性和可靠性。
能源系统
随着可再生能源的广泛应用,能源系统的复杂性 和不确定性不断增加,对称分量法可以用于分析 能源系统的电气量,提高能源系统的稳定性和可 靠性。
并行计算性能优化
通过优化数据传输、减少 通信开销和负载均衡等手 段,提高并行计算的效率 。
对称分量法(零序,正序,负序)的理解与计算

对称分量法(零序,正序,负序)的理解与计算1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C 相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和.最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,因此得到新的向量图.按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量.3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了.对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数.负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;负序电流常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
(这句话对吗?)前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零).对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e j120
!!!!!
1。对称分量法的基本原理(汤书p258)
1.1 三相对称系统的概念、表达,不对称问题引入
不对称三相系统的瞬态表达式:
多种原因引起
B
U U
A B
2Ua cos(t) 2Ub cos(t )
大小不相同 相差不是120度
A
UC 2Uc cos(t ) 但频率是相同的
C
不对称三相系统的向量表达式:
1。对称分量法的基本原理
1.3 物理解释 例1
设有一不对称三相电压请将其分解为对称分量。
uA 2 100cost 30 uB 2 80cost 60 uC 2 50cost 90
UA 100 30 100 cos30 j sin 30 86.6 j50 V UB 80 60 80cos 60 j sin 60 40 j69.3 V UC 5090 50cos90 j sin 90 0 j50 V
U 120 Ue j120 a2U
U 240 Ue j240 aU
U 或U 或U0
a e j120 e j240 a2 e j 240 e j120 a3 e j360 e j0 1
只有一个独立向量U,
用一个向量U即可表示整个对称三相系统a
cos(120)
j sin(120)
零序:A B C 同相 没有相差 B
三相对称系统的向量表达式1:
UUBA
U[cos(0) j sin(0)] U[cos(120) j sin(120)]
UC U[cos(240) j sin(240)]
以A相为参考向量
三相对称系统的向量表达式2:
UUBA
U0 Ue j0 U 120 Ue j120
a 2UB
UC
)
1。对称分量法的基本原理
1.3 物理解释
UUBA
UA UB
UA UB
UA0=U U U0 UB0=a2U aU U0
UC UC UC UC0=aU a2U U0
1。对称分量法的基本原理
1.3 物理解释
不对称三相系统分解为三个独立的对称系统:正序系统、负序系统和零序系统
U
1 3
(UA
aUB
a 2UC
)
1。对称分量法的基本原理 U-
1 3
(UA
a 2UB
aUC
)
1.3 物理解释 例1
U0
1 3
(UA
UB
UC
)
注意每一个
设有一不对称三相电压请将其分解为对称分量。
对称系统又 有abc三个
U 1/ 3* UA UB 2UC
1。对称分量法的基本原理(汤书p258)
1.1 三相对称系统的概念、表达,不对称问题引入
正序、负
序均是对 称系统
三相对称系统的瞬态表达式:
大小相等、相差120度
U U
A B
UC
2U cos(t) 2U cos(t 120 ) 2U cos(t 240 )
正序:A-B-C A 负序:A-C-B
立的对称系统的叠加 三个独立变量+两个相对角度变量
转换的思路:
a。假设有独立对称系统U+,U-,Uo,其叠加正好构成不对称三相系统; b。如果能够找到这三个对称系统的表达式,则假设成立; c。相应的,不对称的三相系统也就分解成了三个独立的对称系统U+,U-,
Uo,
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
一。不对称问题分析方法与应用
1。对称分量法的基本原理(汤书p258)
– 1.1 三相对称系统的概念、表达,不对称问题引入 – 1.2 不对称与对称系统的转换--对称分量法 – 1.3 物理解释
2。对称分量法应用
– 2.1 椭圆形磁场分析 – 2.2 单相感应电动机原理分析 – 2.3 三相变压器不对称运行分析 – 2.4 同步发电机不对称运行分析
UC U 240 Ue j240
只有一个独立变量U, 用一个U即可表示整个对称三相系统
1。对称分量法的基本原理(汤书p258)
1.1 三相对称系统的概念、表达,不对称问题引入
a e 引入复数算子a:
j120
A
则三相对称系统的向量表达式
B 复数算子a的一些特性
UUBA UC
U0 Ue j0 a0U
构成对称正序系统U 构成对称负序系统U-
UA UA
U,UB=a2U,UC=aU U,UB=aU,UC=a2U
UA0,UB0,UC0构成对称零序系统U0 UA0 UB0=UC0=U0
UUBA
UA UB
UA UB
UA0=U U U0 UB0=a2U aU U0
UC UC UC UC0=aU a2U U0
UUBA
Ua[cos(0) j sin(0)]
Ub[cos( ) j sin( )]
UC Uc[cos( ) j sin( )]
以A相为参考向量
UUBA
U a0 U ae j0 Ub Ube j
UC U c U ce j
有5个独立变量
1。对称分量法的基本原理(汤书p258)
转 换 的 推 导
UUBA
UA UB
UA UB
UA0 UB0
UC UC UC UC0
UA,UB,UC
构成对称正序系统
U
UA,UB,UC构成对称负序系统 U-
UA0,UB
0,UC
构成对称零序系统
0
U0
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
UUAA, ,UUBB,,UUCC
1。对称分量法的基本原理
1.2 不对称与对称系统的转换--对称分量法
UUBA
1 a 2
1 a
1 1
UU
UC a a2 1 U0
Z 0 ABC
Z ABC 0
UU
U0
1 3
1 1 1
a a2 1
a2 a
UUBA
1 UC
U
1 3
(UA
aUB
a2UC )
U-
1 3
(UA
1.1 三相对称系统的概念、表达,不对称问题引入
对称三相系统的求解, 已经学习和掌握。 用一相的等效电路求解
B
不对称三相系统的求解, 该怎么办?
转换
等效电路是 由对称系统
构建的
对称分量法
B
A
C
A
C
1。对称分量法的基本原理(汤书p258)
1.2 不对称与对称系统的转换--对称分量法
要求解不对称三相系统,就需要将不对称转换为对称系统 转换的方法:对称分量法; 转换的思想:把不对称的三相系统分解为相序分别为正、负、零的三个独