江苏省盐城市数学中考模拟试卷(6月份)

合集下载

2024年江苏省盐城市中考数学试卷正式版含答案解析

2024年江苏省盐城市中考数学试卷正式版含答案解析

绝密★启用前2024年江苏省盐城市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有理数2024的相反数是( )A. 2024B. −2024C. 12024D. −120242.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3.下列运算正确的是( )A. a6÷a2=a4B. 2a−a=2C. a3⋅a2=a6D. (a3)2=a54.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A. 0.24×107B. 24×105C. 2.4×107D. 2.4×1065.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6.小明将一块直角三角板摆放在直尺上,如图,若∠1=55∘,则∠2的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘7.矩形相邻两边长分别为√ 2cm、√ 5cm,设其面积为Scm2,则S在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58.甲、乙两家公司2019∼2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢第II卷(非选择题)二、填空题:本题共8小题,每小题3分,共24分。

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)(满分:120分 考试时间:120分钟)一、选择题。

(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.-3的相反数是( ) A.31 B.31- C.-3 D.3 2.下列各式运算中结果为6a 的是( )A. 33a a +B.33)(aC.33·a a D.212a a ÷ 3.如图是由4个大小相同的正方体组合而成的几何体,其左视图是( )4.-27的立方根是( )A.3B.-3C.2D.-25.若a >b ,则下列各式中一定成立的是( )A.a -2>b -2B.a -5<b -5C.-2a >-2bD. 4a <4b6.如图,AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,∠1=58°,则∠2的度数是( )A.58°B.148°C.132°D.122°7.下面是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形。

下列推理正确的是( )A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②8.已知二次函数y =x 2+2x +a (a >0且a 为常数,当x =m 时的函数值y 1<0,则当x =m +2时的函数值y 2与0的大小关系为( )A.y 2>0B.y 2<0C.y 2=0D.不能确定二、填空題。

(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在横线上)9.计算:=--014.39)(π . 10.若分式32+x 有意义,则x 的取值范围是 . 11.据探测,马里亚纳海沟的最大水深位于斐查兹海渊,水深约11000米,是地球的最深点,11000用科学记数法表示为 .12.把代数式xy 2-9x 分解因式,结果是 .13.若一次函数y =(k +5)x -2中y 随x 的增大而减小,则k 的取值范围是 .14.已知-1是关于x 的一元二次方程x 2+kx -3=0的一个根,则k = .15.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足。

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%2.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( ) A .5㎝ B .35 C .6D .8㎝函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )3.已知A .B .C .D . 4.某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A .长方体B .圆锥体C .正方体D .圆柱体5. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°1QP6.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.0067.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③8.如图所示,把三个相同的宽为l cm 、长为2 cm 的长方形拼成一个长为3 cm 、宽为2 cm 的长方形ABGH ,分别以B ,C 两点为圆心,2 cm 长为半径画弧AE 和弧DG ,则阴影部分的面积是( )A .34πcm 2 B .32πcm 2 C .2cm 2 D .(4)2π-cm 29.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .34二、填空题10.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .θ=,则θ= .11.若θ为三角形的一个锐角,且2sin312.已知Rt△ABC中,∠C=90°,∠A=60°,BC=5,BD是中线,则BD= .13.如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.14.一个多边形的每个外角都相等,且比它们的内角小l40°,这个多边形的边数为,它有条对角线.15.将三粒质地均匀的分别标有 1、2、3、4、5、6的正六面体骰子同时掷出,出现的数字分别为a、b、c,则a、b、c正好都相同的概率是 .解答题16.如图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50°,∠AEP=80°,则∠B= .17.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min之间的学生人数是人.三、解答题18.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC•的中点,EF与BD 相交于点M. (1)求证:△EDM∽△FBM;(2)若DB=9,求BM.19.已知抛物线2y x bx c =++的图象向右平移3个单位,再向下平移 2 个单位得到抛物线2(3)1y x =-+,求b 、c 的值.20.今青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级300名学生的视力情况,从中抽取了一部分学生的视力,进行数据整理后如下表: (1)在这个问题中总体是 ; (2)填写频数分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?21.如图,AD ,BE 是△ABC 的高,F 是DE 中点,G 是AB 的中点.求证:GF ⊥DE .B 组22.通过证明结论的 不成立,从而得出 成立,这种证明方法叫做反证法,它的关键是找出由假设所产生的,与 、 、 、 之间的矛盾.分组 频数 频率 3.95~4.252 0.046 0.124.55~4.85 234.85~5.155.15~5.45 10.02 合计1.0023.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.24.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥25.如图,如果∠1 是它的补角的5倍,∠2的余角是∠2的2倍,那么AB∥CD吗?为什么?26.705班在召开期末总结表彰会前,班主任安排班长史小青去商店购买奖品,下面是史小青与售货员的对话:史小青:阿姨,你好!售货员:同学你好,想买点什么?史小青:我只有100元,请帮助我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见!根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.已知,如图所示,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF.试判断∠B与∠DEC是否相等,并说明理由.30.小彬解方程21152x x a-++=时,方程左边1 没有乘以 10,由此求得方程的解为 x=4. 试求 a的值,并正确地求出方程的解.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.D5.B6.A7.C8.C9.D二、填空题10.511.60°12.335 13. 714.18,13515.13616. 40°17.14三、解答题 18.(1)略(2)3.19.由题意,平移前解析式为22(33)123y x x =-+++=+,∴b= 0 , c= 320.⑴某中学毕业年级300名学生视力的全体情况;⑵频率分布表的第一列应填4.25~4.55;第二列从上到下依次为:18,50;第三列从上到下依次为:0.46,0.36;⑶108名.21.连结EG ,DG .证EG=DG22.反面,结论,已知,定义,公理,定理23.假命题,如图所示,AB ⊥BD 于B ,CD ⊥BD 于D ,AB=CD ,但AC 不平行BD24.答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥25.AB∥CD.理由:设∠l的度数为x,则x=5×(180°-x),解得x=150°.同理,∠2的度数为30°∵∠l+∠2=150°+30°=180°,∴AB∥CD26.5元和3元.27.由图①经过连续四次绕圆心顺时针旋转90°得到28.略29.∠B=∠DEC,理由略30.x=1a=-,13。

2022——2023学年江苏省盐城市中考数学专项提升模拟试卷(AB卷)含答案

2022——2023学年江苏省盐城市中考数学专项提升模拟试卷(AB卷)含答案

2022-2023学年江苏省盐城市中考数学专项提升模拟试卷(A 卷)一、选一选(每小题只有一项符合题意,请将正确选项填在答题卡上.每小题3分,共30分)1.在实数0,2-,1-中,最小的数是()A.0B. C.2- D.1-2.下列运算正确的是()A.01π= B.+= C.()32626a a = D.()222a b a b +=+3.据国家统计局消息,2017年我国国内生产总值827122亿元,比上年增长6.9%.我国经济保持中高速增长,综合国力和国际影响力迈上新台阶.将数据827122用科学记数法表示为()A .58.27122 B.60.82712210⨯ C.58.2712210⨯ D.138.2712210⨯4.某数学兴趣小组6名成员通过数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说确的是()A.中位数是92.5B.平均数是92C.众数是96D.方差是55.在实数范围内有意义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.6.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A. B. C. D.7.反比例函数ky x=与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为()A.2y x=B.12y x= C.2y x=-D.12y x=-8.下列命题中,是假命题的是()A.平行四边形的对角线互相平分B.a =,则0a ≥C.三角形三边的垂直平分线相交于一点,这点到三角形三条边的距离相等D.已知点P (1,2-)和点Q 1-2-,则点P 、Q 关于y 轴对称9.已知⊙O 为△ABC 的外接圆,圆心O 在AB 上,∠BAC 的平分线AD 交⊙O 于D ,交BC 于E ,⊙O 的半径为5,AC=6,连接OD 交BC 于F ,则EF 的长是()A .2B.4C.1D.310.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共18分)11.分解因式:2242a a ++=_________.12.如图,∠1=∠2,需增加条件__________可以使得AB ∥CD (只写一种).13.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC 、AD ,若∠CAB =35°,则∠ADC 的度数为_____度.14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.若()200a ab b -=≠,则aa b=+________________.16.如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为1B ,2B ,3 B ,4B ,……,则2018B 的坐标为________________.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.计算.1114cos 453-⎛⎫--+-+ ⎪⎝⎭18.先化简,再求值:53(2224x x x x ++-÷--,再选择一个合适的实数代入求值.19.如图,已知点E 、F 在线段AC 上,AE=CF ,BE ∥DF 且BE=DF ,连结AD 、BC .求证:AD=BC四、实践应用(本大题共4小题,第21、22、24小题各8分,第23小题6分,共30分)20.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).21.我县届运动会需购买A ,B 两种,若购买A 种4件和B 种3件,共需85元;若购买A 种3件和B 种1件,共需45元.(1)求A 、B 两种的单价各是多少元?(2)运动会组委会计划购买A 、B 两种共100件,购买费用没有超过1150元,且A 种的数量没有大于B 种数量的3倍,设购买A 种m 件,购买总费用W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并设计出购买总费用至少的.22.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的速度?(计算时距离到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3 1.732≈,60千米/小时≈16.7米/秒)23.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称,请在如图给出的图中画出4个这样的.(DEF 每个33⨯正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)五、推理与论证(本大题共1小题,满分9分)24.如图,在ΔABC 中,BC 是以AB 为直径的⊙O 的切线,且⊙O 与AC 相交于点D ,E 为BC 的中点,连接DE.(1)求证:DE 是⊙O 的切线;(2)连接AE ,若∠C=45°,求sin ∠CAE 的值.六、拓展探究题(本大题共1小题,满分10分)25.如图,Rt△OAB 如图所示放置在平面直角坐标系中,直角边OA 与x 轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC 为一边的平行四边形?若存在,求出N点的坐标;若没有存在,请说明理由.2022-2023学年江苏省盐城市中考数学专项提升模拟试卷(A 卷)一、选一选(每小题只有一项符合题意,请将正确选项填在答题卡上.每小题3分,共30分)1.在实数0,2-,1-中,最小的数是()A.0B. C.2- D.1-【正确答案】B|>1,2-=2<-1,,故选B.2.下列运算正确的是()A.01π= B.= C.()32626a a = D.()222a b a b +=+【正确答案】A【详解】试题解析:A.01π=,正确;B.≠,该选项错误;C.()32628a a =,该选项错误;D.()2222a b a ab b +=++,该选项错误.故选A.3.据国家统计局消息,2017年我国国内生产总值827122亿元,比上年增长6.9%.我国经济保持中高速增长,综合国力和国际影响力迈上新台阶.将数据827122用科学记数法表示为()A.58.27122 B.60.82712210⨯ C.58.2712210⨯ D.138.2712210⨯【正确答案】C【详解】试题解析:827122=58.2712210⨯故选C.点睛:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.4.某数学兴趣小组6名成员通过数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说确的是()A.中位数是92.5B.平均数是92C.众数是96D.方差是5【正确答案】B【详解】试题解析:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:91+92=91.52,故A 错误;平均数为:89+91+91+92+93+96=926,故B 正确;众数为:91,故C 错误;方差S 2=2222221[(8992)(9192)(9192)(9292)(9392)(9692)]6-+-+-+-+-+-=143,故D 错误.故选B .5.在实数范围内有意义,则x 的取值范围在数轴上表示正确的是()A.B.C.D.【正确答案】D【详解】试题解析:根据题意得,x-2>0,解得x >2.在数轴上表示为:故选D .6.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B. C. D.【正确答案】C【分析】根据主视图的定义,找到从正面看所得到的图形即可.【详解】从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选C.7.反比例函数ky x=与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为()A.2y x=B.12y x=C.2y x=- D.12y x=-【正确答案】C【详解】解:把点A 的横坐标代入2,y x =-2,y ∴=()1,2,A \-因为A 在反比例函数上所以把点A 代入反比例函数解析式得k =−2所以2y x=-.故选C.8.下列命题中,是假命题的是()A.平行四边形的对角线互相平分B.a =,则0a ≥C.三角形三边的垂直平分线相交于一点,这点到三角形三条边的距离相等D.已知点P(1,2-)和点Q1-2-,则点P、Q关于y轴对称【正确答案】C【详解】试题解析:A.平行四边形的对角线互相平分,正确;B.a=,则0a≥,正确;C.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等,故原选项错误;D.已知点P(1,2-)和点Q1-2-,则点P、Q关于y轴对称,正确.故选C.9.已知⊙O为△ABC的外接圆,圆心O在AB上,∠BAC的平分线AD交⊙O于D,交BC于E,⊙O的半径为5,AC=6,连接OD交BC于F,则EF的长是()A.2B.4C.1D.3【正确答案】C【详解】∵AD平分∠BAC,∴∠DAC=∠BAD,∵OA=OD,∴∠OAD=∠D,∴∠CAD=∠D,∴AC∥OD,∴∠ACB=∠OFB,∵AB是直径,∴∠ACB=90°,∴∠OFB=90°,∴OD⊥BC;∴AC∥OD,∴OF OB AC AB=,即5610OF =,∴OF=3,∵FD=5-3=2,在Rt △OFB 中,,∵OD ⊥BC ,∴CF=BF=4,∵AC ∥OD ,∴△EFD ∽△ECA ,∴21=63EF FD CE AC ==,∴14EF CF =,∴EF=14CF=14=14⨯.故选C.10.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【正确答案】B【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y <0,由此即可判定②;观察图象可得,当x=1时,y >0,由此即可判定③;观察图象可得,当x >2时,y 的值随x 值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得2ba-=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y <0,即9a-3b+c <0,所以93a c b +<,②错误;∵抛物线与x 轴的一个交点为(-1,0),∴x=-1时,a-b+c=0,∴a+4a+c=0,即5a+c=0,∴c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,而a <0,∴8a+7b+2c >0,③正确;观察图象可得,当x <2时,y 的值随x 值的增大而增大,④错误.综上,正确的结论有2个.故选B .本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.二、填空题(请把最简答案填写在答题卡上相应位置,每小题3分,共18分)11.分解因式:2242a a ++=_________.【正确答案】2(a+1)2【分析】【详解】2242a a ++=2(a+1)2.故答案为2(a+1)2考点:因式分解12.如图,∠1=∠2,需增加条件__________可以使得AB ∥CD (只写一种).【正确答案】∠FAD=∠EDA(或AF∥DE)【详解】解:条件1:AF∥DE;理由:∵AB∥CD,∴∠BAD=∠CDA,∵AF∥DE,∴∠FAD=∠EDA,∴∠BAD-∠FAD=∠CDA-∠EDA,即∠1=∠2;条件2:∠FAD=∠EDA.理由:∵AB∥CD,∴∠BAD=∠ADC,∵∠FAD=∠EDA,∴∠1=12∠BAD,∠2=12∠CDA,∴∠1=∠2.所以需要添加条件∠FAD=∠EDA或者AF∥DE.13.如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD,若∠CAB=35°,则∠ADC的度数为_____度.【正确答案】55.【分析】连接BC,根据圆周角定理及直角三角形的性质即可求得∠ADC的度数.【详解】解:连接BC∵AB是⊙O的直径.∴∠ACB=90°,∵∠CAB=35°,∴∠CBA=55°,∵∠ADC=∠CBA,∴∠ADC=55°.故答案为55.此题考查圆周角的性质,直径所对的圆周角为直角,在同圆或等圆中,同弧或等弧所对的圆周角相等.14.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD BC,于E F,,则阴影部分的面积是________.【正确答案】1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的1 4,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为1 4.故答案为14.15.若()200a ab b -=≠,则aa b=+________________.【正确答案】0或12【分析】把已知条件看作关于a 的一元二次方程得到a=0或a=b ,然后把a=0和a=b 分别代入所求分式中计算即可得到对应的分式的值.【详解】∵a 2-ab=0(b≠0),∴a (a-b )=0,∴a=0或a=b ,当a=0时,原式=0;当a=b 时,原式=12a a a =+,即a a a+的值为0或12.故答案为0或12.本题考查了分式的值:在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.16.如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为1B ,2B ,3 B ,4B ,……,则2018B 的坐标为________________.【正确答案】(1346,0)【详解】试题解析:连接AC ,如图所示.∵四边形OABC 是菱形,∴OA=AB=BC=OC .∵∠ABC=60°,∴△ABC 是等边三角形.∴AC=AB .∴AC=OA .∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B 向右平移1346(即336×4+2)到点B 2018.∵B 8的坐标为(4,0),∴B 2018的坐标为(1346,0).故答案为(1346,0).三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.计算.1114cos 453-⎛⎫--+-+ ⎪⎝⎭4-【详解】试题分析:原式利用二次根式的性质,负整数指数幂法则,以及值的代数意义化简即可得到结果试题解析.1114cos453-⎛⎫--+-+ ⎪⎝⎭=31---+18.先化简,再求值:53(2224xxx x++-÷--,再选择一个合适的实数代入求值.【正确答案】0【详解】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,除数分子利用完全平方公式化简,分母利用平方差公式化简,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x适当的的值代入化简后的式子中计算,即可得到结果.试题解析:53 (2224xxx x+ +-÷--=2924·23 x xx x---+=(3)(3)2(2)·23 x x xx x+---+=2(x-3).当x=3时,原式=2(3-3)=0.19.如图,已知点E、F在线段AC上,AE=CF,BE∥DF且BE=DF,连结AD、BC.求证:AD=BC【正确答案】见解析【详解】试题分析:证明ΔAFD≌ΔCEB即可得出结论.试题解析:证明:∵AE=CF∴AE-EF=CF-EF∴AF=CE∵BE∥DF∴∠DFE=∠BEF∴∠AFD=∠CEB在ΔAFD和ΔCEB中AFD CEB DF BE ⎪∠=∠⎨⎪=⎩∴ΔAFD ≌ΔCEB (SAS )∴AD=BC四、实践应用(本大题共4小题,第21、22、24小题各8分,第23小题6分,共30分)20.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).【正确答案】(1)280名;(2)补图见解析;108°;(3)0.1.【分析】(1)根据“平等”的人数除以占的百分比得到的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中结果知:学生关注至多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.21.我县届运动会需购买A,B两种,若购买A种4件和B种3件,共需85元;若购买A种3件和B种1件,共需45元.(1)求A、B两种的单价各是多少元?(2)运动会组委会计划购买A 、B 两种共100件,购买费用没有超过1150元,且A 种的数量没有大于B 种数量的3倍,设购买A 种m 件,购买总费用W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并设计出购买总费用至少的.【正确答案】(1)A 的单价是10元,B 的单价是15元;(2)购买总费用至少的是购买A75件,B25件【分析】(1)设A 的单价是x 元,B 的单价是y 元,根据条件建立方程组求出其解即可;(2)根据总费用=两种的费用之和表示出W 与m 的关系式,并有条件建立没有等式组求出x 的取值范围,由函数的性质就可以求出结论.【详解】解:(1)设A 的单价是x 元,B 的单价是y 元,由题意,得4386345x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩答:A 的单价是10元,B 的单价是15元.(2)由题意,得W=10m+15(100-m )=-5m+1500.∴()5150011503100m m m -+≤⎧⎨≤-⎩解得:70≤m≤75.∴W=-5m+1500(70≤m≤75)∵k=-5<0,W 随m 的增大而减小∴当m=75时,W 有最小值=-5×75+1500=1125,此时100-m=100-75=25答:购买总费用至少的是购买A75件,B25件.22.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的速度?(计算时距离到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732 1.732≈,60千米/小时≈16.7米/秒)【正确答案】(1)112米(2)此车没有超过速度【详解】解:(1)在Rt △ABC 中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan ∠BAC=30×tan75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过速度.(1)由于A 到BC 的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC 的距离.(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可23.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称,请在如图给出的图中画出4个这样的.(DEF 每个33⨯正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)【正确答案】见解析【详解】试题分析:根据对称图形关于某直线对称,找出没有同的对称轴,画出没有同的图形.试题解析:如图所示:五、推理与论证(本大题共1小题,满分9分)24.如图,在ΔABC 中,BC 是以AB 为直径的⊙O 的切线,且⊙O 与AC 相交于点D ,E 为BC 的中点,连接DE.(1)求证:DE 是⊙O 的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.【正确答案】(1)见解析;(2)10【详解】试题分析:(1)连接DO,DB,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.(2)作EF⊥CD于F,设EF=x,由∠C=45°,得出△CEF、△ABC都是等腰直角三角形,根据等腰直角三角形的性质和勾股定理求得x,x,x,进而就可求得sin∠CAE的值.试题解析:(1)连接OD,BD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)作EF⊥CD于F,设EF=x∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,∴x,∴AB=BC=2x,在RT△ABE中,=x,∴sin∠CAE=1010 EFAE=.六、拓展探究题(本大题共1小题,满分10分)25.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC 为一边的平行四边形?若存在,求出N点的坐标;若没有存在,请说明理由.【正确答案】(1)、y=﹣x2+4x;(2)、10;(3)、N1(2+2,﹣4),N2(2﹣2,﹣4)【详解】试题分析:(1)、根据旋转的性质可求出C的坐标和A的坐标,又因为抛物线原点,故设y=ax2+bx把(2,4),(4,0)代入,求出a和b的值即可求出该抛物线的解析式;(2)、四边形PEFM的周长有值,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,所以EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,利用函数的性质即可求出四边形PEFM的周长的值;(3)、在抛物线上存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形,由(1)可求出抛物线的顶点坐标,过点C作x轴的平行线,与x轴没有其它交点,过y=﹣4作x轴的平行线,与抛物线有两个交点,这两个交点为所求的N点坐标所以有﹣x2+4x=﹣4,解方程即可求出交点坐标.试题解析:(1)、因为OA=4,AB=2,把△AOB绕点O逆时针旋转90°,可以确定点C的坐标为(2,4);由图可知点A的坐标为(4,0),又因为抛物线原点,故设y=ax2+bx把(2,4),(4,0)代入,得,解得所以抛物线的解析式为y=﹣x2+4x;(2)、四边形PEFM的周长有值,理由如下:由题意,如图所示,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,∴EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,∴当a=1时,矩形PEFM的周长有值,L max=10;(3)、在抛物线上存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形,理由如下:∵y=﹣x2+4x=﹣(x﹣2)2+4可知顶点坐标(2,4),∴知道C点正好是顶点坐标,知道C点到x轴的距离为4个单位长度,过点C作x轴的平行线,与x轴没有其它交点,过y=﹣4作x轴的平行线,与抛物线有两个交点,这两个交点为所求的N点坐标所以有﹣x2+4x=﹣4解得x1=2+,x2=2﹣∴N点坐标为N1(2+,﹣4),N2(2﹣,﹣4).考点:二次函数综合题.2022-2023学年江苏省盐城市中考数学专项提升模拟试卷(B 卷)一、选一选(本大题共6小题,每小题3分,共18分.)1.16的平方根是()A.6 B.-4 C.±4D.±82.下列图形中,既是轴对称图形又是对称图形的是()A. B. C. D.3.下列运算正确的是()A.4a 2-2a 2=2B.a 2•a 4=a 3C.(a-b)2=a 2-b 2D.(a+b)2=a 2+2ab+b 24.一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5 B.6 C.7 D.85.没有等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为()A.1k <B.1k ³C.1k > D.1k <6.如图,在直角坐标系中,四边形OABC 为菱形,对角线OB 、AC 相交于D 点,已知A 点的坐标为(10,0),双曲线y=k x(x >0)D 点,交BC 的延长线于E 点,且OB •AC =120(OB >AC ),有下列四个结论:①双曲线的解析式为y =7x(x >0);②E 点的坐标是(4,6);③sin ∠COA =35;④EC =72;⑤AC +OB .其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(本大题共有10小题,每小题3分,共30分.)7.有意义,则实数x 的取值范围是____________.8.十八大以来,全国有6800多万人口摆脱贫困,以的带领中国人民创造了人类减贫史上的奇迹.把6800万用科学记数法表示为__________.9.分解因式:m 3﹣9m =_____.10.若一组数据3,4,x ,6,8的平均数为5,则这组数据的方差是__________.11.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC =80°,∠C =33°,那么∠BDE 的度数是__________.12.已知实数a 在数轴上的位置如图,则化简|1﹣_____.13.如图,A 、B 、C 是⊙O 上的三点,且四边形OABC 是菱形.若点D 是圆上异于A 、B 、C 的另一点,则∠ADC 的度数是___________________.14.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套.已知2套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需__________元.15.如图,二次函数2y ax bx c =++的图象与y 轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc >0;②a =b ;③a =4c ﹣4;④方程21ax bx c ++=有两个相等的实数根,其中正确的结论是______.(只填序号即可).16.如图,在平面直角坐标系中,A (4,0)、B (0,-3),以点B 为圆心、2为半径的⊙B 上有一动点P .连接AP ,若点C 为AP 的中点,连接OC ,则OC 的最小值为__________.三.解答题(本大题共有11小题,共102分.)17.-π)0+cos 45°+(12)-2.18.先化简,再求值:22()242m m m m m m -÷--+,其中m 满足方程m 2-4m =0.19.已知关于x 的一元二次方程22440x x m --+=.(1)求证:该方程有两个实数根;(2)若该方程的两个实数根1x 、2x 满足1222x x +=,求m 的值.20.某中学开展了“手机伴我健康行”主题,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(没有含2小时)的人数. 21.小王和小李都想去体育馆,观看在我县举行的“杯”青少年校园足球联赛,但两人只有一张门票,两人想通过摸球的方式来决定谁去观看,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则没有公平.”你认同他的说法吗?请说明理由.22.如图,在□ABCD中,∠ADB=90°,点E为AB边的中点,点F为CD边的中点.(1)求证:四边形DEBF是菱形;(2)当∠A等于多少度时,四边形DEBF是正方形?并说明你的理由.23.3月初某商品价格上涨,每件价格上涨20%.用3000元买到的该商品件数比涨价前少20件.3月下旬该商品开始降价,两次降价后,该商品价格为每件19.2元.(1)求3月初该商品上涨后的价格;(2)若该商品两次降价率相同,求该商品价格的平均降价率.24.已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD 交AB于点E,以AE为直径作⊙O.(1)求证:BC是⊙O的切线;(2)若AC=3,BC=4,求BE的长.(3)在(2)的条件中,求cos∠EAD的值.25.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试,售价为8元/件,工作人员对情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日量y(件)与时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日量减少5件.(1)第24天的日量是件,日利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日利润没有低于640元的天数共有多少天?试期间,日利润是多少元?26.【操作发现】如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,将线段CD绕点C顺时针旋转60°得到线段CF,连接AF、EF.请直接写出下列结果:①∠EAF的度数为__________;②DE与EF之间的数量关系为__________;【类比探究】如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点∠DCE=45°,将线段CD绕点C顺时针旋转90°得到线段CF,连接AF、EF.①则∠EAF的度数为__________;②线段AE,ED,DB之间有什么数量关系?请说明理由;【实际应用】如图3,△ABC是一个三角形的余料.小张同学量得∠ACB=120°,AC=BC,他在边BC上取了D、E两点,并量得∠BCD=15°、∠DCE=60°,这样CD、CE将△ABC分成三个小三角形,请求△BCD、△DCE、△ACE这三个三角形的面积之比.27.如图1,对称轴为直线x=1的抛物线y=12x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B的坐标和抛物线的表达式;(2)当AE:EP=1:4时,求点E的坐标;(3)如图2,在(2)的条件下,将线段OC绕点O逆时针旋转得到OC′,旋转角为α(0°<α<90°),连接C′D、C′B,求C′B+23C′D的最小值.2022-2023学年江苏省盐城市中考数学专项提升模拟试卷(B卷)一、选一选(本大题共6小题,每小题3分,共18分.)1.16的平方根是()A.6B.-4C.±4D.±8【正确答案】C【详解】解:∵(±4)2=16,∴16的平方根是±4.故选C.2.下列图形中,既是轴对称图形又是对称图形的是()。

2020年江苏省盐城市射阳县中考数学一模试卷 (解析版)

2020年江苏省盐城市射阳县中考数学一模试卷 (解析版)

2020年盐城市射阳县中考数学一模试卷一、选择题(共8小题).1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.3.今年以来,人们对全国多地大范围持续的雾霾天气记忆犹新,“细颗粒物PM2.5”遂成为显示度最高的热词之一.PM2.5是指大气中直径小于或等于0.0000025米(即2.5微米)的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.25×10﹣74.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①③②B.②①③C.③①②D.①②③5.圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切6.下列运算正确的是()A.3x﹣2x=x B.3x+2x=5x2C.3x•2x=6x D.3x÷2x=7.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.78.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.立交桥总长为168 mB.从F口出比从G口出多行驶48mC.甲车在立交桥上共行驶11 sD.甲车从F口出,乙车从G口出二、填空题(本大题共8小题,每小题3分,共24分)9.二次根式有意义,则x的取值范围是.10.9的平方根是.11.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是.12.分解因式:9x2﹣y2=.13.小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差.(填“变大”、“变小”或“不变”)14.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧的长为cm.15.如图,△ABC中,D,E两点分别在AB、BC上,若BD:BA=BE:BC=1:3,则△DBE的面积:△ADC的面积=.16.如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA 的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为.三、解答题(本大题共11小题,共102分,解答时写出必要的文字说明、证明过程或演算步骤.)17.计算(﹣3)0+﹣2sin30°﹣|﹣2|.18.先化简,再求值:÷(﹣),其中x是满足不等式组的最大整数.19.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩子中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.20.关于x的一次函数y1=﹣2x+m和反比例函数y2=的图象都经过点A(﹣2,1).求:(1)一次函数和反比例函数的解析式;(2)若一次函数和反比例函数图象的另一个交点B的坐标为(,﹣4),请结合图象直接写出y1>y2的x取值范围.21.2020贺岁片《囧妈》提档大年三十网络首播、“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有人;(2)扇形统计图中,扇形C的圆心角度数是;(3)请补全条形统计图;(4)“乐调查”平台调查了春节期间观看《囧妈》的观众约5000人,请估计观众对该电影的满意(A、B、C类视为满意)的人数.22.如图,矩形ABCD中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1)求证:四边形AOBE是菱形;(2)若∠EAO+∠DCO=180°,DC=3,求四边形ADOE的面积.23.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.24.“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价x(元/千克)12162024日销售量y(千克)220180140m (注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:①m=千克;②当销售价格x=元时,日销售利润W最大,最大值是元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.25.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道由A地到O地,再由O地到B地可大大缩短路程、∠OAC=45°,∠OBC=60°,∠ACB=90°,AC=540公里,BC=400公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4,≈2.4)26.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.27.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A (3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA,且PA=NA时,求此时点P的坐标;(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请求出点Q的坐标.参考答案一、选择题(本大题共8题,每题3分,满分24分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d【分析】根据数轴上某个数与原点的距离的大小确定结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的数是c;故选:C.2.下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念和扑克牌的花色特点求解.解:根据中心对称图形的概念,知A、B、C都是中心对称图形;D、旋转180°后,中间的花色发生了变化,不是中心对称图形.故选:D.3.今年以来,人们对全国多地大范围持续的雾霾天气记忆犹新,“细颗粒物PM2.5”遂成为显示度最高的热词之一.PM2.5是指大气中直径小于或等于0.0000025米(即2.5微米)的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.25×10﹣7【分析】根据科学记数法和负整数指数的意义求解.解:0.0000025=2.5×10﹣6.故选:C.4.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①③②B.②①③C.③①②D.①②③【分析】根据简单几何体的三视图,可得答案.解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:A.5.圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【分析】由⊙O的直径为8cm,得出圆的半径是4cm,圆心O到直线l的距离为4cm,即d=4cm,得出d=r,即可得出直线l与⊙O的位置关系是相切.解:∵⊙O的直径为8cm,∴r=4cm,∵d=4cm,∴d=r,∴直线l与⊙O的位置关系是相切.故选:B.6.下列运算正确的是()A.3x﹣2x=x B.3x+2x=5x2C.3x•2x=6x D.3x÷2x=【分析】先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是,故本选项不符合题意;故选:A.7.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【分析】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k与b的值,即可求出所求.解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.8.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.立交桥总长为168 mB.从F口出比从G口出多行驶48mC.甲车在立交桥上共行驶11 sD.甲车从F口出,乙车从G口出【分析】根据题意、结合图象问题可得.解:由图象可知,两车通过,,弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.因此,甲车所用时间为4+3+4=11s,故C正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走48m,故B正确;根据两车运行时间,可知甲先驶出,应从G口驶出,故D错误;根据题意立交桥总长为(3×3+4×3)×8=168m,故A正确;故选:D.二、填空题(本大题共8小题,每小题3分,共24分)9.二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.10.9的平方根是±3.【分析】直接利用平方根的定义计算即可.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.11.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是(2,﹣1).【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为:(2,﹣1).12.分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).13.小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差变小.(填“变大”、“变小”或“不变”)【分析】根据方差公式求出小华6次的方差,再进行比较即可.解:(5+9+7+10+9)÷5=8(环),∵前5次小华的方差是3.2,小华再射击1次,分别命中8环,∴小华这六次射击成绩的方差是×[3.2×5+(8﹣8)2]=2.67,∵2.67<3.2,∴小华这六次射击成绩的方差会变小;故答案为:变小.14.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧的长为cm.【分析】连接OA,OB,过点O作OD⊥AB于点D,根据已知条件得到△OAB是等边三角形,求得∠AOB=60°,根据弧长公式即可得到结论.解:连接OA,OB,过点O作OD⊥AB于点D,∵OA=OB=2cm,AB=2cm,∴∴△OAB是等边三角形,∴∠AOB=60°,∴劣弧的长==π,故答案为:.15.如图,△ABC中,D,E两点分别在AB、BC上,若BD:BA=BE:BC=1:3,则△DBE的面积:△ADC的面积=1:6.【分析】先证△BED与△BCA相似,求出△BED与△BCA的相似比,进一步求出其面积比,然后分别过点B,D作AC的垂线BM,DN,求出DN与BM的比值,推出△DCA 与△BCA的面积比,结合△BED与△BCA的面积比即可求出最终结果.解:∵BD:BA=BE:BC=1:3,又∵∠DBE=∠ABC,∴△BED∽△BCA,∴,分别过点B,D作AC的垂线BM,DN,则DN∥BM,∴△ADN∽△ABM,∴,∵S△ADC=AC•DN,S△BCA=AC•BM,∴,∴,故答案为:1:6.16.如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA 的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为﹣.【分析】BC交OA于H,如图,利用基本作图得到CB垂直平分OA,则BO=BA=1,AH=OH,在Rt△OCB中先利用勾股定理计算出CB,再利用面积法计算出OH=,则OA=,设A(m,n),根据•两点间的距离公式得到(m+1)2+n2=12,m2+n2=()2,解关于m、n的方程组得到A(﹣,),然后利用反比例函数图象上点的坐标特征求k的值.解:BC交OA于H,如图,由作法得CB垂直平分OA,∴BO=BA=1,AH=OH,∠OBH=90°,∴B(﹣1,0),在Rt△OCB中,∵C(0,3),∴OC=3,∴CB==,∵×OH×BC=×OB×OC,∴OH==,∴OA=2OH=,设A(m,n),则(m+1)2+n2=12,m2+n2=()2,解得m=﹣,n=,∴A(﹣,),把A(﹣,)代入y=得k=﹣×=﹣.故答案为﹣.三、解答题(本大题共11小题,共102分,解答时写出必要的文字说明、证明过程或演算步骤.)17.计算(﹣3)0+﹣2sin30°﹣|﹣2|.【分析】原式利用零指数幂法则,算术平方根定义,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=1+3﹣2×﹣2=4﹣1﹣2=1.18.先化简,再求值:÷(﹣),其中x是满足不等式组的最大整数.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x是满足不等式组的最大整数,可以求得x的值,然后代入化简后的式子即可解答本题.解:÷(﹣)===,由不等式组,得x<,∵x是满足不等式组的最大整数,∴x=0,当x=0时,原式==0.19.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩子中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.【分析】(1)根据概率公式直接得出答案即可;(2)先画出树状图,得出所有等情况数和恰好是同一家庭成员的情况数,然后根据概率公式即可得出答案.解:(1)∵有三位孩子,分别是a,b,c,∴家长A恰好选中孩子的概率是;故答案为:.(2)画树状图如下:∵共有9种等情况数,恰好是同一家庭成员的有3种情况数,∴被选中的恰好是同一家庭成员的概率是=.20.关于x的一次函数y1=﹣2x+m和反比例函数y2=的图象都经过点A(﹣2,1).求:(1)一次函数和反比例函数的解析式;(2)若一次函数和反比例函数图象的另一个交点B的坐标为(,﹣4),请结合图象直接写出y1>y2的x取值范围.【分析】(1)把两函数的交点A的坐标分别代入y1=﹣2x+m和y2=中求出m、n 即可得到两函数解析式;(2)先大致画出两函数图象,利用函数图象,写出直线在反比例函数图象上方所对应的自变量的范围即可.解:(1)把A(﹣2,1)代入y1=﹣2x+m得4+m=1,解得m=﹣3,∴一次函数解析式为y1=﹣2x﹣3;把A(2,﹣1)代入y2=得n+1=2×(﹣1)=﹣2,∴反比例函数的解析式为y2=﹣;(2)如图,当x<﹣2或0<x<时,y1>y2.21.2020贺岁片《囧妈》提档大年三十网络首播、“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有100人;(2)扇形统计图中,扇形C的圆心角度数是54°;(3)请补全条形统计图;(4)“乐调查”平台调查了春节期间观看《囧妈》的观众约5000人,请估计观众对该电影的满意(A、B、C类视为满意)的人数.【分析】(1)利用B的人数除以B所占百分比可得答案;(2)用360°乘以C所占比例可得扇形C的圆心角度数;(3)用总人数减去B、C、D三类人数可得A类人数,再补图即可;(4)利用样本估计总体的方法计算即可.解:(1)本次接受调查的观众:25÷25%=100(人),故答案为:100;(2)扇形C的圆心角度数是:360°×=54°故答案为:54°;(3)A类别的人数:100﹣25﹣15﹣10=50(人),如图所示;(4)5000×=4500(人),答:估计观众对该电影的满意(A、B、C类视为满意)的人数为4500人.22.如图,矩形ABCD中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1)求证:四边形AOBE是菱形;(2)若∠EAO+∠DCO=180°,DC=3,求四边形ADOE的面积.【分析】(1)先证明四边形AOBE是平行四边形,再证明AB⊥OE即可;(2)根据∠EAO+∠DCO=180°,以及矩形性质可求得∠EAO=120°,求出△AEO面积,利用四边形ADOE的面积等于△AEO面积的2倍即可求解.解:(1)∵四边形ABCD是矩形,∴DO=BO.∵四边形ADOE是平行四边形,∴AE∥DO,AE=DO,AD∥OE.∴AE∥BO,AE=BO.∴四边形AOBE是平行四边形.∵AD⊥AB,AD∥OE,∴AB⊥OE.∴四边形AOBE是菱形;(2)设AB与EO交点为M.∵AB∥CD,∴∠DCO=∠BAO.∵四边形AOBE是菱形,∴∠EAO=2∠BAO.∵∠EAO+∠DCO=180°,∴∠BAO=120°,∠EAM=60°.又AM=AB=,∴EM=.∴EO=3,∴△AEO面积为×3×=,∴四边形ADOE面积=.23.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.【分析】(1)连接OD和CD,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.【解答】(1)证明:连接OD,CD,∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC,AB=10,∴AD=BD=5,∵O为BC中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD过O,∴直线DF是⊙O的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC=13,∴CD=12,∴cos∠ADF=cos∠BCD==.24.“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价x(元/千克)12162024日销售量y(千克)220180140m (注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:①m=100千克;②当销售价格x=21元时,日销售利润W最大,最大值是1690元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.【分析】(1)设y关于x的函数解析式为y=kx+b,由待定系数法求解即可;(2)①将x=24代入一次函数解析式,计算即可得出m的值;②根据日销售利润=日销售量×(销售单价﹣成本单价)写出函数关系式,并将其配方,写成顶点式,按照二次函数的性质可得答案;(3)根据题意,W=﹣10x2+420x﹣2720﹣100≥1500,变形得出关于x的二次不等式,然后解一元二次方程,再根据二次函数的性质可得答案.解:(1)设y关于x的函数解析式为y=kx+b,将(12,220),(16,180)代入得:,解得:.∴y=﹣10x+340;(2)①∵当x=24时,y=﹣10×24+340=100,∴m=100.故答案为:100;②由题意得:W=(﹣10x+340)(x﹣8)=﹣10x2+420x﹣2720=﹣10(x﹣21)2+1690,∵﹣10<0,∴当x=21时,W有最大值为1690元.故答案为:21,1690;(3)由题意得:W=﹣10x2+420x﹣2720﹣100≥1500,∴x2﹣42x+432≤0,当x2﹣42x+432=0时,解得:x1=18,x2=24,∵函数y=x2﹣42x+432的二次项系数为正,图象开口向上,∴18≤x≤24,∴该产品销售单价的范围为18≤x≤24.25.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道由A地到O地,再由O地到B地可大大缩短路程、∠OAC=45°,∠OBC=60°,∠ACB=90°,AC=540公里,BC=400公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4,≈2.4)【分析】过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,通过解直角三角形,用x表示CD和AD,由AC的长度列出x的方程,求得x,进而由勾股定理求得OA与OB,便可计算出结果.解:过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,则OD=CE=400﹣x(公里),∴CD=OE=BE•tan∠OBE=x•tan60°=x,AD=,∵AD+CD=AC=540,∴x+400﹣x=540,∴x=70+70,∴BE=70+70,OE=70+210,AD=OD=330﹣70,∴AO=,OB=,∴AO+OB=330﹣70+140+140=672,AC+CB=540+400=940,940﹣672=268,答:隧道打通后与打通前相比,从A地到B地的路程将约缩短268公里.26.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【分析】(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE.(3)如图3中,在DC上取一点G,使得DG=BE,证明△ABE≌△ADG(SAS),推出AE=AG,∠BAE=∠DAG,证明△AFE≌△AFG(SAS),推出EF=FG,设BE=x,则CG=13﹣x,EF=FG=18﹣x,在Rt△ECF中,根据EF2=EC2+CF2,构建方程求出x即可解决问题.【解答】(1)证明:如图1中,由旋转可得GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中,,∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF.(2)解:结论:EF=DF﹣BE,理由:如图2中,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF(SAS),∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE.(3)解:如图3中,在DC上取一点G,使得DG=BE,∵∠BAD=∠BCD=90°,∴∠ABC+∠D=180°,∠ABE+∠ABC=180°,∴∠ABE=∠D,∵AB=AD,BE=DG,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∴∠EAB+∠BAF=∠DAG+∠BAF=45°,∵∠BAD=90°,∴∠FAG=∠FAE=45°,∵AE=AG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,设BE=x,则EC=EB+BC=x+7,EF=FG=18﹣x,在Rt△ECF中,∵EF2=EC2+CF2,∴52+(7+x)2=(18﹣x)2,∴x=5,∴BE=5.27.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A (3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA,且PA=NA时,求此时点P的坐标;(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请求出点Q的坐标.【分析】(1)将点A的坐标代入函数表达式,即可求解;(2)证明△NMA≌△AHP(AAS),则AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,即可求解;(3)则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,即可求解.解:(1)将点A的坐标代入函数表达式得:0=﹣32+2(m﹣2)×3+3,解得:m=3,故抛物线的表达式为:y=﹣x2+2x+3,故点D的坐标为:(1,4);(2)过点A作y轴的平行线交过点N与x轴的平行线于点M,交过点P与x轴的平行线于点H,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NP,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).。

2023年江苏省盐城市中考数学专题练——4二次函数

2023年江苏省盐城市中考数学专题练——4二次函数

2023年江苏省盐城市中考数学专题练——4二次函数一.选择题(共6小题)1.(2022•东台市模拟)已知抛物线y=ax2+bx+c上的部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…30﹣1m3…以下结论:①抛物线y=ax2+bx+c的开口向下;②当x<3时,y随x增大而增大;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是0<x<2,正确的个数有()A.1个B.2个C.3个D.4个2.(2022•建湖县一模)如图,游乐园里的原子滑车是很多人喜欢的项目,惊险刺激,原子滑车在轨道上运行的过程中有一段路线可以看作是抛物线的一部分,原子滑车运行的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了原子滑车在该路段运行的x与y的三组数据A(x1,y1)、B(x2,y2)、C(x3,y3),根据上述函数模型和数据,可推断出,此原子滑车运行到最低点时,所对应的水平距离x满足()A.x<x1B.x1<x<x2C.x=x2D.x2<x<x3 3.(2021•射阳县二模)已知抛物线y=ax2+bx+3(a<0)过A(2,y1),B(﹣1,y2),C(3,y2),D(−√5,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1 4.(2021•建湖县二模)如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=14x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④5.(2021•射阳县三模)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°6.(2021•盐都区二模)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.2 1.3 1.4y﹣10.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3二.填空题(共5小题)7.(2022•东台市模拟)如图,抛物线y=﹣x2+4x+1与y轴交于点P,其顶点是A,点P'的坐标是(3,﹣2),将该抛物线沿PP'方向平移,使点P平移到点P',则平移过程中该抛物线上P、A两点间的部分所扫过的面积是.8.(2022•盐城一模)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.3x2+1.5x﹣1,则最佳加工时间为min.9.(2022•亭湖区校级三模)二次函数y=x2﹣1的图象与y轴的交点坐标是.10.(2022•滨海县模拟)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=.11.(2021•东台市模拟)如图,抛物线y=14x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ.则线段OQ的最大值是.三.解答题(共14小题)12.(2022•亭湖区校级三模)已知抛物线y=(k﹣1)x2﹣2kx+3k,其中k为实数.(1)若抛物线经过点(1,3),求k的值;(2)若抛物线经过点(1,a),(3,b),试说明ab>﹣3;(3)当2≤x≤4时:二次函数的函数值y≥0恒成立,求k的取值范围.13.(2022•亭湖区校级三模)阅读感悟:“数形结合”是一种重要的数学思想方法,同一个问题有“数”、“形”两方面的特性,解决数学问题,有的从“数”入手简单,有的从“形”入手简单,因此,可能“数”→“形”或“形”→“数”,有的问题需要经过几次转化.这对于初、高中数学的解题都很有效,应用广泛. 解决问题:已知,点M 为二次函数y =﹣x 2+2bx ﹣b 2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴和y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由;(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣x 2+2bx ﹣b 2+4b +1,结合图象,求x 的取值范围;(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.14.(2022•滨海县模拟)如图1,直线l :y =kx +b (k <0,b >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线W 叫做直线l 的关联抛物线,而直线l 叫做抛物线W 的关联直线.(1)已知直线l 1:y =﹣3x +3,求直线l 1的关联抛物线W 1的表达式; (2)若抛物线W 2:y =−x 2−x +2,求它的关联直线l 2的表达式;(3)如图2,若直线l 3:y =kx +4(k <0),G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM =√102,求直线l 3的关联抛物线W 3的表达式;(4)在(3)的条件下,将直线CD 绕着C 点旋转得到新的直线l 4:y =mx +n ,若点P (x 1,y 1)与点Q (x 2,y 2)分别是抛物线W 3与直线l 4上的点,当0≤x ≤2时,|y 1﹣y 2|≤4,请直接写出m 的取值范围.15.(2022•盐城一模)如图,抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),与x轴负半轴交于点C,点D是抛物线上的动点.(1)求抛物线的解析式;(2)过点D作DE⊥AB于点E,连接BF,当点D在第一象限且S△BEF=2S△AEF时,求点D的坐标.16.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.17.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(−12,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.18.(2022•滨海县一模)如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,连接BC,直线BM:y=2x+m 交y轴于点M.P为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F.(1)求抛物线的表达式:(2)当点P落在抛物线的对称轴上时,求△PBC的面积:(3)①若点N为y轴上一动点,当四边形BENF为矩形时,求点N的坐标;②在①的条件下,第四象限内有一点Q,满足QN=QM,当△QNB的周长最小时,求点Q的坐标.19.(2022•射阳县一模)新冠疫情爆发后,某超市发现使用湿巾纸量变大,其中A种湿巾纸售价为每包18元;B种湿巾纸售价为每包12元.该超市决定购进一批这两种湿巾纸,经市场调查得知,购进2包A种湿巾纸与购进3包B种湿巾纸的费用相同,购进10包A 种湿巾纸和购进6包B种湿巾纸共需168元.(1)求A、B两种湿巾纸的进价.(2)该超市平均每天可售出40包A种湿巾纸,后来经过市场调查发现,A种湿巾纸单价每降低1元,则平均每天的销量可增加8包.为了尽量让顾客得到更多的优惠,该超市将A种湿巾纸调整售价后,当天销售A种湿巾纸获利224元,那么A种湿巾纸的单价降了多少元?(3)该超市准备购进A、B两种湿巾纸共600包,其中B种湿巾纸的数量不少于A种湿巾纸数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.20.(2022•射阳县一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx﹣m2+1与y 轴的交点为A,过点A作直线l垂直于y轴.(1)当m=1时,求抛物线的顶点坐标;(2)若点(m﹣3,y1),(m,y2),(m+1,y3)都在抛物线y=﹣x2+2mx﹣m2+1上,则y1,y2,y3的大小关系为;(3)将抛物线在y轴左侧的部分沿直线l翻折,其余部分保持不变,组成图形G.点M (x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m+3,x2=m﹣3,都有y1<y2,求m的取值范围.21.(2022•建湖县二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A、B两点,直线y=x+4恰好经过B、C两点.(1)求二次函数的表达式;(2)点D为第三象限抛物线上一点,连接BD,过点O作OE⊥BD,垂足为E,若OE =2BE,求点D的坐标;(3)设F是抛物线上的一个动点,连结AC、AF,若∠BAF=2∠ACB,求点F的坐标.22.(2022•盐城一模)已知抛物线y=x2﹣x﹣6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)①点B的坐标为;直线AC的解析式为;②如图1,若点D是直线AC下方抛物线上的一个动点(点D不与点A、C重合),求△DAC面积的最大值;(2)如图2,若点M是线段AC上一动点(不与A、C重合),点N是线段AB上一点,设AN=t,当t在何范围取值时,点M总存在两个不同的位置使∠BMN=∠BAM;(3)如图3,点G是x轴上方的抛物线上一点,若∠AGB+2∠BAG=90°,请直接写出点G的横坐标为.23.(2022•建湖县一模)在平面直角坐标系中,二次函数y=x2+bx+c的图象过点C(0,﹣4)和点D(2,﹣6),与x轴交于点A、B(点A在点B的左边),且点D与点G关于坐标原点对称.(1)求该二次函数解析式,并判断点G是否在此函数的图象上,并说明理由;(2)若点P为此抛物线上一点,它关于x轴,y轴的对称点分别为M,N,问是否存在这样的P点使得M,N恰好都在直线DG上?如存在,求出点P的坐标,如不存在,请说明理由;(3)若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<4,△BEF的内心为I,连接CI,直接写出CI的最小值.24.(2021•盐都区三模)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.25.(2021•盐都区校级模拟)已知:平面直角坐标系内一直线l1:y=﹣x+3分别与x轴、y 轴交于B、C两点,抛物线y=﹣x2+bx+c经过A、B两点,抛物线在x轴上方部分上有一动点D,连结AC;(1)求抛物线解析式;(2)当D在第一象限,求D到l1的最大距离;(3)是否存在D点某一位置,使∠DBC=∠ACO?若存在,求D点坐标;若不存在,请说明理由.2023年江苏省盐城市中考数学专题练——4二次函数参考答案与试题解析一.选择题(共6小题)1.(2022•东台市模拟)已知抛物线y =ax 2+bx +c 上的部分点的横坐标x 与纵坐标y 的对应值如表:x … ﹣1 0 1 2 3 … y…3﹣1m3…以下结论:①抛物线y =ax 2+bx +c 的开口向下;②当x <3时,y 随x 增大而增大;③方程ax 2+bx +c =0的根为0和2;④当y >0时,x 的取值范围是0<x <2,正确的个数有( ) A .1个B .2个C .3个D .4个【解答】解:将(﹣1,3),(0,0),(1,﹣1)代入y =ax 2+bx +c 得: {3=a −b +c 0=c −1=a +b +c, 解得{a =1b =−2c =0,∴y =x 2﹣2x . ①∵a =1, ∴抛物线开口向上, 故①错误,不符合题意.②∵图象对称轴为直线x =1,且开口向上, ∴x >1时,y 随x 增大而增大, 故②错误,不符合题意. ③∵y =x 2﹣2x =x (x ﹣2), ∴当x =0或x =2时y =0, 故③正确,符合题意.④∵抛物线开口向上,与x 轴交点坐标为(0,0),(2,0), ∴x <0或x >2时,y >0, 故④错误,不符合题意. 故选:A .2.(2022•建湖县一模)如图,游乐园里的原子滑车是很多人喜欢的项目,惊险刺激,原子滑车在轨道上运行的过程中有一段路线可以看作是抛物线的一部分,原子滑车运行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了原子滑车在该路段运行的x 与y 的三组数据A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),根据上述函数模型和数据,可推断出,此原子滑车运行到最低点时,所对应的水平距离x 满足( )A .x <x 1B .x 1<x <x 2C .x =x 2D .x 2<x <x 3【解答】解:解法一:根据题意知,抛物线y =ax 2+bx +c (a ≠0)经过点A (0,2)、B (2,1)、C (4,4), 则{c =24a +2b +c =116a +4b +c =4, 解得:{ a =12b =−32c =2,所以x =−b 2a =−−322×12=32.∴此原子滑车运行到最低点时,所对应的水平距离x 满足x 1<x <x 2.解法二:从图象上看,抛物线开口向上,有最低点,x 的值越离对称轴越近,函数y 的值就越小,若对称轴是直线x =x 2时,A 、C 两点应该要一样高(即y 值相等),但是很明显A 点比C 点低,说明A 点离对称轴更近,所以对称轴在A 、B 之间,即x 1<x <x 2. 故选:B .3.(2021•射阳县二模)已知抛物线y =ax 2+bx +3(a <0)过A (2,y 1),B (﹣1,y 2),C (3,y 2),D (−√5,y 3)四点,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 1【解答】解:抛物线y =ax 2+bx +3(a <0)过A (2,y 1),B (﹣1,y 2),C (3,y 2),D (−√5,y 3)四点,∴抛物线开口向下,对称轴为x =−1+32=1. ∵D (−√5,y 3)离对称轴最远,A (2,y 1)离对称轴最近, ∴y 1>y 2>y 3,故选:A.4.(2021•建湖县二模)如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=14x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①由图象顶点(2,9)可得y=a(x﹣2)2+9,将(8,0)代入y=a(x﹣2)2+9得0=36a+9,解得a=−1 4,∴y=−14(x﹣2)2+9=y=−14x2+x+8,故①错误.②∵5.5﹣2>2﹣(﹣1),点A距离对称轴距离大于点B距离对称轴距离,∴m<n,故②正确.③∵图象对称轴为直线x=2,且抛物线与x轴一个交点为(8,0),∴图象与x轴的另一交点横坐标为2×2﹣8=﹣4,故③正确.④由图象可得当x=0时y=8,x=5.5时y=m,x=2时y=9,∴0<x<5.5时,m<y≤9.故④错误.故选:C.5.(2021•射阳县三模)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°【解答】解:由题意可知函数图象为开口向上的抛物线,由图表数据描点连线,补全图可得如图,∴抛物线对称轴在36和54之间,约为41°,∴旋钮的旋转角度x在36°和54°之间,约为41°时,燃气灶烧开一壶水最节省燃气.故选:C.6.(2021•盐都区二模)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.2 1.3 1.4y﹣10.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3【解答】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选:C.二.填空题(共5小题)7.(2022•东台市模拟)如图,抛物线y=﹣x2+4x+1与y轴交于点P,其顶点是A,点P'的坐标是(3,﹣2),将该抛物线沿PP'方向平移,使点P平移到点P',则平移过程中该抛物线上P、A两点间的部分所扫过的面积是18.【解答】解:令x =0,则y =1, 所以,点P 的坐标为(0,1), ∵y =﹣x 2+4x +1=﹣(x ﹣2)2+5, ∴顶点A (2,5),设直线AP ′的解析式为y =kx +b , 则{2k +b =53k +b =−2, 解得{k =−7b =19,所以,直线AP ′的解析式为y =﹣7x +19, 当y =1时,﹣7x +19=1, 解得x =187, ∴点M 的坐标为(187,1),PM =187, S △AP ′P =S △PP ′M +S △APM =12×187×(5+2)=9, 根据平移的性质,P A 扫过的面积是以P A 、PP ′为邻边的平行四边形, 所扫过的面积=2S △AP ′P =2×9=18. 故答案为:18.8.(2022•盐城一模)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.3x 2+1.5x ﹣1,则最佳加工时间为 2.5min.【解答】解:根据题意:y=﹣0.3x2+1.5x﹣1=﹣0.3(x﹣2.5)2+5.25,∵﹣0.3<0,∴当x=2.5时,y最大,∴最佳加工时间为2.5min,故答案为:2.5.9.(2022•亭湖区校级三模)二次函数y=x2﹣1的图象与y轴的交点坐标是(0,﹣1).【解答】解:∵二次函数y=x2﹣1,∴当x=0时,y=﹣1,即二次函数y=x2﹣1的图象与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).10.(2022•滨海县模拟)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=6.【解答】解:由上表可知函数图象经过点(0,3)和点(2,3),∴对称轴为x=0+22=1,∴x=﹣1时的函数值等于x=3时的函数值,∵当x=3时,y=6,∴当x=﹣1时,a=6.故答案为:6.11.(2021•东台市模拟)如图,抛物线y=14x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ.则线段OQ的最大值是 3.5.【解答】解:令y=14x2﹣4=0,则x=±4,故点B (4,0),设圆的半径为r ,则r =2,连接PB ,而点Q 、O 分别为AP 、AB 的中点,故OQ 是△ABP 的中位线, 当B 、C 、P 三点共线,且点C 在PB 之间时,PB 最大,此时OQ 最大, 则OQ =12BP =12(BC +r )=12(√42+32+2)=3.5,故答案为3.5. 三.解答题(共14小题)12.(2022•亭湖区校级三模)已知抛物线y =(k ﹣1)x 2﹣2kx +3k ,其中k 为实数. (1)若抛物线经过点(1,3),求k 的值;(2)若抛物线经过点(1,a ),(3,b ),试说明ab >﹣3;(3)当2≤x ≤4时:二次函数的函数值y ≥0恒成立,求k 的取值范围. 【解答】解:(1)将点(1,3)代入y =(k ﹣1)x 2﹣2kx +3k 中, 得:3=k ﹣1﹣2k +3k , 解得:k =2;(2)∵抛物线经过点(1,a ),(3,b ),∴a =k ﹣1﹣2k +3k =2k ﹣1,b =9k ﹣9﹣6k +3k =6k ﹣9, ∴ab =(2k ﹣1)(6k ﹣9)=12k 2﹣24k +9=12(k ﹣1)2﹣3, ∵12(k ﹣1)2≥0, ∴12(k ﹣1)2﹣3≥﹣3,∵二次函数二次项系数不为0,即k ﹣1≠1,即k ≠1, ∴12(k ﹣1)2﹣3>﹣3, 即ab >﹣3;(3)二次函数为y =(k ﹣1)x 2﹣2kx +3k ,对称轴x =2k2(k−1),当x =2时,y =3k ﹣4, 当x =4时,y =11k ﹣16,①若k ﹣1<0,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,只需{3k −4≥011k −16≥0,此时无解;②若k ﹣1>0,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,分以下三种情况:(一)对称轴x =2k2(k−1)在直线x =2或其左侧时,即2k 2(k−1)≤2,只需3k ﹣4≥0,解得k ≥2,(二)当2<2k2(k−1)≤4时,只需顶点纵坐标为正,即4(k−1)⋅3k−4k 24(k−1)≥0,解得32≤k <2,(三)当2k2(k−1)>4时,只需11k ﹣16≥0,此时无解,综上所述,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,k 的取值范围为k ≥32.13.(2022•亭湖区校级三模)阅读感悟:“数形结合”是一种重要的数学思想方法,同一个问题有“数”、“形”两方面的特性,解决数学问题,有的从“数”入手简单,有的从“形”入手简单,因此,可能“数”→“形”或“形”→“数”,有的问题需要经过几次转化.这对于初、高中数学的解题都很有效,应用广泛. 解决问题:已知,点M 为二次函数y =﹣x 2+2bx ﹣b 2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴和y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由;(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣x 2+2bx ﹣b 2+4b +1,结合图象,求x 的取值范围;(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.【解答】解:(1)点M 在直线y =4x +1上,理由如下: ∵y =﹣x 2+2bx ﹣b 2+4b +1=﹣(x ﹣b )2+4b +1, ∴顶点M 的坐标是(b ,4b +1), 把x =b 代入y =4x +1,得y =4b +1, ∴点M 在直线y =4x +1上;(2)如图1,直线y =mx +5交y 轴于点B , ∴B 点坐标为(0,5), 又∵B 在抛物线上,∴5=﹣(0﹣b )2+4b +1=5, 解得b =2,∴二次函数的解析是为y =﹣(x ﹣2)2+9, 当y =0时,﹣(x ﹣2)2+9=0, 解得x 1=5,x 2=﹣1, ∴A (5,0),由图象,得当mx +5>﹣x 2+2bx ﹣b 2+4b +1时,x 的取值范围是x <0或x >5; (3)如图2,∵直线y =4x +1与直线AB 交于点E ,与y 轴交于F , 设直线AB 的函数关系式为:y =px +q , 将A (5,0),B (0,5)代入得{5p +q =0q =5,解得{p =−1q =5,∴直线AB 的解析式为y =﹣x +5, 联立EF ,AB 得方程组{y =4x +1y =−x +5,解得{x =45y =215,∴点E (45,215),而F 点坐标为(0,1),∵点M (b ,4b +1)在△AOB 内, ∴1<4b +1<215, ∴0<b <45,当点C ,D 关于抛物线的对称轴对称时,b −14=34−b , ∴b =12,且二次函数图象开口向下,顶点M 在直线y =4x +1上,综上:①当0<b <12时,y 1>y 2;②当b =12时,y 1=y 2;③当12<b <45时,y 1<y 2.14.(2022•滨海县模拟)如图1,直线l :y =kx +b (k <0,b >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线W 叫做直线l 的关联抛物线,而直线l 叫做抛物线W 的关联直线.(1)已知直线l1:y=﹣3x+3,求直线l1的关联抛物线W1的表达式;(2)若抛物线W2:y=−x2−x+2,求它的关联直线l2的表达式;(3)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=√102,求直线l3的关联抛物线W3的表达式;(4)在(3)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1﹣y2|≤4,请直接写出m的取值范围.【解答】解:(1)11:y=﹣3x+3,∵当x=0时,y=3,∴B(0,3);当y=0时,即﹣3x+3=0,解得x=1,∴A(1,0),由旋转的性质可知,OD=OB=3,∴D(﹣3,0).设W1的解析式为y=ax2+bx+c,则{a+b+c=0c=39a−3b+c=0,解得:{a=−1 b=−2 c=3,∴W1:y=﹣x2﹣2x+3;(2)W2:y=﹣x2﹣x+2,令y=0,即﹣x2﹣x+2=0,解得x1=﹣2,x2=1,∴D(﹣2,0),A(1,0),有旋转的性质可知,OB=OD=2.∴B (0,2),设l 2的解析式为y =k 2x +b 2, 则{k 2+b 2=0b 2=2, 解得{k 2=−2b 2=2,∴l 2:y =﹣2x +2;(3)连接OG 、OH ,有旋转的性质可知OG =OH ,∠GOH =90°, ∴△GOH 是等腰直角三角形, 又∵MG =MH , ∴MG =OM =√102,在Rt △OGM 中,OG =√OM 2+MG 2=√5, 在Rt △AOB 中,AG =BG , ∴AB =2OG =2√5,13:y =kx +4,当x =0时,y =4, ∴点B (0,4),即OB =4. 由旋转的性质可知,OD =OB =4, ∴点D (﹣4,0).在Rt △AOB 中,OA =√AB 2−OB 2=2, ∴A (2,0),设W 3的解析式为y =a 3x 2+b 3x +c 3, 则{4a 3+2b 3+c 3=0c 3=016a 3−4b 3+c 3=0, 解得{a 3=−12b 3=−1c 3=4,∴W 3:y =−12x 2﹣x +4;(4)由旋转的性质可知,OC =OA =2.∴C (0,2),∵l 4:y =mx +n 经过点C (0,2),∴n =2,即l 4:y =mx +2.根据题意可知,当0≤x ≤2时,|y 1﹣y 2|≤4,分析W 3与l 4的位置关系可知,只需当x =2时,|y 1﹣y 2|≤4即可,∴|(−12×22﹣2+4)﹣(2m +2)|≤4,即|2m +2|≤4,∴﹣4≤2m +2≤4,解得:﹣3≤m ≤1.∴m 的取值范围是:﹣3≤m ≤1.15.(2022•盐城一模)如图,抛物线y =﹣x 2+bx +c 经过点A (3,0)和B (0,3),与x 轴负半轴交于点C ,点D 是抛物线上的动点.(1)求抛物线的解析式;(2)过点D 作DE ⊥AB 于点E ,连接BF ,当点D 在第一象限且S △BEF =2S △AEF 时,求点D 的坐标.【解答】解:(1)将点A (3,0)和B (0,3)代入y =﹣x 2+bx +c ,∴{c =3−9+3b +c =0, 解得{b =2c =3, ∴y =﹣x 2+2x +3;(2)∵A (3,0)和B (0,3),∴OA =OB =3,∴∠BAO =45°,∵DF ⊥AB ,∴EF =AE ,∵AB =3√2,S △BEF =2S △AEF ,∴AE =√2,∴F (1,0),∴E (2,1),∴设直线DF 的解析式为y =k 'x +b ',∴{2k ′+b ′=1k′+b′=0, 解得{k ′=1b′=−1, ∴y =x ﹣1,联立方程组{y =x −1y =−x 2+2x +3, 解得x =1+√172或x =1−√172, ∵点D 在第一象限,∴x =1+√172, ∴D (1+√172,−1+√172).16.(2022•亭湖区校级一模)已知抛物线y =ax 2﹣(3a ﹣1)x ﹣2(a 为常数且a ≠0)与y 轴交于点A .(1)点A 的坐标为 (0,﹣2) ;对称轴为 x =3a−12a(用含a 的代数式表示); (2)无论a 取何值,抛物线都过定点B (与点A 不重合),则点B 的坐标为 (3,1) ;(3)若a <0,且自变量x 满足﹣1≤x ≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A 与点B 之间的函数图象记作图象M (包含点A 、B ),若将M 在直线y =﹣2下方的部分保持不变,上方的部分沿直线y =﹣2进行翻折,可以得到新的函数图象M 1,若图象M 1上仅存在两个点到直线y =﹣6的距离为2,求a 的值.【解答】解:(1)令x =0,则y =﹣2,∴A (0,﹣2);抛物线y =ax 2﹣(3a ﹣1)x ﹣2的对称轴为直线x =−−(3a−1)2a =3a−12a , 故答案为:(0,﹣2);x =3a−12a ;(2)∵抛物线y =ax 2﹣(3a ﹣1)x ﹣2=ax 2﹣3ax +x ﹣2=(x 2﹣3x )a +x ﹣2,又无论a 取何值,抛物线都过定点B (与点A 不重合),∴x 2﹣3x =0,∴x =3,∵当x =3时,y =x ﹣2=1,故答案为:(3,1);(3)∵a <0,∴抛物线y =ax 2﹣(3a ﹣1)x ﹣2开口方向向下.由(1)知:抛物线y =ax 2﹣(3a ﹣1)x ﹣2的对称轴为直线x =3a−12a , ①若3a−12a ≤−1,则a ≥15,与a <0矛盾,不合题意;②若﹣1<3a−12a <3,则a <−13,此时,抛物线的顶点为图象最高点,即当x =3a−12a 时,函数y 的值为2,∴a ×(3a−12a )2−(3a ﹣1)×3a−12a −2=0,解得:a =﹣1或a =−19(不合题意,舍去).∴a =﹣1;③若3a−12a ≥3,则−13≤a <0,此时,点(3,2)是满足﹣1≤x ≤3时,图象的最高点,∵9a ﹣3(3a ﹣1)﹣2=1≠2,∴此种情况不存在,综上,满足条件的抛物线的表达式为y =﹣x 2+4x ﹣2;(4)∵B (3,1),∴将点B 沿直线y =﹣2进行翻折后得到的对称点的坐标为B ′(3,﹣5), ∴点B ′到直线y =﹣6的距离为1.①当a >0时,∵图象M 1上仅存在两个点到直线y =﹣6的距离为2,∴此时,抛物线的顶点的纵坐标为﹣4,∴4a×(−2)−[−(3a−1)]24a =−4,解得:a =7±2√109,∴a =7+2√109或7−2√109;②当a <0时,∵点B ′到直线y =﹣6的距离为1,∴图象M 1上仅存在一个点到直线y =﹣6的距离为2,综上,若图象M 1上仅存在两个点到直线y =﹣6的距离为2,a 的值为7+2√109或7−2√109. 17.(2022•盐城二模)若二次函数y =ax 2+bx +a +2的图象经过点A (1,0),其中a 、b 为常数.(1)用含有字母a 的代数式表示抛物线顶点的横坐标;(2)点B (−12,1)、C (2,1)为坐标平面内的两点,连接B 、C 两点.①若抛物线的顶点在线段BC 上,求a 的值;②若抛物线与线段BC 有且只有一个公共点,求a 的取值范围.【解答】解:(1)∵y =ax 2+bx +a +2的图象经过点A (1,0),即当x =1时,y =a +b +a +2=0,∴b =﹣2﹣2a ,∴y =ax 2﹣(2a +2)x +a +2,∴对称轴x =−−(2a+2)2a =a+1a =1+1a, ∴抛物线顶点的横坐标为1+1a ;(2)①抛物线的顶点在线段BC 上,且点B (−12,1)、C (2,1),∴顶点纵坐标为1,且−12≤1+1a ≤2,当x =1+1a 时,y =1,即a (1+1a )2﹣(2a +2)(1+1a )+a +2=1,整理得:−1a =1,解得:a =﹣1,检验,当a =﹣1时,a ≠0,∴a =﹣1;②∵对称轴x =1+1a ,当a >0时,对称轴x =1+1a 在点A (1,0)的右侧,即xx =1+1a >1,∵抛物线与线段BC有且只有一个公共点,点B(−12,1)、C(2,1),∴当x=2时,y<1,即4a﹣2(2a+2)+a+2<1,解得:a<3,当x=−12时,y>1,即14a+12(2a+2)+a+2≥1,解得:a≥−8 9,∴0<a<3,当a<0,且a≠﹣1时,对称轴x=1+1a在点A(1,0)的左侧,即x=1+1a<1,抛物线开口向下,且过点A(1,0),当x=−12时,y>1,即14a+12(2a+2)+a+2>1,解得:a>−8 9,∵a<0,∴−89<a<0;由①知,当a=﹣1时,抛物线顶点恰好在线段BC上,∴当a=﹣1时,抛物线与线段BC有且只有一个公共点,综上所述,抛物线与线段BC有且只有一个公共点时,a的取值范围是0<a<3或−89<a<0或a=﹣1.18.(2022•滨海县一模)如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,连接BC,直线BM:y=2x+m 交y轴于点M.P为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F.(1)求抛物线的表达式:(2)当点P 落在抛物线的对称轴上时,求△PBC 的面积:(3)①若点N 为y 轴上一动点,当四边形BENF 为矩形时,求点N 的坐标;②在①的条件下,第四象限内有一点Q ,满足QN =QM ,当△QNB 的周长最小时,求点Q 的坐标.【解答】解:(1)∵抛物线y =−12x 2+bx +c 与x 轴交于点A (﹣1,0)、B (4,0)两点,∴抛物线的表达式为:y =−12(x +1)(x ﹣4),即y =−12x 2+32x +2;(2)如图:∵点P 落在抛物线y =−12x 2+32x +2的对称轴上,∴P 为抛物线y =−12x 2+32x +2的顶点,∵y =−12x 2+32x +2=−12(x −32)2+258,∴P (32,258), 在y =−12x 2+32x +2中,令x =0得y =2,∴C (0,2)由B (4,0),C (0,2)得直线BC 的表达式为y =−12x +2,把x =32代入y =−12x +2得y =54,∴E (32,54), ∴PE =258−54=158,∴S △PBC =12PE •|x B ﹣x C |=12×158×4=154,答:△PBC 的面积是154;(3)①过点N 作NG ⊥EF 于点G ,如图:∵y=2x+m过点B(4,0),∴0=2×4+m,解得m=﹣8,∴直线BM的表达式为:y=2x﹣8,∴M(0,﹣8),设E(a,−12a+2),则F(a,2a﹣8),∵四边形BENF为矩形,∴∠NEG=∠BFH,NE=BF,又∠NGE=90°=∠BHF,∴△NEG≌△BFH(AAS),∴NG=BH,EG=FH,而NG=a,BH=OB﹣OH=4﹣a,∴a=4﹣a,解得a=2,∴F(2,﹣4),E(2,1),∴EH=1,∵EG=FH,∴EF﹣EG=EF﹣FH,即GF=EH=1,∵F(2,﹣4),∴G(2,﹣3),∴N(0,﹣3);②取MN的中点D,如图:∵QN =QM ,∴点Q 在MN 的垂直平分线上,又∵B (4,0),N (0,﹣3),∴BN =5,∴C △QNB =BQ +NQ +BN =BQ +NQ +5=BQ +MQ +5,∴要使C △QNB 最小,只需BQ +MQ 最小,∴当点B 、Q 、M 共线时,△QNB 的周长最小,此时,点Q 即为MN 的垂直平分线与直线BM 的交点,∵N (0,﹣3),M (0,﹣8),∴D (0,−112),在y =2x ﹣8中,令y =−112得: −112=2x ﹣8, 解得x =54,∴Q (54,−112). 19.(2022•射阳县一模)新冠疫情爆发后,某超市发现使用湿巾纸量变大,其中A 种湿巾纸售价为每包18元;B 种湿巾纸售价为每包12元.该超市决定购进一批这两种湿巾纸,经市场调查得知,购进2包A 种湿巾纸与购进3包B 种湿巾纸的费用相同,购进10包A 种湿巾纸和购进6包B 种湿巾纸共需168元.(1)求A 、B 两种湿巾纸的进价.(2)该超市平均每天可售出40包A 种湿巾纸,后来经过市场调查发现,A 种湿巾纸单价每降低1元,则平均每天的销量可增加8包.为了尽量让顾客得到更多的优惠,该超市将A 种湿巾纸调整售价后,当天销售A 种湿巾纸获利224元,那么A 种湿巾纸的单价降了多少元?(3)该超市准备购进A 、B 两种湿巾纸共600包,其中B 种湿巾纸的数量不少于A 种湿巾纸数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.【解答】解:(1)设种湿巾纸的进价为x 元,B 种湿巾纸的进价为y 元,由题意得:{2x =3y 10x +6y =168, 解得{x =12y =8, 答:A 种湿巾纸的进价为12元,B 种湿巾纸的进价为8元.(2)设A 种湿巾纸的单价降了a 元,由题意得:(40+8a )(18﹣a ﹣12)=224,解得a =2或a =﹣1(不符题意,舍去).答:A 种湿巾纸的单价降了2元.(3)设购进种湿巾纸m 包,该超市获得利润为W 元,则购进B 种湿巾纸(600﹣m )包, 由题意得:W =(18﹣12)m +(12﹣8)(600﹣m )=2m +2400,∵B 种湿巾纸的数量不少于A 种湿巾纸数量的两倍,∴{0<m <600600−m ≥2m, 解得0<m ≤200,由一次函数的性质可知,当0<m ≤200时,w 随m 的增大而增大,则当m =200时,W 取得最大值,最大值为2×200+2400=2800,答:该超市获利最大的进货方案是购进A 种湿巾纸200包,购进B 种湿巾纸400包,最大利润为2800元.20.(2022•射阳县一模)在平面直角坐标系xOy 中,已知抛物线y =﹣x 2+2mx ﹣m 2+1与y 轴的交点为A ,过点A 作直线l 垂直于y 轴.(1)当m =1时,求抛物线的顶点坐标;(2)若点(m ﹣3,y 1),(m ,y 2),(m +1,y 3)都在抛物线y =﹣x 2+2mx ﹣m 2+1上,则y 1,y 2,y 3的大小关系为 y 2>y 3>y 1 ;(3)将抛物线在y 轴左侧的部分沿直线l 翻折,其余部分保持不变,组成图形G .点M (x 1,y 1),N (x 2,y 2)为图形G 上任意两点.①当m =0时,若x 1<x 2,判断y 1与y 2的大小关系,并说明理由;②若对于x 1=m +3,x 2=m ﹣3,都有y 1<y 2,求m 的取值范围.【解答】解:(1)当m =1时,抛物线的解析式为:y =﹣x 2+2x ﹣1+1=﹣x 2+2x =﹣(x ﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)∵抛物线y=﹣x2+2mx﹣m2+1的对称轴为x=−2m−2=m,a=﹣1<0,∴抛物线开口向下,x=m时函数取得最大值,∴离对称轴距离越远,函数值越小,∵m﹣3<m<m+1,且点(m﹣3,y1),(m,y2),(m+1,y3)都在抛物线y=﹣x2+2mx ﹣m2+1上,∴y2>y3>y1,故答案为:y2>y3>y1;(3)①y1>y2.理由:当m=0时,二次函数解析式是y=﹣x2+1,对称轴为y轴;所以图形G上的点的横纵坐标x和y,满足y随x的增大而减小;∵x1<x2,∴y1>y2;②∵x1=m+3时,y=﹣(m+3)2+2m(m+3)﹣m2+1=﹣8,,x2=m﹣3时,y=﹣(m﹣3)2+2m(m﹣3)﹣m2+1=﹣8,∴M(m﹣3,﹣8),N(m+3,﹣8)为抛物线上关于对称轴x=m对称的两点,下面讨论当m变化时,y轴与点M,N的相对位置:如图,当y轴在点M左侧时(含点M),经翻折后,得到点M,N的纵坐标相同,y1=y2,不符题意;如图,当y轴在点N右侧时(含点N),经翻折后,点M,N的纵坐标相同,y1=y2,不符题意;如图4,当y轴在点M,N之间时(不含M,N),经翻折后,点M在l下方,点N,P重合,在l上方,y1<y2,符合题意.此时有m﹣3<0<m+3,即﹣3<m<3.综上所述,m的取值范围为﹣3<m<3.21.(2022•建湖县二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A、B两点,直线y=x+4恰好经过B、C两点.。

2023年江苏省盐城市中考数学专题练——5三角形

2023年江苏省盐城市中考数学专题练——5三角形

2023年江苏省盐城市中考数学专题练——5三角形一.选择题(共8小题)1.(2022•建湖县一模)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.4 2.(2022•盐城一模)一副三角板如图放置,则∠1的度数为()A.45°B.60°C.65°D.75°3.(2022•亭湖区校级一模)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.105°B.75°C.65°D.55°4.(2022•东台市模拟)如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.∠D=∠B 5.(2014•盐都区二模)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°6.(2021•东台市模拟)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.105°B.75°C.110°D.120°7.(2021•盐都区二模)如图,在直角△ABC中,∠CAB=90°,∠ABC=70°,AD是∠CAB的平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.35°B.30°C.25°D.20°8.(2021•亭湖区一模)如图,已知△ABC中,AB=10,AC=8,BC=6,AC的垂直平分线交AB于点D,垂足为E,连接CD,则CD的长为()A.3B.4C.4.8D.5二.填空题(共9小题)9.(2022•盐城一模)如图,已知Rt△ABC中,∠ABC=90°,AB=BC=4,过点A作AD ⊥AC交AB的平行线CD与点D,F为AC上一动点,E为DF中点,连接BE,则BE的最小值是.10.(2022•东台市模拟)在“三角尺拼角”实验中,小聪同学把一副三角尺按如图所示的方式放置,则∠α=°.11.(2022•射阳县一模)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC =30°,BC=4√3,则AE=.12.(2022•盐城一模)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D 作DE⊥BC,垂足为点E,连接CD,若CD=5,BE=4,则AC=.13.(2022•建湖县一模)如图,在Rt△ABC中,∠ACB=90°,BC的垂直平分线分别交AB、BC于点D、E,若AC=5cm,BC=12cm,则△ACD的周长为cm.14.(2022•建湖县一模)如图,AE∥DF,AE=DF.添加下列条件中的一个:①AB=CD;②EC=BF;③∠E=∠F;④EC∥BF.其中能证明△ACE≌△DBF的是.(只填序号)15.(2022•滨海县模拟)如图所示的网格是正方形网格,则∠BAC+∠CDE=(点A,B,C,D,E是网格线交点).16.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021•建湖县一模)如图,△ABC中,BD平分∠ABC,CD⊥BD,垂足为D,E为AC 中点.若AB=10,BC=6,则DE的长为.三.解答题(共7小题)18.(2022•建湖县二模)已知:如图,AB=DC,AC=DB,AC和BD相交于点O.点M是BC的中点,连接OM.(1)求证:△ABC≌△DCB;(2)求∠BMO的度数.19.(2022•建湖县二模)[问题情境]小春在数学活动课上借助几何画板按照下面的画法画出了一个图形:如图1,点C是线段AB上一点,分别以AC、AB为底边在线段AB的同侧作等腰三角形ACP、等腰三角形ABQ,PC、AQ相交于点D.当P、Q、B在同一直线上时,他发现:∠P AQ=∠CPB.请帮他解释其中的道理;[问题探究]如图2,在上述情境下中的条件下,过点C作CE∥AP交PB于点E,若PD=2CD,P A =9,求CE的长.[类比应用]如图3,△ABC是某村的一个三角形鱼塘,点D、E分别在边AB、BC上,AE、CD的交点F为鱼塘的钓鱼台,测量知道∠CAD=∠CDA=67.5°,∠CEA=2∠B,AD2=(40000﹣20000√2)m2,且DB=2AD.直接写出CF的长为m.20.(2022•盐城一模)【问题背景】在一次数学兴趣小组活动中,小军对苏科版数学九年级教材第42页的第4题很感兴趣.教材原题:如图1,BD、CE是△ABC的高,M是BC的中点.点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?小军在完成此题解答后提出:如图2,若BD、CE的交点为点O,则点A、D、O、E四点也在同一个圆上.(1)请对教材原题或小军提出的问题进行解答.(选择一个解答即可)【直接应用】当大家将上述两题都解决后,组员小明想起了在七年级通过画图归纳出的一个结论:三角形的三条高所在直线交于同一点,可通过上面的结论加以解决.(2)如图3,△ABC的两条高BD、CE相交于点O,连接AO并延长交BC于点F.求证:AF为△ABC的边BC上的高.【拓展延伸】在大家完成讨论后,曾老师根据大家的研究提出一个问题:(3)在(2)的条件下连接DE、EF、FD(如图4),设∠DEF=α,则∠AOB的度数为.(用含α的式子表示)21.(2022•建湖县一模)如图,点D、E分别为△ABC的边AC、BC的中点,连接DE.求证:(1)DE∥AB;(2)DE=12 AB.22.(2022•建湖县一模)如图,等腰△ABC中,AB=AC,∠BAC=36°,以C为旋转中心,顺时针旋转△ABC到△DCE位置,使点A落在BC边的延长线上的E处,连接AD和BD.(1)求证:△ADC≌△BCD;(2)请判断△ABE的形状,并证明你的结论.23.(2021•盐城二模)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是BD̂的中点,AE与BC交于点F,①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.24.(2021•滨海县一模)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF ⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=55°,求∠BAC的度数.2023年江苏省盐城市中考数学专题练——5三角形参考答案与试题解析一.选择题(共8小题)1.(2022•建湖县一模)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.4【解答】解:如图,C点与P、Q、R重合时,均满足△ABC是等腰三角形,故选:C.2.(2022•盐城一模)一副三角板如图放置,则∠1的度数为()A.45°B.60°C.65°D.75°【解答】解:∵三角板是一副,∴∠ECD=45°,∠ADC=60°.∴∠CFD=180°﹣∠ECD﹣∠ADC=180°﹣45°﹣60°=75°.∴∠1=75°.故选:D .3.(2022•亭湖区校级一模)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A .105°B .75°C .65°D .55°【解答】解:由三角形的外角性质可知:∠α=30°+45°=75°,故选:B .4.(2022•东台市模拟)如图,点E 、F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加一个条件是( )A .AD ∥BCB .DF ∥BEC .∠A =∠CD .∠D =∠B【解答】解:∠D =∠B ,理由是:∵在△ADF 和△CBE 中{AD =BC ∠D =∠B DF =BE,∴△ADF ≌△CBE (SAS ),即选项D 正确;具备选项A 、选项B ,选项C 的条件都不能推出两三角形全等,故选:D .5.(2014•盐都区二模)如图,△ABC 中,AB =AC ,BD =CE ,BE =CF ,若∠A =50°,则∠DEF 的度数是( )A .75°B .70°C .65°D .60°【解答】解:∵AB =AC ,∴∠B =∠C ,在△DBE 和△ECF 中,{BD =EC ∠B =∠C EB =CF,∴△DBE ≌△ECF (SAS ),∴∠EFC =∠DEB ,∵∠A =50°,∴∠C =(180°﹣50°)÷2=65°,∴∠CFE +∠FEC =180°﹣65°=115°,∴∠DEB +∠FEC =115°,∴∠DEF =180°﹣115°=65°,故选:C .6.(2021•东台市模拟)一副三角板,按如图所示叠放在一起,则图中∠α的度数是( )A .105°B .75°C .110°D .120°【解答】解:由题意得∠1=90°﹣60°=30°,∵∠α=45°+∠1,∴∠α=45°+30°=75°,故选:B .7.(2021•盐都区二模)如图,在直角△ABC 中,∠CAB =90°,∠ABC =70°,AD 是∠CAB 的平分线,交边BC 于点D ,过点C 作△ACD 中AD 边上的高线CE ,则∠ECD 的度数为( )A.35°B.30°C.25°D.20°【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=∠BAD=12∠CAB=45°,∵CE⊥AD,∴∠ECA=∠CEA﹣∠CAE=45°,∵∠BCA=∠CAB﹣∠B=20°,∴∠ECD=∠ACE﹣∠BCA=25°,故选:C.8.(2021•亭湖区一模)如图,已知△ABC中,AB=10,AC=8,BC=6,AC的垂直平分线交AB于点D,垂足为E,连接CD,则CD的长为()A.3B.4C.4.8D.5【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC=√AE2+DE2=√32+42=5.故选:D.二.填空题(共9小题)9.(2022•盐城一模)如图,已知Rt△ABC中,∠ABC=90°,AB=BC=4,过点A作AD ⊥AC交AB的平行线CD与点D,F为AC上一动点,E为DF中点,连接BE,则BE的最小值是4√2.【解答】解:连接AE,如图,∵∠ABC=90°,AB=BC=4,∴∠CAB=∠ACB=45°,∵CD∥AB,∴∠DCA=∠CAB=45°.∵DA⊥DC,E为DF中点,∴AE=12DF=EF,∴∠EAF=∠EF A,∵F为AC上一动点,∴∠EF A≥∠ACD,∴∠EF A≥45°.∴∠EAF≥45°,∴∠EAB=∠CAB+∠EAF≥90°.∴当∠EAB=90°时,BE取得最小值,当∠EAB=90°时,F与C重合,此时AE=BA=4,∴BE=√AE2+BA2=4√2.故答案为:4√2.10.(2022•东台市模拟)在“三角尺拼角”实验中,小聪同学把一副三角尺按如图所示的方式放置,则∠α=15°.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15.11.(2022•射阳县一模)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC =30°,BC=4√3,则AE=2.【解答】解:连接OC,∵OA⊥BC,OA过圆心O,BC=4√3,∴∠OEC=90°,CE=BE=2√3,∵∠ADC=30°,∴∠AOC=2∠ADC=60°,∴sin∠AOC=CE OC,∴sin60°=2√3 OC,解得:OC=4,∵∠BCO=90°﹣60°=30°,∴OE=12OC=2,∴AE=4﹣2=2,故答案为:2.12.(2022•盐城一模)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D 作DE⊥BC,垂足为点E,连接CD,若CD=5,BE=4,则AC=6.【解答】解:∵∠ACB=90°,DE⊥BC,∴DE∥AC,∵点D是AB的中点,∴E是BC的中点,AB=2CD=10,∴BC=2BE=8,∴AC=√AB2−BC2=6,故答案为6.13.(2022•建湖县一模)如图,在Rt△ABC中,∠ACB=90°,BC的垂直平分线分别交AB、BC于点D、E,若AC=5cm,BC=12cm,则△ACD的周长为18cm.【解答】解:在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,∴AB=√AC2+BC2=√52+122=13(cm),∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长为:AC+CD+AD=AC+AD+BD=AC+AB=5+13=18(cm),故答案为:18.14.(2022•建湖县一模)如图,AE∥DF,AE=DF.添加下列条件中的一个:①AB=CD;②EC=BF;③∠E=∠F;④EC∥BF.其中能证明△ACE≌△DBF的是①③④.(只填序号)【解答】解:∵AE∥DF,∴∠A=∠D,①∵AB=CD,∴AB+BC=DC+BC,即AC=DB,AE=DF,∠A=∠D,AC=DB,符合全等三角形的判定定理SAS,能推出△ACE≌△DBF,故①正确;②根据AE=DF,∠A=∠D和EC=BF不能推出△ACE≌△DBF,故②错误;③∠A=∠D,AE=DF,∠E=∠F,符合全等三角形的判定定理ASA,能推出△ACE≌△DBF,故③正确;④∵EC∥BF,∴∠ECA=∠FBD,∠ECA=∠FBD,∠A=∠D,AE=DF,符合全等三角形的判定定理AAS,能推出△ACE ≌△DBF,故④正确;即正确的有①③④,故答案为:①③④.15.(2022•滨海县模拟)如图所示的网格是正方形网格,则∠BAC+∠CDE=45°(点A,B,C,D,E是网格线交点).【解答】解:设小正方形的边长是1,连接AD,∵AD =√32+12=√10,CD =√12+32=√10,AC =√42+22=√20,∴AD =CD ,AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是等腰直角三角形,∴∠DAC =∠DCA =45°,∵AB ∥DE ,∴∠BAC +∠DAC +∠CDE =180°,∴∠BAC +∠CDE =45°,故答案为:45°.16.(2021•建湖县二模)若一条长为32cm 的细线能围成一边长等于8cm 的等腰三角形,则该等腰三角形的腰长为 12 cm .【解答】解:若腰长为8cm ,则此三角形的另一边长为32﹣8﹣8=16(cm ),而8+8=16,无法构成三角形,∴此情形舍去;若底边为8cm ,则腰长为(32﹣8)÷2=12(cm ),此时12+12>8,12+8>8,可以构成三角形.故答案为:12.17.(2021•建湖县一模)如图,△ABC 中,BD 平分∠ABC ,CD ⊥BD ,垂足为D ,E 为AC 中点.若AB =10,BC =6,则DE 的长为 2 .【解答】解:延长CD 交AB 于F ,在△BDC 和△BDF 中,{∠DBC =∠DBF BD =BD ∠BDC =∠BDF =90°,∴△BDC ≌△BDF (ASA ),∴BF =BC =6,CD =DF ,∴AF =AB ﹣BF =4,∵CD =DF ,CE =EA ,∴DE =12AF =2,故答案为:2.三.解答题(共7小题)18.(2022•建湖县二模)已知:如图,AB =DC ,AC =DB ,AC 和BD 相交于点O .点M 是BC 的中点,连接OM .(1)求证:△ABC ≌△DCB ;(2)求∠BMO 的度数.【解答】(1)证明:在△ABC 和△DCB 中,{AB =DC AC =DB CB =BC,∴△ABC ≌△DCB (SSS ).(2)解:由(1)得:∠OBC =∠OCB ,∴△BOC 是等腰三角形.∵点M 是BC 的中点,∴OM ⊥BC ,∴∠BMO =90°.19.(2022•建湖县二模)[问题情境]小春在数学活动课上借助几何画板按照下面的画法画出了一个图形:如图1,点C 是线段AB 上一点,分别以AC 、AB 为底边在线段AB 的同侧作等腰三角形ACP 、等腰三角形ABQ ,PC 、AQ 相交于点D .当P 、Q 、B 在同一直线上时,他发现:∠P AQ =∠CPB .请帮他解释其中的道理;[问题探究]如图2,在上述情境下中的条件下,过点C 作CE ∥AP 交PB 于点E ,若PD =2CD ,P A =9,求CE 的长.[类比应用]如图3,△ABC 是某村的一个三角形鱼塘,点D 、E 分别在边AB 、BC 上,AE 、CD 的交点F 为鱼塘的钓鱼台,测量知道∠CAD =∠CDA =67.5°,∠CEA =2∠B ,AD 2=(40000﹣20000√2)m 2,且DB =2AD .直接写出CF 的长为 200√23 m .【解答】解:(1)∵AP =PC ,AQ =BQ ,∴∠P AC =∠PCA ,∠B =∠QAB ,∵∠PCA =∠B +∠CPB ,∠P AC =∠P AQ +∠QAB ,∴∠P AQ =∠CPB ;(2)由(1)可知,∠P AQ =∠CPB ,∴∠P AD =∠CPE ,∵PD =2CD ,PC =9,∴P A =PC =9,PD =23PC =6,∵CE ∥P A ,∴∠APD =∠PCE ,在△P AD 和△CPE 中,{∠PAD =∠CPEAP =PC ∠APD =∠PCE,∴△P AD ≌△CPE (ASA ),∴CE =PD =6;(3)过点D 作DH ⊥AC 于点H ,∵∠CAD =∠CDA =67.5°,∴AC =CD ,∠ACD =180°﹣∠CAD =∠CDA =45°,在Rt △CDH 中,sin ∠ACD =DH CD =√22=√2,∴CD =√2DH ,设DH =k ,则AC =CD =√2k ,CH =k ,AH =AC ﹣CH =(√2−1)k ,在Rt △ADH 中,AD 2=AH 2+DH 2,∴40000﹣20000√2=(√2−1)2k 2,解得,k =100,∴AC =100√2(m ),过点D 作DG ∥AC 交BC 于G ,∴△DGB ∽△ACB ,∴DG AC =DB AB =23, ∴100√2=23, ∴DG =200√23(m ), 由[问题探究]可知△P AD ≌△CPE , ∴CF =DG =2003√2(m ), 故答案为:200√23.20.(2022•盐城一模)【问题背景】在一次数学兴趣小组活动中,小军对苏科版数学九年级教材第42页的第4题很感兴趣. 教材原题:如图1,BD 、CE 是△ABC 的高,M 是BC 的中点.点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?小军在完成此题解答后提出:如图2,若BD 、CE 的交点为点O ,则点A 、D 、O 、E 四点也在同一个圆上.(1)请对教材原题或小军提出的问题进行解答.(选择一个解答即可)【直接应用】当大家将上述两题都解决后,组员小明想起了在七年级通过画图归纳出的一个结论:三角形的三条高所在直线交于同一点,可通过上面的结论加以解决.(2)如图3,△ABC 的两条高BD 、CE 相交于点O ,连接AO 并延长交BC 于点F .求证:AF为△ABC的边BC上的高.【拓展延伸】在大家完成讨论后,曾老师根据大家的研究提出一个问题:(3)在(2)的条件下连接DE、EF、FD(如图4),设∠DEF=α,则∠AOB的度数为90°+12α.(用含α的式子表示)【解答】解:(1)选择教材原题,点B、C、D、E是否在以点M为圆心的同一个圆上.如图,连接ME、MD,∵BD、CE是△ABC的高,M是BC的中点,∴ME=MB=MC=MD,∴点B、C、D、E是否在以点M为圆心的同一个圆上.(2)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、O、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BF A=90°,∴AF为△ABC的边BC上的高.(3)如图,∵∠BEO=∠BFO=90°,∴点B、F、O、E在以点N为圆心的同一个圆上,∴∠FBO=∠FEO,∵由(1)证得点B、C、D、E在同一个圆上,∴∠FBO=∠CED,∴∠FEO=∠CED,同理可证:∠EFO=∠AFD,∠EDO=∠FDO,∴点O是△DEF的内心.∴∠AOB=90°+12α.21.(2022•建湖县一模)如图,点D、E分别为△ABC的边AC、BC的中点,连接DE.求证:(1)DE∥AB;(2)DE=12 AB.【解答】证明:(1)延长DE至点F,使EF=DE,连接BF.∵点E为BC的中点,∴CE=BE,∵∠CED=∠BEF,∴△CDE≌△BFE(SAS),∴CD=FB,∠C=∠FBC,∴BF∥AC,∵点D为AC的中点,∴CD=AD,∴AD=BF,∴四边形ABFD是平行四边形,∴DE∥AB;(2)由(1)知:四边形ABFD是平行四边形,∴DF=AB.∵DE=EF,∴DE=12 DF,∴DE=12 AB.22.(2022•建湖县一模)如图,等腰△ABC中,AB=AC,∠BAC=36°,以C为旋转中心,顺时针旋转△ABC到△DCE位置,使点A落在BC边的延长线上的E处,连接AD和BD.(1)求证:△ADC≌△BCD;(2)请判断△ABE的形状,并证明你的结论.【解答】解:(1)证明:∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,由旋转可得:△EDC≌△ABC,∴∠DCE=∠ACB=72°,BC=DC,DE=AB=AC,又B、C、E三点共线,∴∠BCD=108°,∵BC=DC,∴∠CBD=∠CDB=36°,又∠E=36°,∴∠DBE=∠E,∴BD=ED,∴BD=CA,在△ADC和△BCD中,{AC=BD∠ACD=∠CBD=36°CD=DC,∴△ADC≌△BCD(SAS);(2)△ABE为等腰三角形,理由为:证明:∵△ADC≌△BCD,∴∠ADC=∠BCD=108°,又∠CDE=72°,∴∠ADC+∠CDE=180°,即A、D、E三点共线,又∠BAE=∠BAC+∠CAD=72°,∠ABE=72°,∴∠BAE=∠ABE,∴AE=BE,即△ABE为等腰三角形.23.(2021•盐城二模)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是BD̂的中点,AE与BC交于点F,①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DBA=∠DEA.∠DAC=∠DEA,∴∠DAC+∠DAB=90°,∵AB是⊙O的直径,∠CAB=90°,∴AC是⊙O的切线;̂的中点,(2)①证明:∵点E是BD∴∠DAE=∠BAE,∵∠CF A=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DAC=∠DBA,∴∠CF A=∠CAF,∴CA=CF;②解:设CA=CF=x,则BC=CF+BF=x+2,∵⊙O的半径为3,∴AB=6,在Rt△ABC中,根据勾股定理,得CA2+AB2=BC2,∴x2+62=(x+2)2,解得x=8,∴AC=8.24.(2021•滨海县一模)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF ⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=55°,求∠BAC的度数.【解答】(1)证明:连接AD,∵∠B=∠C,∴AB=AC,∵D是BC的中点,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF;(2)解:∵DE⊥AB,∵∠BDE=55°,∴∠B=35°,∴∠C=35°,∴∠BAC=110°.。

2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652

2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652

2023年江苏省盐城市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 02. 在平面直角坐标系中,点2(1)A ,在( ) A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 下列图形中,属于中心对称图形的是( )A B.C. D.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,125. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )..A. B.C. D.7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.10. 因式分解:2x xy -=__________________.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm. 12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20. 随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21. 如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表: 年份 2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 的小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】的的(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27. 综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 0 【答案】B【解析】【分析】根据小于0的数即为负数解答可得.【详解】2023-是负数,2023和12023是正数,0既不是正数也不是负数 故选:B .【点睛】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键. 2. 在平面直角坐标系中,点2(1)A ,在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据各象限内点的坐标特征解答.【详解】点(1,2)所在的象限是第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−). 3. 下列图形中,属于中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.由定义可判定A 、C 、D 选项的图形不是中心对称图形,故不符合题意;B 选项的图形是中心对称图形,符合题意.故选:B .【点睛】本题主要考查了中心对称图形,熟知中心对称图形的定义是解题的关键.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,12【答案】D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【详解】A 、5712+=,不能构成三角形,故此选项不合题意;B 、771415+=<,不能构成三角形,故此选项不合题意;C 、691516+=<,不能构成三角形,故此选项不合题意;D 、681412+=>,能构成三角形,故此选项符合题意.故选:D .【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.5. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为10n a ⨯,n 为正整数,且n 比原数的整数位数少1,据此可以解答.【详解】解:数据105000用科学记数法表示为51.0510⨯ .故选:A .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )A. B.C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图. 7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】根据平行线的性质得出45AGF F ∠=∠=︒,然后根据三角形内角和定理求解即可.【详解】解:如图:设AB FD 、交于点G ,∵AB EF ∥,∴45AGF F ∠=∠=︒,∵60A ∠=︒,∴1180180604575A AGF ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了三角形内角和定理、平行线的性质等知识点,熟练掌握平行线的性质是解题的关键.8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】结合函数图象逐个分析即可.【详解】由函数图象可得:当0y >时,31x -<<-或3x >;故①错误;当3x >-时,y 有最小值;故②正确;点(),1P m m --在直线=1y x --上,直线=1y x --与函数图象有3个交点,故③错误;将函数y 的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .【点睛】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.【答案】3【解析】【分析】根据频数定义可得答案.【详解】在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为3,故答案为:3.【点睛】此题主要考查了频数,关键是掌握频数是指每个对象出现的次数.10. 因式分解:2x xy -=__________________.【答案】()x x y -【解析】【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.【答案】5【解析】【分析】由于D 、E 分别为AB 、AC 边上的中点,那么DE 是ABC 的中位线,根据三角形中位线定理可求DE .【详解】如图所示,D 、E 分别为AB 、AC 边上的中点,DE ∴是ABC 的中位线,12DE BC ∴=; 又∵10cm BC =, ∴15cm 2DE BC ==; 故答案为:5.【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.【答案】59【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5, ∴飞镖落在阴影部分的概率是59, 故答案为:59. 【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.【答案】7人【解析】【分析】设共有x 人,价格为y 钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x 人,价格为y 钱,依题意得:8374x y x y -=⎧⎨+=⎩, 解得:753x y =⎧⎨=⎩, 答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)【答案】15【解析】【分析】由60ACB ∠=︒,30ADB ∠=︒可得30ADB CAB CAD ∠︒=∠=∠=,可推得17.5m AC CD ==,由三角函数求出AB 即可.【详解】∵60ACB ∠=︒,30ADB ∠=︒,ACB ADB CAD ∠=∠+∠,∴30ADB CAD ∠=∠=︒,∴17.5m AC CD ==,又∵90ABC ∠=︒,∴906030CAB ∠=︒-︒=︒, ∵cos ∠=AB CAB AC,17.5AB = 解得15AB ≈,故答案为:15.【点睛】此题主要考查了解直角三角形的应用,正确得出AC 的长是解题关键.15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.【解析】【分析】首先证明BCD △是等边三角形,再根据弧长公式计算即可.【详解】解:在Rt ABC △中,∵90ACB ∠=︒,=60B ∠︒,3BC =,∴26AB BC ==,由旋转的性质得CE CA ===,90ACE BCD ACD ∠=∠=︒-∠,CB CD =,∴BCD △是等边三角形,∴60BCD ACE ∠=︒=∠,∴点A =..【点睛】本题考查了旋转变换,含30︒直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明BCD △是等边三角形.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.【答案】6【解析】【分析】过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a=-=-,证明∽ ABF ACD ,则AB AF AC AD =,得到3a b =,根据29ABE S BCE == ,进一步列式即可求出k 的值.【详解】解:过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a =-=-, ∵2AB BC =, ∴23AB AC =,∵AD y ⊥轴于点D ,∴CD BF ,∴∽ ABF ACD , ∴AB AF AC AD=, ∴23AB a b AC a -==, ∴3a b =,∵2AB BC =,BCE 的面积是4.5,∴29ABE S BCE == , ∴11922AD BF AD OD ⋅+⋅=, ∴11922k k k a a b a a⎛⎫-+⋅= ⎪⎝⎭, 则113392323k k k b b b b b ⎛⎫-+⋅= ⎪⎝⎭, 即3119222k k k -+=,解得6k =,故答案为:6【点睛】此题考查反比例函数的图象和性质、相似三角形的判定和性质等知识,求出3a b =是解题的关键.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 【答案】3【解析】【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂分别化简,进而得出答案. 【详解】原式124132=+⨯-=. 【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.【答案】1x <,数轴见详解【解析】【分析】根据解一元一次不等式的步骤解答即可. 【详解】4233x x --< 去分母得:()3234x x -<-,去括号得:694x x -<-,移项得:694x x -<-,合并同类项得:55x <,系数化为1:1x <.在数轴上可表示为:.【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.【答案】226a ab +,4-【解析】【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.【详解】()()()2333a b a b a b +++- 2222699a ab b a b =+++-226a ab =+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-. 【点睛】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开. 20. 随着盐城交通快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.【答案】(1)12(2)16【解析】【分析】(1)根据概率公式计算即可;(2)列表表示出所有的可能性,再根据概率公式计算即可.的【小问1详解】从甲镇到乙镇,小华所选路线是乡村公路A 的概率为12, 故答案为:12.【小问2详解】列表如下:C D E AAC AD AE B BC BD BE 共有6种等可能的结果,其中两段路程都选省级公路只有BC ,共1种, ∴小华两段路程都选省级公路的概率16. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m PA n =. 21. 如图,AB AE =,BC ED =,BE ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析 【解析】【分析】(1)根据边角边证明ABC AED ≌△△即可证明结论成立; (2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵AB AE =,B E ∠=∠,BC ED =,∴()SAS ABC AED ≌,∴AC AD;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.【答案】(1)14.4︒,1585(2)3980(3)见解析【解析】【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;(2)先排序,再计算中间的两个数的平均数;(3)从人工驯养和野生保护两个方面表述即可.【小问1详解】解:①在扇形统计图中,哺乳类所占的百分比为:154%32%10%4%---=,∴哺乳类所在扇形的圆心角度数为:3604%14.4︒⨯=︒;②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为: 765,1025,1350,1820,2503,3116,近6年野生麋鹿头数的中位数为1350182015852+=, 故答案为:14.4︒,1585;【小问2详解】解:648325033980-=,故答案为:3980;【小问3详解】加强对野生麋鹿的保护的同时,提高人工驯养的技术.【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解题的关键. 23. 课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 【答案】(1)M N >(2)<【解析】【分析】(1)根据作差法求M N -的值即可得出答案;(2)根据作差法求23226865-的值即可得出答案. 【小问1详解】 解:()()()()()311333333a b b a a a ab a ba b a b M N b b b b b b b b +-+++----=-===++++, 30a b >> ,()3>03a b b b -∴+, >M N ∴; 【小问2详解】解:2322149514961=<06865442044204420--=-, 2322<6865∴. 故答案为:<.【点睛】本题考查分式运算的应用,解题关键是理解材料,通过作差法求解,掌握分式运算的方法. 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.的的(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.【答案】(1)见解析(2)O 的半径长为154. 【解析】【分析】(1)连接OB ,证明OB AD ∥,即可证得OB BC ⊥,从而证得BC 是圆的切线;(2)设OB OA x ==,则10OC AC OA x =-=-,利用勾股定理求得6AD =,推出COB CAD ∽△△,利用相似三角形的性质列得比例式,据此求解即可.【小问1详解】证明:连接OB ,如下图所示,∵AB 是CAD ∠的平分线,∴BAD BAO ∠=∠,又∵OB OA =,∴OAB OBA ∠=∠,∴BAD OBA ∠=∠,∴OB AD ∥,∴90OBC D ∠=∠=︒,即OB BC ⊥,又∵BC 过半径OB 的外端点B ,∴BC 与O 相切;【小问2详解】解:设OB OA x ==,则10OC AC OA x =-=-,∵在ADC △中,90D Ð=°,10AC =,8DC =,∴6AD ==,∵OB AD ∥,∴COB CAD ∽△△, ∴OB OC AD AC=,即10610x x -=, 解得154x =. 故O 的半径长为154. 【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【解析】【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由再多购买5本的费用恰好与按原价购买的费用相同可得()()53ma m a =+-,再根据30530m m <⎧⎨+≥⎩且m ,均为正整数,即可求解. 【小问1详解】解:设硬面笔记本的单价为x 元,则软面笔记本的单价为()3x -元,根据题意得 2401953x x =-,解得16x =,经检验,16x =是原方程的根,且符合题意,故甲商店硬面笔记本单价为16元;【小问2详解】设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由题意可得30530m m <⎧⎨+≥⎩, 解得2530m ≤<,根据题意得()()53ma m a =+-, 解得3155m a +=, m 为正整数, 25m ∴=,26,27,28,29,分别代入3155m a +=, 可得18a =,18.6,19.2,19.8,20.4,由单价均为整数可得18a =,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】 的(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.【答案】(1)①;(2)5b =或3-;(3)1n =或n =14n = 【解析】 【分析】(1)求出函数1y x =-与坐标轴的交点,再判断这两个点在不在二次函数图象上即可; (2)求出函数y x c =+与坐标轴的交点,再由14OB OA =求出点B 坐标,代入二次函数解析式计算即可; (3)先求出M ,C 的坐标,再根据2y mx nx t =++的顶点P 在矩形MNDE 的边上分类讨论即可.【详解】(1)函数1y x =-交x 轴于()1,0,交y 轴于()0,1-,∵点()1,0、()0,1-都在21y x =-函数图象上∴①21y x =-为函数1y x =-的轴点函数;∵点()0,1-不在2y x x =-函数图象上∴②2y x x =-不是函数1y x =-的轴点函数;故答案为:①;(2)函数y x c =+交x 轴于(),0A c -,交y 轴于()0,c , ∵函数y x c =+的轴点函数2y ax bx c =++∴(),0A c -和()0,c 都在2y ax bx c =++上,∵0c >∴OA c = ∵14OB OA =, ∴14OB c = ∴1,04B c ⎛⎫- ⎪⎝⎭或1,04B c ⎛⎫ ⎪⎝⎭当1,04B c ⎛⎫-⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=-+⎪⎨⎪=-+⎩,解得5b =, 当1,04B c ⎛⎫ ⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫ ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=++⎪⎨⎪=-+⎩,解得3b =-, 综上,5b =或3-;(3)函数12y x t =+交x 轴于()2,0M t -,交y 轴于()0,C t , ∵ON OC =,以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE∴(),0N t ,(),2D t t ,()2,2E t t -, ∵函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++ ∴()2,0M t -和()0,C t 在2y mx nx t =++上∴()()2022m t n t t =-+-+,整理得4210mt n -+= ∴122n mt =+∴2y mx nx t =++的顶点P 坐标为24,24n mt n m m ⎛⎫-- ⎪⎝⎭, ∵函数2y mx nx t =++的顶点P 在矩形MNDE 的边上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盐城市数学中考模拟试卷(6月份)
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共10分)
1. (1分)下列各数中,为负数的是()
A . ﹣(﹣)
B . ﹣||
C . (﹣)2
D . |﹣|
2. (1分) (2016七上·莒县期末) 某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()
A . 9.3×105万元
B . 9.3×106万元
C . 0.93×106万元
D . 9.3×104万元
3. (1分)若x<0,则化简的结果是()
A . -x
B . x
C . -x
D . x
4. (1分) (2020八下·绍兴月考) 某校为了解学生的课外阅读情况,随机抽取了一个班的学生,对他们一周的课外阅读时间进行了统计,统计数据如下表,则该班学生一周课外阅读时间的中位数和众数分别是()
A . 8,7
B . 8,8
C . 8.5,8
D . 8.5,7
5. (1分) (2019七下·通化期中) 如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()
A . 点A
B . 点B
C . 点C
D . 点D
6. (1分)学校组织七、八年级同学到海洋馆参观,每人需交门票费40元,已知两个年级共有300人,七年级比八年级多交门票费800元.设七年级有x人,八年级有y人,根据题意所列的方程组是()
A .
B .
C .
D .
7. (1分) 2018(第七届)绵阳之春国际车展将于2018年4月18日-22日在绵阳国际会展中心盛大举行。

某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖。

已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()
A .
B .
C .
D .
8. (1分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120º,则AB的长为()
A . cm
B . 2cm
C . cm
D . 4cm
9. (1分) (2019九上·南关期末) 如图,在平面直角坐标系中,垂直于x轴的直线分别交抛物线y=x2(x≥0)和抛物线y= x2(x≥0)于点A和点B ,过点A作AC∥x轴交抛物线y= x2于点C ,过点B作BD∥x轴交抛物线y=x2于点D ,则的值为()
A .
B .
C .
D .
10. (1分)如图,在△ABC中,D、F、E分别为边BC、AB、AC上的一点,连接BE、FD,它们相交于点G,连接DE,若四边形AFDE是平行四边形,则下列说法正确的是()
A .
B .
C . =
D .
二、填空题 (共6题;共6分)
11. (1分) (2017七上·曲靖期中) 若2x3ym与﹣3xny2是同类项,则(m﹣n)2016=________.
12. (1分)(2018·益阳模拟) 如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为________.
13. (1分)(2018·江油模拟) 分解因式:a3﹣9a=________.
14. (1分) (2019九上·阳新期末) 如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB=________度.
15. (1分)某自来水公司按如下规定收取水费:若每月用水不超过10立方米,则按每立方米1.5元收费;若每月用水超过10立方米,超过部分按每立方米2元收费。

(1)如果居民甲家去年12月用水量为8立方米,则需缴纳________ 元水费:
(2)如果居民乙家去年12月缴纳了22.8元水费,则乙家去年12月的用水量
为________ 立方米;
(3)如果居民丙家去年12月缴纳了m元水费,则丙家去年12月的用水量为________ 立方米?
16. (1分) (2016八上·江阴期中) 小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=________
三、解答题 (共7题;共18分)
17. (2分)已知反比例函数的图象经过点(-1,-2).
(1)求y与x的函数关系式;
(2)若点(2,n)在这个图象上,求n的值.
18. (4分)(2019·汕头模拟) 某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的表格和频数分布直方图(住:无50.5以下成绩)
分组频数频率
50.5~60.520.04
60.5~70.580.16
70.5~80.510C
A~90.5B0.32
90.5~100.5140.28
合计
(1)频数分布表中A=________,B=________,C=________;
(2)补全频数分布直方图;
(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?
19. (2分)(2017·泰兴模拟) 如图,在矩形ABCD中,点O在对角线AB上,以OA的长为半径的圆O与AD 交于点E,且∠ACB=∠DCE.
(1)求证:CE是⊙O的切线;
(2)若AB=3,BC=4,求⊙O的半径.
20. (3分)(2018·杭州模拟) 对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{2,2}=2.类似地,若函数y1、y2都是x的函数,则y=min{y1 , y2}表示函数y1和y2的“取小函数”.
(1)设y1=x,y2= ,则函数y=min{x,}的图象应该是________中的实线部分.
(2)请在图1中用粗实线描出函数y=min{(x﹣2)2,(x+2)2}的图象________,并写出该图象的三条不同性质:
①________;②________;③________;
(3)函数y=min{(x﹣4)2,(x+2)2}的图象关于________对称.
21. (2分)如图,AB,BC,CD分别与☉O相切于点E,F,G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论;
(2)求BC的长;
(3)求☉O的半径OF的长.
22. (2分)(2019·荆门模拟) 如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1 , 0),与x 轴正半轴交于点B(x2 , 0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.
(1)求抛物线的解析式;
(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标;
(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.
23. (3分)(2019·驻马店模拟) 如图一,菱形与菱形的顶点重合,点在对角线
上,且 .
(1)问题发现:
的值为________;
(2)探究与证明:
将菱形绕点按顺时针方向旋转角(),如图二所示,试探究线段与
之间的数量关系,并说明理由;
(3)拓展与运用:
菱形在旋转过程中,当点,,三点在一条直线上时,如图三所示,连接并延长,交于点,若,,则的长为________.
参考答案一、单选题 (共10题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共18分)
17-1、17-2、
18-1、
18-2、18-3、
19-1、
19-2、
20-1、
20-2、
20-3、
21-1、
21-2、
21-3、
22-1、
22-2、
22-3、23-1、
23-2、23-3、。

相关文档
最新文档