人教版高中数学必修三1.3.2《秦九韶算法》优质课件

合集下载

1.3算法案例---秦九韶算法PPT优秀课件

1.3算法案例---秦九韶算法PPT优秀课件
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
21.05.2019
在数学的发展史上,从公元前2、3世 纪公元14世纪,中国的数学虽有过高潮, 也有过低落,但一直走在世界的前列,是 世界数学的中心。中国古代数学对世界数 学发展有着不可磨灭的贡献。秦九韶算法 就是中国古代数学的一枝奇葩。 今天这节课我们领略秦九韶算法的魅力。
21.05.2019
பைடு நூலகம்
江西省赣州一中刘利剑 整理 heishu800101@
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
(3)若将x的值代入变形后的式子 中,那么求值的计算过程是怎样的?
将变形前x的系数乘以x的值,加上变形前 的第2个系数,得到一个新的系数;将此系数 继续乘以x的值,再,加上变形前的第3个系数, 又得到一个新的系数;继续对新系数做上面的 变换,直到与变形前的最后一个系数相加,得 到一个新的系数为止。这个系数即为所求多项 式的值。这种算法即是“秦九韶算法”

数学:1.3.2《算法案例-秦九韶算法》课件(2)(新人教A版必修3)

数学:1.3.2《算法案例-秦九韶算法》课件(2)(新人教A版必修3)

练习:把89化为五进制的数. 解:以5作为除数,相应的除法算式为: 余数 5 89 5 17 4 5 3 2 0 3 ∴ 89=324(5).
小结
• 进位制的概念及表示方法; anan-1…a1a0(k) =an×kn+an-1×kn-1+…+a1×k1+a0×k0 . • 各种进位制之间的相互转化.
例4:把89化为二进制的数. 我们可以用下面的除法算式表示除2取余法: 把算式中各步所得的余数 余数 2 89 从下到上排列,得到 2 44 1 89=1011001(2). 2 22 0 可以用2连续去除89或所得 2 11 0 商(一直到商为0为止),然后 2 5 1 取余数---除2取余法. 1 2 2 这种方法也可以推广为把 0 21 十进制数化为k进制数的 0 1 算法,称为除k取余法.
=(„((anx+an-1)x+an-2)x+„+a1)x+a0
f(x)=(…(anx+an-1)x+an-2)x+…+a1)x+a0.
求多项式的值时,首先计算最内层括号内一 次多项式的值,即 v1=anx+an-1, 然后由内向外逐层计算一次多项式的值,即 v2=v1x+an-2, v3=v2x+an-3, ……, vn=vn-1x+a0. 这样,求n次多项式f(x)的值就转化为求n个 一次多项式的值.这种算法称为秦九韶算法.
v1=v0x-5=2×5-5=5
v2=v1x-4=5×5-4=21
v3=v2x+3=21×5+3=108
v4=v3x-6=108×5-6=534
v5=v4x+7=534×5+7=2677
所以,当x=5时,多项式的值是2677.

人教数学必修三课件-133秦九邵算法

人教数学必修三课件-133秦九邵算法
第一步,计算v1=anx+an-1.
第二步,计算v2=v1x+an-2.
思考4:对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0,由内向外逐层计算 一次多项式的值,其算法步骤如何?
第一步,计算v1=anx+an-1.
第二步,计算v2=v1x+an-2.
第三步,计算v3=v2x+an-3. …
例1 阅读下列 程序,说明它 解决的实际问 题是什么?
求多项式 f (x ) 1 在x=a时的值.
INPUT “x=”;a n=0 y=0 WHILE n<5
y=y+(n+1)*a∧n n=n+1 WEND PRINT y END
2x 3x 2 4x 3 5x 4
小结作业
评价一个算法好坏的一个重要标志 是运算的次数,如果一个算法从理论上 需要超出计算机允许范围内的运算次 数,那么这样的算法就只能是一个理论 算法.在多项式求值的各种算法中,秦九 韶算法是一个优秀算法.
f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a2x+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =… =(…((anx+an-1)x+an-2)x+…+a1)x+a0.
思考4:对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0,由内向外逐层计算 一次多项式的值,其算法步骤如何?

高中数学必修3公开课课件 1.3.2算法案例--秦九韶算法

高中数学必修3公开课课件 1.3.2算法案例--秦九韶算法
次数,如果一个算法从理论上需要超出计算机允 许范围内的运算次数,那么这样的算法就只能是 一个理论算法.在多式求值的各种算法中,秦九 韶算法是一个优秀算法.
10
课后再做好复习巩固. 谢谢!
再见!
新疆 王新敞
奎屯
王新敞 特级教师 源头学子小屋 wxckt@ 新疆奎屯
再统计一下计算当时的值时需要的计算次数,可 以得出仅需4次乘法和5次加法运算即可得出结果。显 然少了6次乘法运算。
这种算法就叫秦九韶算法。
3
秦九韶算法
把一个多项式
f (x) an xn an1xn1 an2 xn2 a1x a0
改写为:
f (x) an xn an1xn1 an2 xn2 a1x a0 (an xn1 an1xn2 an2 xn3 a1)x a0 ((an xn2 an1xn3 a2 )x a1)x a0
·2007·
11
案例2 秦九韶算法
2019年5月6日星期一
1
问题提出
1.辗转相除法和更相减损术,是求两个正整数 的最大公约数的优秀算法,我们将算法转化为程序 后,就可以由计算机来执行运算,实现了古代数学 与现代信息技术的完美结合.
2.对于求n次多项式的值,在我国古代数学中 也有一个优秀算法,即秦九韶算法,本节对这个算 法作些了解和探究.
=……
( ((an x an1)x an2 )x a1) a0
4
秦九韶算法
对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0, 由内向外逐层计算一次多项式的值,其算法步骤:
第一步,计算v1=anx+an-1. 第二步,计算v2=v1x+an-2. 第三步,计算v3=v2x+an-3.

(新)人教版高中数学必修三1.3.2《秦九韶算法》精品课件

(新)人教版高中数学必修三1.3.2《秦九韶算法》精品课件

[问题5]对于多项式
f(x)=(…((anx+an-1)x+
an-2)x+…+a1)x+a0
由内向外逐层计算一次多项式的值,其算法步骤 如何? 第一步,计算v1=anx+an-1. 第二步,计算v2=v1x+an-2. 第三步,计算v3=v2x+an-3. …
思考:在多项 式的求值上, 这是怎样的一 种转化?
练习:
1.已知多项式f(x)=x5+5x4+10x3+10x2+5x+1 用秦九韶算法求这个多项式当x=-2时的值。 2.已知多项式f(x)=2x6-6x4-5x2+4x-6 用秦九韶算法求这个多项式当x=5时的值。
你从中看到了 3+3x2-6x当 3.已知多项式 f(x)=2x6-5x5-4x怎样的规律? 怎么用程序框 图来描述呢? x=5用秦九韶算法求这个多项式当 x=5时的值
[问题3]能否探索更好的算法,来解决任意多项式的 求值问题? v =2 0 f(x)=2x5-5x4-4x3+3x2-6x+7 v1=v0x-5=2×5-5=5 4 3 2 =(2x -5x -4x +3x-6)x+7 v2=v1x-4=5×5-4=21 3 2 =((2x -5x -4x+3)x-6)x+7 v3=v2x+3=21×5+3=108 2 =(((2x -5x-4)x+3)x-6)x+7 v4=v3x-6=108×5-6=534 =((((2x-5)x-4)x+3)x-6)x+7 所以,当x=5时,多项式的值是2677.
第n步,计算vn=vn-1x+a0.

人教版高中数学1.3.2秦九韶算法精品ppt课件

人教版高中数学1.3.2秦九韶算法精品ppt课件

f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0.
=(…(anx+an-1)x+an-2)x+…+a1)x+a0.
v1=anx+an-1,
v2=v1x+an-2,
v3=v2x+an-3,
……, vn=vn-1x+a0.
这是一个在秦九韶算法 中反复执行的步骤,因此 可用循环结构来实现.
人教版《普通高中课程标准实验教科书·数学》必修3
1.3.2秦九韶算法
秦九韶(1208年-1261 年)南宋官员、数学家, 与李冶、杨辉、朱世杰 并称宋元数学四大家。 字道古,汉族,自称鲁 郡(山东曲阜)人, 生于普州安岳(今属四川)。精研星象、音律、算 术、诗词、弓剑、营造之学,历任琼州知府、司农 丞,后遭贬,卒于梅州任所,著作《数书九章》, 其中的大衍求一术、三斜求积术和秦九韶算法是具 有世界意义的重要贡献。

((an x an1 ) x an2 ) x a1 ) x a0
这种将求一个n次多项式f(x)的值转化成求n个 一次多项式的值的方法,称为秦九韶算法。
例1:用秦九韶算法求多项式
f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.
解1:f(x)=((((2x-5)x-4)x+3)x-6)x+7 v0=2 v1=v0x-5=2×5-5=5
v0=an,
vK=vK-1x+an-k(k=1,2,……,n)
阅读课本
练习:
1.已知多项式f(x)=x5+5x4+10x3+10x2+5x+1

人教A版必修3课件:1.3.2秦九邵算法

人教A版必修3课件:1.3.2秦九邵算法

项的系数
第三步,输入i次项的系数ai.
第四步,v=vx+ai,i=i-1. 第五步,判断i≥0是否成立.若是,则返回第 式的值v. 二步;否则,输出多项
思考2:该算法的程序框图如何表示? 开始 输入 n , an , x 的 值 v=an i=n-1 i=i1 v=vx+ai i≥0? 是 否 输出v 结束 输入ai
4次乘法运算,5次加法运算.
思考3:利用后一种算法求多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值,这个 多项式应写成哪种形式?
f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a2x+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =… =(…((anx+an-1)x+an-2)x+…+a1)x+a0.
思考4:对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0,由内向外逐层 计算一次多项式的值,其算法步骤如何?
第一步,计算v1=anx+an-1. 第二步,计算v2=v1x+an-2. 第三步,计算v3=v2x+an-3. …
第n步,计算vn=vn-1x+a0.
思考5:上述求多项式 f(x)=anxn+an-1xn-1+…+a1x+a0的值的方法 称为秦九韶算法,利用该算法求f(x0)的值,一共需要多少次乘法运算, 多少次加法运算?

《秦九韶算法》课件

《秦九韶算法》课件

秦九韶பைடு நூலகம்法的代码示例
} ``` Java实现
秦九韶算法的代码示例
01
```java
02
import java.util.Scanner;
public class Main {
03
秦九韶算法的代码示例
01
02
03
public static void main(String[] args) {
Scanner scanner = new
秦九韶算法的步骤解析
01
确定多项式的最高次项 系数和次数。
02
根据秦九韶算法的公式 ,计算一次多项式的系 数。
03
利用一次多项式求值公 式,计算多项式的值。
04
重复以上步骤,直到求 出所有需要计算的多项 式的值。
秦九韶算法的公式推导
根据多项式求值原理,推导出秦九韶 算法的公式。
利用递归的思想,将高次多项式转化 为一次多项式,推导出秦九韶算法的 公式。
编写代码
按照秦九韶算法的步骤,编写相应的代码。需要注意代码 的健壮性和可读性,以便于后续的维护和调试。
测试代码
通过输入不同的多位数,测试代码的正确性和性能。
秦九韶算法的代码示例
C语言实现 ```c
int main() {
秦九韶算法的代码示例
int n, x = 0, i, d; printf("请输入一个多位数:");
05
秦九韶算法的优缺点
秦九韶算法的优点
01
02
03
高效性
秦九韶算法将多项式求值 问题转化为一系列一元运 算,减少了乘法的次数, 提高了运算效率。
易于编程实现
秦九韶算法的步骤明确, 易于转化为程序代码,便 于计算机实现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3:用秦九韶算法求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值.
解法一:首先将原多项式改写成如下形式 : f(x)=((((2x-5)x-4)x+3)x-6)x+7 然后由内向外逐层计算一次多项式的值,即
v0=2 v1=v0x-5=2×5-5=5 v2=v1x-4=5×5-4=21 v3=v2x+3=21×5+3=108 v4=v3x-6=108×5-6=534 v5=v4x+7=534×5+7=2677
案例2 秦九韶算法
[问题1]设计求多项式f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7当x = 5时的值的算法,并写出程序. 程序
x=5 f=2*x^5-5*x^4-4*x^3+3*x^2-6*x+7
PRINT f
END
点评:上述算法一共做了15次乘法运算,5 次加法运算.优点是简单,易懂;缺点 是不通用,不能解决任意多项多求值 问题,而且计算效率不高.
[问题3]能否探索更好的算法,来解决任意 多项式的求值问题? v0=2 5 4 3 2 f(x)=2x -5x -4x +3x -6x+7 v =v x-5=2 × 5-5=5 1 0 =(2x4-5x3-4x2+3x-6)x+7 v2=v1x-4=5×5-4=21 =((2x3-5x2-4x+3)x-6)x+7 v3=v2x+3=21×5+3=108 =(((2x2-5x-4)x+3)x-6)x+7 v =v x-6=108×5-6=534 4 3 =((((2x-5)x-4)x+3)x-6)x+7 v5=v4x+7= 534×5+7=2677 所以,当x=5时,多项式的值是2677. 这种求多项式值的方法就叫秦九韶算法.
程序
INPUT "n=";n input "an=";a input "x=";x v=a i=n–1 while i >= 0 print "i = ";i input "ai = ";a v=v*x+a i=i–1 wend print v end
v1=anx+an-1, v3=v2x+an-3, ……,
v2=v1x+an-2, vn=vn-1x+a0.
观察上述秦九韶算法中的n个一次式,可见 vk的计算要用到vk-1的值. 若令v0=an,得
v0=an, vK=vK-1x+an-k(k=1,2,……,n
这是一个在秦九韶算法中反复执行的步骤, 因此可用循环结构来实现. [问题] 写出程序表示用秦九韶算法求5次多项式 f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0当x=x0 (x0是任意实 数)时的值的过程.
v2=v1x+an-2, v3=v2x+an-3, ……, vn=vn-1x+a0.
这样,求n次多项式f(x)的值就转化为求n个 一次多项式的值.这种算法称为秦九韶算法.
思考
秦九韶算法是求一元多项式的值的一 种方法. 它的特点是:把求一个n次多项式的值 转化为求n个一次多项式的值,通过这种转 化,把运算的次数由至多n(n+1)/2次乘法运 算和n次加法运算,减少为n次乘法运算和n 次加法运算,大大=5时,多项式的值是2677.
练一练:用秦九韶算法求多项式 f(x)=2x6-5x5-4x3+3x2-6x当x=5时的值. 解:原多项式先化为: f(x)=2x6-5x5 +0×x4-4x3+3x2-6x+0 列表 2 -5 0 -4 3 -6 0 10 25 125 605 3040 15170 x=5 2 5 25 121 608 3034 15170 所以,当x=5时,多项式的值是15170.
[问题2]有没有更高效的算法?
分析:计算x的幂时,可以利用前面的计算结果,以 减少计算量
即先计算x2,然后依次计算 x2 x , (x2 x) x , ((x2 x) x) x的值.
这时,计算上述多项式的值,一共需要9次乘法 运算,5次加法运算.
第二种做法与第一种做法相比,乘法的 运算次数减少了,因而能提高运算效率.而 且对于计算机来说,做一次乘法所需的运算 时间比做一次加法要长得多,因此第二种做 法能更快地得到结果.
一般地,对于一个n次多项式 f(x)=anxn+an-1xn-1+an-2xn-2+……+a1x+a0. 我们可以改写成如下形式: f(x)=((anx+an-1)x+an-2)x+…+a1)x+a0. 求多项式的值时,首先计算最内层括号内一 次多项式的值,即 v1=anx+an-1,
然后由内向外逐层计算一次多项式的值,即
所以,当x=5时,多项式的值是2677.
例3:用秦九韶算法求当x = 5时多项式 f (x) = 2x5 – 5x4 – 4x3 + 3x2 – 6x + 7的值. 解法二:列表 2
原多项式的系 数
x=5
2
-5 10 5
-4 25 21
3 -6 7 105 540 2670 108 534 2677
相关文档
最新文档