北京市西城区2015届高三上学期期末考试数学(文)(附答案)
2014-2015学年北京市西城区高三上期末考试文科数学试卷

2014-2015学年北京市西城区高三上期末考试文科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合A ={1,2,3,4,5},B ={x|(x−1)(x−4)<0},则A ∩B =( )A 、{1,2,3,4}B 、{2,3}C 、{1,2,3}D 、{2,3,4}2.在实数范围内,下列不等关系不恒成立的是( )A 、x 2≥0B 、a 2+b 2≥2ab C 、x +1>x D 、|x +1|>|x|3.下列函数中,既是偶函数又在(0,+∞)上是单调递增函数的是( )A 、y =lgxB 、y =−x 2+3C 、y =|x|−1D 、y =3x4.命题“存在实数x ,使x >1”的否定是( )A 、对任意实数x ,都有x >1B 、不存在实数x ,使x ≤1C 、对任意实数x ,都有x ≤1D 、存在实数x ,使x ≤15.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则公差等于( )A 、2B 、4C 、6D 、86.已知a ,b 为不相等的两个正数,且lgab =0,则函数y =a x 和y =b x 的图象之间的关系是( )A 、关于原点对称B 、关于y 轴对称C 、关于x 轴对称D 、关于直线y =x 对称7.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件8.过曲线C :y =x1(x >0)上一点P (x 0,y 0)作曲线C 的切线,若切线的斜率为−4,则x 0等于( )A 、2B 、21C 、4D 、419.已知函数f (x )=⎪⎩⎪⎨⎧≤+->-12111x a x x x 在R 上满足:对任意x 1≠x 2,都有f (x 1)≠f (x 2),则实数a 的取值范围是( )A 、(−∞,2]B 、(−∞,−2]C 、[2,+∞)D 、[−2,+∞)10.已知函数f (x )=xe x ,给出下列结论: ①(1,+∞)是f (x )的单调递减区间;②当k ∈(−∞,e1)时,直线y =k 与y =f (x )的图象有两个不同交点; ③函数y =f (x )的图象与y =x 2+1的图象没有公共点.其中正确结论的序号是( )A 、①②③B 、①③C 、①②D 、②③二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.11.若x ∈R +,则x +x 4的最小值为____________. 12.log 22+lne =____________.13.不等式xx 12->1的解集为____________. 14.已知定义在R 上的奇函数f (x )满足f (x−2)=f (x ),且当x ∈[1,2]时,f (x )=x 2−3x+2,则f (6)=____________;f (21)=____________. 15.函数f (x )=lnx−21x 2的极值是____________. 16.个人取得的劳务报酬,应当交纳个人所得税.每月劳务报酬收入(税前)不超过800元不用交税;超过800元时,应纳税所得额及税率按下表分段计算:(注:应纳税所得额单次超过两万,另有税率计算方法.)某人某月劳务报酬应交税款为800元,那么他这个月劳务报酬收入(税前)为_________元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.17.设函数f (x )=log 2(x 2−2x−8)的定义域为A ,集合B ={x|(x−1)(x−a )≤0}. (Ⅰ)若a =−4,求A ∩B ;(Ⅱ)若集合A ∩B 中恰有一个整数,求实数a 的取值范围.18.已知数列{a n }是等差数列,S n 为其前n 项和,a 1=−6,S 3=S 4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =2+4,求数列{b n }的前n 项和.19.已知函数f (x )=x 2−2mx +3.(Ⅰ)当m =1时,求函数f (x )在区间[−2,2]上的最大值和最小值;(Ⅱ)若函数f (x )在区间[1,+∞)上的值恒为正数,求m 的取值范围.20.已知函数f (x )=(a−x )e x +1,其中a >0.(Ⅰ)求函数f (x )的单调区间;(Ⅱ)证明函数f (x )只有一个零点.21.某人销售某种商品,发现每日的销售量y (单位:kg )与销售价格x (单位:元/kg )满足关系式y =⎪⎩⎪⎨⎧≤≤-<<-+-159617796)9(61502x x x x a x ,其中a 为常数.已知销售价格为8元/kg 时,该日的销售量是80kg .(Ⅰ)求a 的值;(Ⅱ)若该商品成本为6元/kg ,求商品销售价格x 为何值时,每日销售该商品所获得的利润最大.22.已知函数f (x )=lnx +x−21mx 2. (Ⅰ)当m =2时,求函数f (x )的极值点;(Ⅱ)若关于x 的不等式f (x )≤mx−1恒成立,求整数m 的最小值.。
北京市东城区2015届高三上学期期末考试数学(文)试题(已解析)

东城区2014-2015学年第一学期期末教学统一检测高三数学 (文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}12A x x =∈-≤≤Z ,集合{}420,,=B ,则A B =(A ){}02, (B ){}420,, (C ){}4,2,0,1- (D ){}4,2,1,0,1- 【答案】A 【解析】因为{}1,0,1,2A =-,所以{}0,2A B =故答案为:A 【考点】 集合的运算 【难度】1(2)下列函数中,既是奇函数,又在区间(0+)∞,上为增函数的是 (A )x y ln = (B )3y x = (C )3x y = (D )x y sin = 【答案】B【解析】选项中的函数是奇函数的是3y x =、sin y x =,是奇函数且又在(0,)+∞上为增函数的是3y x = 故答案为:B 【考点】 函数综合 【难度】1(3)设x ∈R ,则“1x >”是“21x >”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A 【解析】21x >,则1x >或1x <-,所以“1x >”是“21x >”的充分不必要条件。
故答案为:A【考点】充分条件与必要条件 【难度】1(4)当3n =时,执行如图所示的程序框图,输出的S 值为(A )6 (B )8 (C )14 (D )30【答案】C 【解析】1k =,1022S =+=; 2k =,2226S =+=; 3k =,36214S =+=; 43k =>,所以输出14故答案为:C 【考点】算法和程序框图 【难度】 1 (5)已知3cos 4α=,(,0)2απ∈-,则sin 2α的值为(A )38 (B )38- (C (D )【答案】D【解析】 因为02π⎛⎫-⎪⎝⎭,,所以sin 0α<,所以sin α=,所以sin 22sin cos ααα== 故答案为:D 【考点】 恒等变换综合 【难度】2(6)如图所示,为了测量某湖泊两侧A ,B 间的距离,某同学首先选定了与A ,B 不共线的一点C ,然后给出了四种测量方案:(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ) ①测量A ,C ,b ②测量a ,b ,C ③测量A ,B ,a ④测量a ,b ,B 则一定能确定A ,B 间距离的所有方案的序号为(A )①②③ (B )②③④ (C )①③④ (D )①②③④ 【答案】A 【解析】选项①,在ABC ∆中,()B A C π=-+,所以sin sin()B A C =+,由正弦定理得sin()sin b c A C C=+,所以sin sin()b Cc A C =+选项②,由余弦定理可得2222cos c a b ab C =+-,所以c =选项③,在ABC ∆中,()C A B π=-+,所以sin sin()C A B =+由正弦定理得sin sin()a cA AB =+,所以sin()sin a A B c A +=选项④,用余弦定理222cos 2a c b B ac+-=解得的c ,可能有两个值。
最新高三数学题库 西城区高三文科数学期末试题及答案

北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(文科) 2016.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合{|}A x x a =>,集合{1,1,2}B =-,若AB B =,则实数a 的取值范围是( )(A )(1,)+∞ (B )(,1)-∞ (C )(1,)-+∞ (D )(,1)-∞-2. 下列函数中,值域为[0,)+∞的偶函数是( )(A )21y x =+ (B )lg y x = (C )||y x = (D )cos y x x =3.设M 是ABC ∆所在平面内一点,且BM MC =,则AM =( )(A )AB AC - (B )AB AC + (C )1()2AB AC - (D )1()2AB AC +4.设命题p :“若e 1x >,则0x >”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为真命题 (C )“p ⌝”为真命题 (D )以上都不对5. 一个几何体的三视图如图所示,那么 这个几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+6. “0mn <”是“曲线221x y m n+=是焦点在x 轴上的双曲线”的( )侧(左)视图正(主)视图 俯视图 22 1 1(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14 (D )14-8. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( )(A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.若抛物线22C y px =:的焦点在直线30x y +-=上,则实数p =____;抛物线C 的准线方程为____.开始 4x >输出y 结束否 是 输入xy=12○111.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于 2.5个小时的有_____人.12.已知函数()f x 的部分图象如图所示,若不等式2()4f x t -<+<的解集为(1,-,则实数t 的值为____.13. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若πsin cos()2A B =-,3a =,2c =,则cos C =____;∆ABC的面积为____.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (恒温,单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.○1 该食品在8C 的保鲜时间是_____小时;○2 已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间______.(填“是”或“否”)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知数列{}n a 是等比数列,并且123,1,a a a +是公差为3-的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,记n S 为数列{}n b 的前n 项和,证明:163n S <.O x y 4-23O 时间(小时)0.5 1.5 2.5 3.5 0.1 0.4a 频率组距16.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若(0,π)x ∈,求函数()f x 的单调增区间.17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,6AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ;(Ⅲ)当12PM MD =时,求四棱锥M ECDF -的体积.18.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:甲 6 6 99乙79xy(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x y +的值;(Ⅱ)如果6x =,10y =,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a ,b ,求b a ≥的F CADPMB E概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为32,点3(1,)2A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,且l 与圆225x y +=的相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,求证:12k k ⋅为定值.20.(本小题满分13分)已知函数21()2f x x x =+,直线1l y kx =-:. (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:对于任意k ∈R ,直线l 都不是曲线()y f x =的切线; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.北京市西城区2015 — 2016学年度第一学期期末高三数学(文科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.C 3.D 4.B 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.13i -- 10.6 3x =- 11. 9 12.113.7922 14.4 是注:第10,13,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:设等比数列{}n a 的公比为q , 因为123,1,a a a +是公差为3-的等差数列, 所以213213,(1)3,a a a a +=-⎧⎨=+-⎩……………… 2分即112114,2,a q a a q a q -=-⎧⎨-=-⎩……………… 3分解得118,2a q ==. ……………… 5 分 所以114118()22n n nn a a q ---==⨯=. ……………… 7分(Ⅱ)证明:因为122214n n n n b a b a ++==, 所以数列{}n b 是以124b a ==为首项,14为公比的等比数列. ……………… 8分所以14[1()]4114n n S -=- ……………… 11分 16116[1()]343n =-<. ……………… 13分16.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos222x x=+ ……………… 4分πsin(2)3x =+, ……………… 6分所以函数()f x 的最小正周期2π=π2T =. ……………… 8分(Ⅱ)解:由ππππ2π+23222x k k -+≤≤,k ∈Z , ……………… 9分得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ……………… 11分 所以当(0,π)x ∈时,()f x 的增区间为π(0]12,,7π[,π)12. ……………… 13分(注:或者写成增区间为π(0)12,,7π(,π)12. )17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………5分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB ,所以//MF 平面PAB . ………………7分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………9分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………10分 (Ⅲ)解:在PAD ∆中,过M 作//MN PA 交AD 于点N (图略), 由12PM MD =,得23MN PA =, 又因为6PA =,所以4MN =, ……………… 12分FC ADPMB E因为PA ⊥底面ABCD ,所以MN ⊥底面ABCD ,所以四棱锥M ECDF -的体积1166424332M ECDF ECDFV SMN -⨯=⨯⨯=⨯⨯=. …… 14分 18.(本小题满分13分)(Ⅰ)解:由题意,得79669944x y ++++++>,即14x y +>. ……………… 2分因为在乙的4局比赛中,随机选取1局,则此局得分小于6分的概率不为零, 所以,x y 中至少有一个小于6, ……………… 4分 又因为10,10x y ≤≤,且,x y ∈N , 所以15x y +≤,所以15x y +=. ……………… 5分 (Ⅱ)解:设 “从甲、乙的4局比赛中随机各选取1局,且得分满足b a ≥”为事件M , ……………… 6分 记甲的4局比赛为1A ,2A ,3A ,4A ,各局的得分分别是6,6,9,9;乙的4局比赛 为1B ,2B ,3B ,4B ,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种, 它们是:11(,)A B , 12(,)A B ,13(,)A B ,14(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,31(,)A B ,32(,)A B ,33(,)A B , 34(,)A B ,41(,)A B ,42(,)A B ,43(,)A B ,44(,)A B . ……………… 7分而事件M 的结果有8种,它们是:13(,)A B ,23(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,41(,)A B ,42(,)A B ,43(,)A B , ……………… 8分因此事件M 的概率81()162P M ==. ……………… 10分(Ⅲ)解:x 的可能取值为6,7,8. ……………… 13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ……………… 2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ……………… 3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ……………… 5分(Ⅱ)证明:当直线l 的斜率不存在时,由题意知l 的方程为2x =±,易得直线1OP ,2OP 的斜率之积1214k k ⋅=-. …………… 6分 当直线l 的斜率存在时,设l 的方程为m kx y +=. …………… 7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ……………… 8分 因为直线l 与椭圆C 有且只有一个公共点,所以222(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ……………… 9分 由方程组22,5,y kx m x y =+⎧⎨+=⎩得222(1)250k x kmx m +++-=, ……………… 10分 设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,212251m x x k -⋅=+, ……………… 11分 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++⋅=== 222222222252511551m km k km m m k k k m m k --⋅+⋅+-++==--+, ……………… 13分将2241m k =+代入上式,得212211444k k k k -+⋅==--.综上,12k k ⋅为定值14-. ……………… 14分20.(本小题满分13分)(Ⅰ)解:函数()f x 定义域为{|0}x x ≠, ……………… 1分 求导,得32()2f x x '=-, ……………… 2分 令()0f x '=,解得1x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:x(,0)-∞ (0,1)1(1,)+∞()f x '+-0 +()f x↗↘↗所以函数()y f x =的单调增区间为(,0)-∞,(1,)+∞,单调减区间为(0,1),……………… 3分 所以函数()y f x =有极小值(1)3f =,无极大值. ……………… 4分 (Ⅱ)证明:假设存在某个k ∈R ,使得直线l 与曲线()y f x =相切, ……………… 5分 设切点为00201(,2)A x x x +,又因为32()2f x x'=-, 所以切线满足斜率3022k x =-,且过点A , 所以002300122(2)1x x x x +=--, ……………… 7分 即2031x =-,此方程显然无解,所以假设不成立.所以对于任意k ∈R ,直线l 都不是曲线()y f x =的切线. ……………… 8分 (Ⅲ)解:“曲线()y f x =与直线l 的交点个数”等价于“方程2121x kx x +=-的根的个数”. 由方程2121x kx x +=-,得3112k x x =++. ……………… 9分 令1t x=,则32k t t =++,其中t ∈R ,且0t ≠. 考察函数3()2h t t t =++,其中t ∈R , 因为2()310h t t '=+>时,所以函数()h t 在R 单调递增,且()h t ∈R . ……………… 11分 而方程32k t t =++中, t ∈R ,且0t ≠.所以当(0)2k h ==时,方程32k t t =++无根;当2k ≠时,方程32k t t =++有且仅有一 根,故当2k =时,曲线()y f x =与直线l 没有交点,而当2k ≠时,曲线()y f x =与直线l 有 且仅有一个交点. ……………… 13分。
北京市西城区2015届高三一模考试数学(文)试题

市西城区2015年高三一模试卷数 学(文科) 2015.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合0,1{}A =,集合{|}B x x a =>,若A B =∅,则实数a 的X 围是( )(A )1a ≤(B )1a ≥(C )0a ≥(D )0a ≤3.关于函数3()log ()f x x =-和()3x g x -=,下列说法中正确的是( ) (A )都是奇函数(B )都是偶函数(C )函数()f x 的值域为R (D )函数()g x 的值域为R4. 执行如图所示的程序框图,若输入的x 的值为3,则输出的n 的值为______. (A )4 (B )5 (C )6 (D )72.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限开始 1n =100x > 输出n否 是输入x5. 设,P Q 分别为直线0x y -=和圆22(6)2x y +-=上的点,则||PQ 的最小值为( )(A )22B )32(C )2D )46.设函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )7 (B )152(C )233(D )476侧(左)视图正(主)视图俯视图 211122 11118.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____.10.函数22()sin cos f x x x =-的最小正周期是____.11.在区间[2,1]-上随机取一个实数x ,则x 使不等式1|1|x -≤成立的概率为____.12.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线 C的离心率为2,那么双曲线C 的方程为____;渐近线方程是____.13.设函数20,1,()4,0.x x x f x x x x -⎧+>⎪=⎨⎪-<⎩则[(1)]f f -=____;函数()f x 的极小值是____. 14.某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件.制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异. 现有甲、(A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同 (D )不确定乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费情况如下表:奖品一等奖奖品二等奖奖品收费(元/件)工厂甲500400乙800600则组委会定做该工艺品的费用总和最低为元.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC ∆中,90ABC ∠=,4AB =,3BC =,点D 在线段AC 上,且4AD DC =.(Ⅰ)求BD 的长; (Ⅱ)求sin CBD ∠的值.16.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =,57S a =. (Ⅰ)求数列{}n a 的通项公式n a 及n S ;(Ⅱ)若444,,m n a a a ++(*,m n ∈N )成等比数列,求n 的最小值.17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到FGB C AD,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)18.(本小题满分13分)2014年12月28日开始,市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.乘公共电汽车方案10公里(含)内2元;10公里以上部分,每增加1元可乘坐5公里(含).乘坐地铁方案(不含机场线) 6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元;32公里以上部分,每增加1元可乘坐20公里(含).(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价...从.这.120人中..分层..抽样..所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值X 围.(只需写出结论)19.(本小题满分14分)设点F 为椭圆2222 1(0)x y E a b a b +=>>:的右焦点,点3(1,)2P 在椭圆E 上,已知椭圆E 的离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过右焦点F 的直线l 与椭圆相交于A ,B 两点,记ABP ∆三条边所在直线的斜率的乘积为t ,求t 的最大值.20.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x=,函数e ()xn g x x =,(0,)x ∈+∞.(Ⅰ)判断函数()f x 在区间(0,)+∞上是否为单调函数,并说明理由;(Ⅱ)若当1n =时,对任意的12,(0,)x x ∈+∞,都有12()()g x f x t ≤≤成立,某某数t 的取值X 围;(Ⅲ)当2n >时,若存在直线l y t =:(t ∈R ),使得曲线()y f x =与曲线()y g x =分别位于直线l 的两侧,写出n 的所有可能取值. (只需写出结论)市西城区2015年高三一模试卷参考答案及评分标准高三数学(文科)2015.4一、选择题:本大题共8小题,每小题5分,共40分. 1.B 2.C 3.C4.B5.A 6.B 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分. 92 10.π11.1312.2213y x -=3y x =±13.103214.4900 注:第12,13题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为90=∠ABC ,4=AB ,3=BC ,所以3cos 5C =,4sin 5C =,5=AC , ………………3分 又因为DC AD 4=,所以4=AD ,1=DC . ……………… 4分在BCD ∆中,由余弦定理,得2222cos BD BC CD BC CD C =+-⋅………………7分223323123155=+-⨯⨯⨯=,所以5104=BD . ………………9分 (Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BDCBD C=∠,所以154sin 5CBD=∠, ……………… 12分所以sin CDB ∠=. ……………… 13分16.(本小题满分13分) (Ⅰ)解:设公差为d ,由题意,得11122,15546,2a d a d a d +=⎧⎪⎨+⨯⨯=+⎪⎩………………4分 解得12a =-,2d =,…………………5分所以2(1)224n a n n =-+-⨯=-,………………… 6分212(1)232n S n n n n n =-+-⨯=-.…………………7分(Ⅱ)解:因为444,,m n a a a ++成等比数列,所以2444m n a a a ++=,…………………9分即2(24)4(24)m n +=+,…………………10分化简,得21(2)22n m =+-,…………………11分FCADBG EM N 考察函数21()(2)22f x x =+-,知()f x 在(0,)+∞上单调递增,又因为5(1)2f =,(2)6f =,*n ∈N , 所以当2m =时,n 有最小值6.……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为AE AF =,点G 是EF 的中点,所以AG EF ⊥.…………………1分 又因为//EF AD ,所以AG AD ⊥. …………………2分 因为平面ADEF ⊥平面ABCD ,且平面ADEF平面ABCD AD =,AG ⊂平面ADEF ,所以AG ⊥平面ABCD . …………………4分 因为 CD ⊂平面ABCD , 所以AG ⊥CD .………………5分(Ⅱ)证明:如图,过点M 作MN //BC ,且交AB 于点N ,连结NF , 因为13AMMC =,所以14MN AM BC AC ==,………………6分 因为 2BC EF =,点G 是EF 的中点, 所以 4BC GF =,又因为//EF AD ,四边形ABCD 为正方形, 所以GF //MN ,GF MN =. 所以四边形GFNM 是平行四边形.GM FN. ……………8分所以//又因为GM⊄平面ABF,FN⊂平面ABF,所以GM//平面ABF.………………11分(Ⅲ)解:点O为线段GC的中点. ………………14分18.(本小题满分13分)(Ⅰ)解:记事件A为“此人乘坐地铁的票价小于5元”,………………1分由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人).+=(人).………………2分所以票价小于5元的有6040100故120人中票价小于5元的频率是1005=.1206所以估计此人乘坐地铁的票价小于5元的概率5()=P A.………………4分6(Ⅱ)解:记事件B 为“这2人的票价和恰好为8元”,………………5分由统计图,得120人中票价为3元、4元、5元的人数比为60:40:203:2:1=,则6名学生中票价为3元、4元、5元的人数分别为3,2,1(人). ………6分a b c,票价为4元的同学为,d e,票价为5元的同学为f,记票价为3元的同学为,,a b a,从这6人中随机选出2人,所有可能的选出结果共有15种,它们是:(,),(,)c (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a a ab b b bc c c d,d e f c d e f d e f ed e. ………………8分(,),(,)f fa b c d. ………9分其中事件B的结果有4种,它们是:(,),(,),(,),(,)f f f e所以这2人的票价和恰好为8元的概率为4P B=.………………10分()15(Ⅲ)解:(20,22]s∈.………………13分19.(本小题满分14分)(Ⅰ)解:设22b a c -=,由题意,得21=a c , 所以 2a c =,3b c =. …………………2分则椭圆方程为 2222143x y c c+=, 又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为 22143x y +=. ………………5分 (Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ………………6分设直线l 的方程为(1)y k x =-,与椭圆的交点A (x 1,y 1),B (x 2,y 2),………7分由22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(34)84120k x k x k +-+-=. ………………8分由题意,可知0>∆,则有2221438kk x x +=+,212241234k x x k -=+,………9分 所以直线PA 的斜率11321PAy k x -=-,直线PB 的斜率22321PB y k x -=-,…………10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯-- 12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++ 233()44k k k k =--⨯=--. ………………12分即22339()4864t k k k =--=-++, 所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964.……14分20.(本小题满分13分)(Ⅰ)解:结论:函数()f x 在区间(0,)+∞上不是单调函数. …………………1分求导,得 11ln ()n n xf x x +-'=, …………………2分 令 ()0f x '=,解得1e nx =.当x 变化时,()f x '与()f x 的变化如下表所示:x 1(0,e )n1e n1(e ,)n+∞()f x ' +0 -()f x↗↘所以函数()f x 在区间1(0,e )n上为单调递增,区间1(e ,)n+∞上为单调递减.所以函数()f x 在区间(0,)+∞上不是单调函数. …………………4分(Ⅱ)解:当1n =时,函数ln ()xf x x=,e ()x g x x =,0x >.由题意,若对任意的12,(0,)x x ∈+∞,都有12()()g x f x t ≤≤恒成立, 只需当(0,)x ∈+∞时,max min ()()g f x t x ≤≤. …………………5分因为 21ln ()xf x x-'=. 令()0f x '=,解得e x =.当x 变化时,()f x '与()f x 的变化如下表所示:所以max ()(e)ef x f ==. …………………7分 又因为2e (1)()x x g x x-'=. 令 ()0g x '=,解得1x =.当x 变化时,()g x '与()g x 的变化如下表所示:所以min ()(1)e g x g ==. …………………9分 综上所述,得1e et ≤≤. …………………10分 (Ⅲ)解:满足条件的n 的取值集合为{3,4}. …………………13分。
北京市西城区2014-2015学年度高三第一学期期末试数学理-含答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4)(D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B CD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+?? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分 又因为113p q ++=,0q ≥,所以23p ≤.所以3253p ≤<. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ,则实数m 的取值范围是( )(A )(4,8) (B )(4,) (C )(0,4)(D )(8,)侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)2 x3ya321258zE FCB A已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p,16q ,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则CAB AB AB ,且A ,B 独立.由上表可知, 1()2P A ,()P B p .所以()()()()P C P AB P AB P AB ……………… 5分111(1)222p pp1122p . ……………… 6分 因为114()225P C p , 所以35p. ……………… 7分 又因为113p q ,0q ≥,所以23p ≤.所以3253p ≤. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k )8)(8(32)(102212121--++-=x x k x x k x kx 0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k , 所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
北京市西城区高三数学上学期期末试卷 文(含解析)

2015-2016学年北京市西城区高三(上)期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x>a},集合B={﹣1,1,2},若A∩B=B,则实数a的取值范围是()A.(1,+∞)B.(﹣∞,1)C.(﹣1,+∞)D.(﹣∞,﹣1)2.下列函数中,值域为[0,+∞)的偶函数是()A.y=x2+1 B.y=lgx C.y=|x| D.y=xcosx3.设M是△ABC所在平面内一点,且,则=()A.B.C.D.4.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对5.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.6.mn<0是方程=1表示实轴在x轴上的双曲线的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B. C.D.8.某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.已知复数z满足z(1+i)=2﹣4i,那么z= .10.若抛物线C:y2=2px的焦点在直线x+y﹣3=0上,则实数p= ;抛物线C的准线方程为.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于2.5个小时的有人.12.已知函数f(x)的部分图象如图所示,若不等式﹣2<f(x+t)<4的解集为(﹣1,2),则实数t的值为.(写过程)13.在△ABC中,角A,B,C所对的边分别为a,b,c.若,a=3,c=2,则cosC= ;△ABC的面积为.14.某食品的保鲜时间t(单位:小时)与储藏温度x(恒温,单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.①该食品在8℃的保鲜时间是小时;②已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间.(填“是”或“否”)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知数列{a n}是等比数列,并且a1,a2+1,a3是公差为﹣3的等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a2n,记S n为数列{b n}的前n项和,证明:.16.已知函数,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈(0,π),求函数f(x)的单调增区间.17.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=6,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;(Ⅲ)当时,求四棱锥M﹣ECDF的体积.18.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲 6 6 9 9乙7 9 x y(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)19.已知椭圆C:的离心率为,点在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1•k2为定值.20.已知函数,直线l:y=kx﹣1.(Ⅰ)求函数f(x)的极值;(Ⅱ)求证:对于任意k∈R,直线l都不是曲线y=f(x)的切线;(Ⅲ)试确定曲线y=f(x)与直线l的交点个数,并说明理由.2015-2016学年北京市西城区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x>a},集合B={﹣1,1,2},若A∩B=B,则实数a的取值范围是()A.(1,+∞)B.(﹣∞,1)C.(﹣1,+∞)D.(﹣∞,﹣1)【考点】交集及其运算.【专题】计算题;集合.【分析】由A与B的交集为B,得到B为A的子集,由A与B,确定出a的范围即可.【解答】解:∵A∩B=B,∴B⊆A,∵A={x|x>a},集合B={﹣1,1,2},∴实数a的取值范围为(﹣∞,﹣1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.下列函数中,值域为[0,+∞)的偶函数是()A.y=x2+1 B.y=lgx C.y=|x| D.y=xcosx【考点】函数奇偶性的判断.【专题】计算题;规律型;函数的性质及应用.【分析】判断函数的奇偶性然后求解值域,推出结果即可.【解答】解:y=x2+1是偶函数,值域为:[1,+∞).y=|x|是偶函数,值域为[0,+∞).故选:C【点评】本题考查函数的奇偶性的判断以及函数的值域,是基础题.3.设M是△ABC所在平面内一点,且,则=()A.B.C.D.【考点】相等向量与相反向量.【专题】对应思想;数形结合法;平面向量及应用.【分析】根据题意,画出图形,结合图形,得出M为AB的中点,从而求出的值.【解答】解:如图所示,∵M是△ABC所在平面内一点,且,∴M为AB的中点,∴=(+).故选:D.【点评】本题考查了平面向量的线性表示与应用问题,是基础题目.4.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对【考点】复合命题的真假.【专题】对应思想;综合法;简易逻辑.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:命题p:“若e x>1,则x>0”是真命题,命题q:“若a>b,则”是假命题,如:a=1,b=﹣1,故“p∨q”为真命题,故选:B.【点评】本题考察了复合命题的判断,是一道基础题.5.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离;立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,结合柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,其底面面积为:×(1+2)×2=3,底面周长为:2+2+1+=5+,高为:2,故四棱柱的表面积S=2×3+(5+)×2=,故选:B【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.6.mn<0是方程=1表示实轴在x轴上的双曲线的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】分m<0、n>0和m>0、n<0两种情况加以讨论,可得mn<0时,方程=1不一定表示实轴在x轴上的双曲线.反之当方程=1表示实轴在x轴上的双曲线时,必定有mn<0.由此结合充要条件的定义,即可得到本题答案.【解答】解:当mn<0时,分m<0、n>0和m>0、n<0两种情况①当m<0、n>0时,方程=1表示焦点在y轴上的双曲线;②当m>0、n<0时,方程=1表示焦点在x轴上的双曲线因此,mn<0时,方程=1不一定表示实轴在x轴上的双曲线.而方程=1表示实轴在x轴上的双曲线时,m>0、n<0,必定有mn<0由此可得:mn<0是方程=1表示实轴在x轴上的双曲线的必要而不充分条件故选:B【点评】本题给出两个条件,判断方程表示焦点在x轴上双曲线的充要条件.着重考查了双曲线的标准方程与简单几何性质、充要条件的判断等知识,属于中档题.7.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B. C.D.【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式的解法及应用.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为7求得实数m 的值.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填()A.B.C.D.【考点】程序框图;分段函数的应用;函数模型的选择与应用.【专题】应用题;函数的性质及应用;算法和程序框图.【分析】根据已知中的收费标准,求当x>4时,所收费用y的表达式,化简可得答案.【解答】解:由已知中,超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.可得:当x>4时,所收费用y=12+[x﹣4+]×2+1=,故选:D【点评】本题考查的知识点是分段函数的应用,函数模型的选择与应用,难度中档.二、填空题:本大题共6小题,每小题5分,共30分.9.已知复数z满足z(1+i)=2﹣4i,那么z= ﹣1﹣3i .【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由z(1+i)=2﹣4i,得.故答案为:﹣1﹣3i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.若抛物线C:y2=2px的焦点在直线x+y﹣3=0上,则实数p= 6 ;抛物线C的准线方程为x=﹣3 .【考点】抛物线的简单性质;直线与抛物线的位置关系.【专题】计算题;规律型;函数思想;解题方法;圆锥曲线的定义、性质与方程.【分析】求出直线与坐标轴的交点,得到抛物线的焦点坐标,然后求出p,即可得到抛物线的准线方程.【解答】解:直线x+y﹣3=0,当y=0时,x=3,抛物线的焦点坐标为(3,0),可得p=6,抛物线的标准方程为:y2=12x,它的准线方程为:x=﹣3.故答案为:6;x=﹣3.【点评】本题考查抛物线的简单性质的应用,抛物线的方程的求法,考查计算能力.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于2.5个小时的有9 人.【考点】频率分布直方图.【专题】计算题;整体思想;定义法;概率与统计.【分析】根据频率之和为1,求出a的值,再根据分层抽样求出完成作业的时间小于2.5个小时的人数.【解答】解:由于(a+0.4+0.1)×1=1,解得a=0.5,完成作业的时间小于2.5个小时的有(0.4+0.5)×10=9人,故答案为:9.【点评】本题考查了频率分布直方图的应用,属于基础题12.已知函数f(x)的部分图象如图所示,若不等式﹣2<f(x+t)<4的解集为(﹣1,2),则实数t的值为﹣1 .(写过程)【考点】函数的图象.【专题】应用题;函数思想;数形结合法;函数的性质及应用.【分析】根据图象的平移即可得到t的值.【解答】解:由图象可知,﹣2<f(x)<4的解集为(0,3),不等式﹣2<f(x+t)<4的解集为(﹣1,2),∴y=f(x+t)的图象是由y=f(x)的图象向右平移1个单位得到的,∴t=﹣1,故答案为:﹣1.【点评】本题考查了图象的平移和图象的识别,属于基础题.13.在△ABC中,角A,B,C所对的边分别为a,b,c.若,a=3,c=2,则cosC= ;△ABC的面积为2.【考点】三角形中的几何计算.【专题】计算题;综合法;三角函数的求值;解三角形.【分析】由=sinB,a=3,c=2,得b=a=3,由此能求出cosC,从而得到sinC,进而能求出△ABC的面积.【解答】解:在△ABC中,角A,B,C所对的边分别为a,b,c.∵=sinB,a=3,c=2,∴b=a=3,∴cosC====,∴sinC==,∴△ABC的面积S===2.故答案为:,.【点评】本题考查三角形中角的余弦值和三角形面积的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理、三角函数诱导公式的合理运用.14.某食品的保鲜时间t(单位:小时)与储藏温度x(恒温,单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.①该食品在8℃的保鲜时间是 4 小时;②已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间是.(填“是”或“否”)【考点】函数的图象与图象变化.【专题】函数思想;数形结合法;函数的性质及应用.【分析】①根据4℃的保鲜时间是16小时求出k,将x=8代入函数解析式求出.②计算温度为12℃的保鲜时间,可发现【解答】解:①∵食品在4℃的保鲜时间是16小时,∴24k+6=16,解得k=﹣.∴t(8)=2﹣4+6=4;②由图象可知在12时,温度为12℃,此时该食品的保鲜期为20=1小时.∴到13时,该食品已过保质期.故答案为4,是.【点评】本题考查了函数图象的意义与图象变化,是基础题.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知数列{a n}是等比数列,并且a1,a2+1,a3是公差为﹣3的等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a2n,记S n为数列{b n}的前n项和,证明:.【考点】数列的求和.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(I)利用等差数列与等比数列的通项公式即可得出;(II)利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:设等比数列{a n}的公比为q,∵a1,a2+1,a3是公差为﹣3的等差数列,∴,即,解得.∴.(Ⅱ)证明:∵,∴数列{b n}是以b1=a2=4为首项,为公比的等比数列.∴=.【点评】本题考查了等差数列与等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.16.已知函数,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈(0,π),求函数f(x)的单调增区间.【考点】三角函数的周期性及其求法;两角和与差的正弦函数;正弦函数的单调性.【专题】转化思想;综合法;三角函数的求值;三角函数的图像与性质.【分析】(Ⅰ)由条件利用三角恒等变换,化简函数的解析式,再根据正弦函数的周期性,求得函数f(x)的最小正周期(Ⅱ)由条件利用正弦函数的单调性,求得函数f(x)的单调增区间.【解答】(Ⅰ)解:===,所以函数f(x)的最小正周期.(Ⅱ)解:由,k∈Z,求得,所以函数f(x)的单调递增区间为,k∈Z.所以当x∈(0,π)时,f(x)的增区间为,.【点评】本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于基础题.17.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=6,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;(Ⅲ)当时,求四棱锥M﹣ECDF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【专题】计算题;数形结合;转化思想;综合法;空间位置关系与距离.【分析】(Ⅰ)证明AB⊥AC.得到EF⊥AC.证明PA⊥底面ABCD,可得PA⊥EF.然后证明EF⊥平面PAC.(Ⅱ)证明MF∥PA,即可证明MF∥平面PAB,同理EF∥平面PAB.然后证明平面MEF∥平面PAB,得到ME∥平面PAB.(Ⅲ)证明MN⊥底面ABCD,然后求解四棱锥M﹣ECDF的体积.【解答】(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD中,因为AB=AC,∠BCD=135°,∴∠ABC=45°,所以AB⊥AC.由E,F分别为BC,AD的中点,得EF∥AB,所以EF⊥AC.…(1分)因为侧面PAB⊥底面ABCD,且∠BAP=90°,所以PA⊥底面ABCD.…(2分)又因为EF⊂底面ABCD,所以PA⊥EF.…(3分)又因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以EF⊥平面PAC.…(5分)(Ⅱ)证明:因为M为PD的中点,F分别为AD的中点,所以MF∥PA,又因为MF⊄平面PAB,PA⊂平面PAB,所以MF∥平面PAB.…(7分)同理,得EF∥平面PAB.又因为MF∩EF=F,MF⊂平面MEF,EF⊂平面MEF,所以平面MEF∥平面PAB.…(9分)又因为ME⊂平面MEF,所以ME∥平面PAB.…(10分)(Ⅲ)解:在△PAD中,过M作MN∥P A交AD于点N(图略),由,得,又因为PA=6,所以MN=4,…(12分)因为PA⊥底面ABCD,所以MN⊥底面ABCD,所以四棱锥M﹣ECDF的体积.…(14分)【点评】本题考查直线与平面垂直与平行的判定定理以及性质定理的应用,平面与平面平行的判定定理的应用,几何体的体积的求法,考查转化思想以及计算能力.18.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲 6 6 9 9乙7 9 x y(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;转化思想;综合法;概率与统计.【分析】(Ⅰ)由题意,得x+y>14,x,y中至少有一个小于6,x+y≤15,由此能求出x+y的值.(Ⅱ)设“从甲、乙的4局比赛中随机各选取1局,且得分满足a≥b”为事件M,记甲的4局比赛为A1,A2,A3,A4,各局的得分分别是6,6,9,9;乙的4局比赛为B1,B2,B3,B4,各局的得分分别是7,9,6,10,利用列举法能求出a≥b的概率.(Ⅲ)由题设条件能求出x的可能取值为6,7,8.【解答】(Ⅰ)解:由题意,得,即x+y>14.…(2分)因为在乙的4局比赛中,随机选取1局,则此局得分小于(6分)的概率不为零,所以x,y中至少有一个小于6,…(4分)又因为x≤10,y≤10,且x,y∈N,所以x+y≤15,所以x+y=15.…(5分)(Ⅱ)解:设“从甲、乙的4局比赛中随机各选取1局,且得分满足a≥b”为事件M,…(6分)记甲的4局比赛为A1,A2,A3,A4,各局的得分分别是6,6,9,9;乙的4局比赛为B1,B2,B3,B4,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4).…(7分)而事件M的结果有8种,它们是:(A1,B3),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),…(8分)因此a≥b的概率.…(10分)(Ⅲ)解:x的可能取值为6,7,8.…(13分)【点评】本题考查代数式和的求法,考查概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用.19.已知椭圆C:的离心率为,点在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1•k2为定值.【考点】圆锥曲线的定值问题;直线与圆锥曲线的综合问题.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a,b然后求出椭圆的方程.(Ⅱ)当直线l的斜率不存在时,验证直线OP1,OP2的斜率之积.当直线l的斜率存在时,设l的方程为y=kx+m与椭圆联立,利用直线l与椭圆C有且只有一个公共点,推出m2=4k2+1,通过,设P1(x1,y1),P2(x2,y2),结合韦达定理,求解直线的斜率乘积,推出k1•k2为定值即可.【解答】(本小题满分14分)(Ⅰ)解:由题意,得,a2=b2+c2,…(2分)又因为点在椭圆C上,所以,…(3分)解得a=2,b=1,,所以椭圆C的方程为.…(5分)(Ⅱ)证明:当直线l的斜率不存在时,由题意知l的方程为x=±2,易得直线OP1,OP2的斜率之积.…(6分)当直线l的斜率存在时,设l的方程为y=kx+m.…(7分)由方程组得(4k2+1)x2+8kmx+4m2﹣4=0,…(8分)因为直线l与椭圆C有且只有一个公共点,所以△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,即m2=4k2+1.…(9分)由方程组得(k2+1)x2+2kmx+m2﹣5=0,…(10分)设P1(x1,y1),P2(x2,y2),则,,…(11分)所以=,…(13分)将m2=4k2+1代入上式,得.综上,k1•k2为定值.…(14分)【点评】本题考查椭圆的标准方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.20.已知函数,直线l:y=kx﹣1.(Ⅰ)求函数f(x)的极值;(Ⅱ)求证:对于任意k∈R,直线l都不是曲线y=f(x)的切线;(Ⅲ)试确定曲线y=f(x)与直线l的交点个数,并说明理由.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】计算题;解题思想;转化思想;解题方法;导数的综合应用.【分析】(Ⅰ)求出函数f(x)定义域,求导,令f′(x)=0,解得x=1.利用导函数的符号,判断函数的单调性,求出函数的极值,(Ⅱ)假设存在某个k∈R,使得直线l与曲线y=f(x)相切,设切点为,求出切线满足斜率,推出,此方程显然无解,假设不成立.推出直线l都不是曲线y=f(x)的切线.(Ⅲ)“曲线y=f(x)与直线l的交点个数”等价于“方程的根的个数”.令,则k=t3+t+2,其中t∈R,且t≠0.函数h(t)=t3+t+2,其中t∈R,求出导数,判断函数的单调性,然后推出曲线y=f(x)与直线l交点个数.【解答】(本小题满分13分)(Ⅰ)解:函数f(x)定义域为{x|x≠0},…(1分)求导,得,…(2分)令f′(x)=0,解得x=1.当x变化时,f′(x)与f(x)的变化情况如下表所示:x (﹣∞,0)(0,1) 1 (1,+∞)f′(x)+ ﹣0 +f(x)↗↘↗所以函数y=f(x)的单调增区间为(﹣∞,0),(1,+∞),单调减区间为(0,1),…(3分)所以函数y=f(x)有极小值f(1)=3,无极大值.…(4分)(Ⅱ)证明:假设存在某个k∈R,使得直线l与曲线y=f(x)相切,…(5分)设切点为,又因为,所以切线满足斜率,且过点A,所以,…(7分)即,此方程显然无解,所以假设不成立.所以对于任意k∈R,直线l都不是曲线y=f(x)的切线.…(8分)(Ⅲ)解:“曲线y=f(x)与直线l的交点个数”等价于“方程的根的个数”.由方程,得.…(9分)令,则k=t3+t+2,其中t∈R,且t≠0.考察函数h(t)=t3+t+2,其中t∈R,因为h′(t)=3t2+1>0时,所以函数h(t)在R单调递增,且h(t)∈R.…(11分)而方程k=t3+t+2中,t∈R,且t≠0.所以当k=h(0)=2时,方程k=t3+t+2无根;当k≠2时,方程k=t3+t+2有且仅有一根,故当k=2时,曲线y=f(x)与直线l没有交点,而当k≠2时,曲线y=f(x)与直线l有且仅有一个交点.…(13分)【点评】本题考查函数的导数的综合应用,函数的极值以及函数的单调性,函数的零点,考查转化思想以及计算能力.。
北京市东城区2015届高三上学期期末考试数学(文)试题含答案

东城区2014-2015学年第一学期期末教学统一检测高三数学(文科)学校_____________班级_______________姓名______________考号___________本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,集合,则{}12A x x =∈-≤≤Z {}420,,=B A B =(A ) (B ) {}02,{}420,,(C )(D ){}4,2,0,1-{}4,2,1,0,1-(2)下列函数中,既是奇函数,又在区间上为增函数的是(0+)∞, (A ) (B ) x y ln =3y x =(C )(D )3xy =xy sin =(3)设,则“”是“”的x ∈R 1x >21x >(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)当时,执行如图所示的程序框图,3n =输出的值为S (A ) (B ) 68(C ) (D )1430(5)已知,,则的值为3cos 4α=(,0)2απ∈-sin 2α(A )(B ) (C (D )3838-(6)如图所示,为了测量某湖泊两侧,间的距离,某同学首先选定了与,不A B A B 共线的一点,然后给出了四种测量方案:(△的角,,所对的边C ABC A B C 分别记为,,)a b c①测量,, ②测量,, ③测量,, ④测量,,A C b a b C A B a a b B 则一定能确定,间距离的所有方案的序号为A B (A )①②③(B )②③④(C )①③④ (D )①②③④(7)已知向量,,平面上任意向量都可以唯一地表示为(1,3)=a (,23)m m =-b c ,则实数的取值范围是+λμ=c a b (,)λμ∈R m (A ) (B ) (,0)(0,)-∞+∞ (,3)-∞(C )(D )(,3)(3,)-∞--+∞ [3,3)-(8)已知两点,,若直线上至少存在三个点,使得△(1,0)M -(1,0)N (2)yk x =-P 是直角三角形,则实数的取值范围是MNP k (A ) (B ) 11[,0)(0,33- [,0)(0, (C ) (D )11[,33-[5,5]-第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )75.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( )2.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9: 00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( )(A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB <A BE CD GH F侧(左)视图正(主)视图俯视图11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C 的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤ (1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R .(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1BCE ; (Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下: (1) 投资股市:(2) 购买基金:(Ⅰ)当12p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围; (Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)B CA 1 D 1 DA B 1C 1E F已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.210.2π311. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分 sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分(Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. (9)分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-, 因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分 得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD平面1A ECF EC =,平面1111A BC D 平面11A ECF A F =, 所以1A F∥CE.…………………3分又 1A F ⊄平面1BCE ,CE ⊂平面1BCE , 所以 1A F ∥平面1BCE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDDC . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,B C A 1 D 1 DA B 1C 1EF所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分 (Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小, 得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分 若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分 20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分所以当0x >时,()20f x x '=-<,1()0g x x'=>, 所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,……………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分(Ⅲ)解:当点P 的坐标为1(,1)e 时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切. ……………13分。