圆柱圆锥体积的练习
(完整版)圆柱和圆锥的体积(包含知识点内容)

六年级圆柱和圆锥的体积训练题型一:圆柱的体积:圆柱所占空间的大小把圆柱切开拼成一个长方体(如图),长方体的长 = 圆柱底面周长的一半长方体的宽 = 圆柱的半径长方体的高 = 圆柱的高长方体的底面积 = 圆柱的底面积圆柱切开拼成一个长方体后,增加的面积是长方体的两个侧面积(宽×高 / 半径×高)公式:圆柱的体积(容积) = 底面积×高,(V = Sh 或者V = лr²h )正方体、长方体、圆柱,半圆柱、底面是环形的柱体都通用的体积公式是:底面积×高体积和容积的区别:1.求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。
2.一种物体有体积,可不一定有容积。
如果一种既有体积又有容积的物体,它的体积一定大于它的容积。
3.体积的单位和容积的单位不同:1立方米 = 1000立方分米 = 1000000立方厘米 1立方米 = 1000立方分米 1立方分米 = 1000立方厘米1立方米=1000升 1立方分米=1升1立方厘米=1毫升练习:1.等底等高的圆柱体、正方体、长方体的体积相比较,()。
①正方体体积大②长方体体积大③圆柱体体积大④一样大2. 圆柱体的底面半径扩大2倍,它的侧面积扩大()倍,体积扩大()倍。
3. 圆柱体的底面半径和高都扩大3倍,它的侧面积扩大()倍,体积扩大()倍。
4.圆柱的高扩大4倍,底面半径缩小4倍,它的体积()。
5. 如果圆柱体的侧面展开是一个边长为3.14分米的正方形,圆柱的体积是()立方分米。
6. 0.08平方米=()平方分米 3立方米5立方分米=()立方米2.6立方分米=()升 = ()毫升7. 一个圆柱体的底面半径是4米,高6米,它的侧面积是()平方米,体积是()立方米。
8.一个圆柱的底面周长是31.4厘米,高10厘米,它的表面积是()平方厘米,体积是()立方厘米。
9. 一个圆柱体容器中盛满12.56升水,从容器里面量得高是4分米,那么容器的底面积是()。
《圆锥的体积》练习题

圆锥的体积练习题姓名:学号:1.填一填。
(1)准备等底等高的圆柱形容器和圆锥形容器各一个,将圆锥形容器装满沙子,再倒入圆柱形容器,()次能倒满。
或将圆柱形容器装满水,再倒入圆锥形容器,能将圆锥形容器倒满()次。
因为圆柱的体积=()×(),所以圆锥的体积=(),用字母表示圆锥的体积计算公式是()。
(2)一个圆柱和一个圆锥等底等高,如果圆锥的体积是9dm3,那么圆柱的体积是();如果圆柱的体积是9dm3,那么圆锥的体积是()。
(3)下图中,圆锥()的体积与圆柱的体积相等。
(4)一个圆锥的底面直径和高都是6cm,那么这个圆锥的体积是()cm3。
(5)一个圆锥的体积是15.7m3,底面积是3.14m2,那么它的高是()m。
(6)将24个圆锥形铁块熔化后,可以重新铸成和原来圆锥形铁块等底等高的圆柱形铁块()个。
(损耗忽略不计)(7)圆柱底面半径是圆锥底面半径的3倍,它们的高相等,那么圆柱体积是圆锥体积的()倍。
(8)一个圆锥形沙堆,底面积是12m2,高是1.5m,用这堆沙铺在长8m、宽5m的长方体跳远坑中,厚()m。
(9)一个圆锥的底面半径是3cm,高是6cm,它的体积是()cm³;与这个圆锥等底等高的圆柱的体积是()cm³。
(10)一个圆锥的底面周长是18.84dm,高是5dm,它的体积是()dm³。
(11)把一个体积为94.2cm³的圆柱木料削成个最大的圆锥,这个圆锥的体积是()cm³,削去部分的体积是()cm³。
(12)一个圆柱与一个圆锥的底面积相等,体积也相等。
若圆锥的高是1.8dm,则圆柱的高是()dm;若圆柱的高是1.8dm,则圆锥的高是()dm。
2.有一堆圆锥形的沙子,底面直径是12m,高是5m。
(1)这堆沙子有多少立方米?(2)如果把这堆沙子以3cm的厚度铺在宽10m的路上,能铺多长的路?3.计算下面圆锥的体积。
4.一个圆锥形路障警示标志如下图,这个路障标志的体积约是多少立方厘米?5.把一个体积是282.6cm³的铁块熔铸成一个底面半径为6cm的圆锥形机器零件,圆锥形零件的高是多少厘米?6.如图,先将甲容器注满水,再将甲容器中的水倒入空的乙容器中,这时乙容器中的水面有多高?7.把一个横截面是正方形的长方体木块削成个最大的圆锥。
【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
人教版六下册数学圆柱的体积、圆锥的认识同步强化练习(有解析答案)

六年级第4周一级监测卷监测内容:圆柱的体积、圆锥的认识时间:40分钟满分100分一、填一填。
(每空2分,共20分)(1)如图所示,把圆柱的底面平均分成许多相等的扇形,然后按照等分线沿着圆柱的高把圆柱切开,可以拼成一个近似的()。
长方体的底面积等于圆柱的( ),长方体的高等于圆柱的( )。
因为长方体的体积=( ) ,所以圆柱的体积=(),用字母表示是( )。
(2)圆锥有()个底面,它的底面是(),圆锥的侧面是一个曲面,曲面展开可以得到一个()形,圆锥有()条高。
二、填表。
(每题5分,共15分)圆柱高体积底面积0.5m25cm底面积()12cm 180cm3底面直径4dm 8dm三、选择。
(将正确答案的序号填在括号里)(每题5分,共15分)1、两个体积相等的圆柱,它们一定()。
A.底面积和高都相等B.高相等,底面积不等C.底面积相等,高不等D.底面积与高的乘积相等2、求长方体、正方体、圆柱体积的相同公式是()。
A. V= abhB. V=a3C、V=Sh3、左边图形以虚线为轴快速旋转一周形成的立体图形是()。
A. B. C. D.四、解决问题。
(共50分)1、一根圆柱形木头,底面半径是1.5分米,长是8米,它的体积是多少?(8分)2、一个内半径是4cm的胶水瓶里,胶水的高度是8cm,把瓶盖拧紧倒置放平,没有胶水的部分高2cm。
这个瓶子的容积是多少?(10分)3、一个圆柱形的水桶(无盖),高6分米,水桶底部的铁箍大约长15.7分米,做这个无盖水桶至少用木板多少平方分米?这个水桶能盛120升水吗?4、一个圆柱形钢管长3米,外直径6厘米,内直径4厘米,如果每立方厘米的钢管重7.8克,这根钢管约重多少千克?(得数保留整数)5、一个圆柱形水槽里面盛有8cm深的水,水槽的底面半径是20cm,将一块正方体铁块放入水槽并完全浸在水中,这时水而上升了0.6cm,这块正方体铁块的体积是多少立方厘米?六年级 第4周 二级监测卷监测内容:圆柱的体积、圆锥的认识时间:40分钟 满分100分一、填一填。
人教版六年级数学下册圆柱与圆锥体积专项练习题精选

人教版六年级数学下册圆柱与圆锥体积专项练习题精选1.把圆柱的侧面沿着高剪开,得到一个矩形,这个矩形的长等于圆柱底面的周长,宽等于圆柱的高,所以圆柱的侧面积等于底面周长乘以高。
2.单位换算:1升=1000毫升=1立方分米=1000立方厘米1平方米=平方分米,1公顷=平方米415平方厘米=41.5平方分米,4.5立方米=4500立方分米2.4立方分米=2400毫升,4070立方分米=4.07立方米3立方分米40立方厘米=3040立方厘米325立方米=立方分米,5380毫升=5.38升380毫升3.基础练:1.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是20平方分米,体积是4立方分米。
2.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是9分米。
4.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是15.04平方厘米。
5.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。
圆柱的高是r根2.6.一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是2厘米,底面积是4平方厘米,侧面积是75.36平方厘米,体积是50.24立方厘米。
7.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的3倍,圆柱的体积的2/3就等于圆锥的体积。
8.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是4厘米。
9.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是32立方米,圆锥的体积是16立方米。
10.一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是40立方厘米。
11.圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是2厘米。
12.一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是6分米。
13.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重16千克。
圆锥体积专项练习60题(有答案)ok

圆锥体积专项练习60题(有答案)ok1.求以直角边AC为轴旋转一圈所得立体图形的体积。
2.以BC为轴旋转直角三角形ABC一周,求旋转体的体积。
3.将体积为150立方厘米的圆柱削成最大的圆锥,求削去的体积。
4.将一个圆柱削成等底等高的圆锥后,体积减少了6.28立方分米。
求原圆柱和圆锥的体积。
5.将长4分米,宽2分米,高3分米的长方体木料削成最大的圆锥体,求圆锥体的体积。
6.将长5分米,宽4分米,高6分米的长方体削成最大的圆锥,求圆锥的体积。
7.将长1米的圆柱体均匀切成3个同样大小的圆柱体后,表面积增加60平方厘米。
如果将原圆柱削成最大的圆锥体,求圆锥体的体积。
8.将底面直径为5厘米的圆锥完全浸没在底面半径为5厘米的圆柱形水箱中,水面上升了3厘米。
求圆锥的高。
9.将一个铅圆锥浸入底面周长为12.56米,高为6米的圆柱形水池,水面上升了3分米。
求铅圆锥的体积。
10.在底面直径为8厘米的圆柱形量杯内装有水,放入底面直径为2厘米的小圆锥形铁件后,水面上升了1厘米。
求小圆锥形铁件的高。
11.在一底面半径为10厘米的圆柱形杯子中盛有水,水里放着一个底面直径为10厘米的圆锥。
当圆锥取出时,水面下降了5厘米。
求圆锥的高。
12.一个底面积为8平方米,高为1.5米的圆锥形沙堆,用这些沙子在5米宽的路上铺2厘米厚的路面,能铺多少米?13.将长30厘米,宽10厘米,高8厘米的长方体铁块熔铸成底面积为100平方厘米的圆锥体铁块,求圆锥铁块的高。
14.一个长方体货车箱长4米,宽1.5米,高4米,装满沙子后卸下,沙子堆成一个底面积为多少平方米,高为2米的圆锥形。
15.将正方体的棱长之和为48厘米的铸件铸造成底面积为32平方厘米的圆锥体,求圆锥体的高。
16.在打谷场上有一堆底面周长为18.84米,高为1.5米的圆锥形稻谷堆,将稻谷装入内直径为6米的圆柱形粮囤内,求稻谷堆的高度。
17.一个高为12厘米的圆锥形中装满了水,将其倒入等底等高的圆柱形中,求水面的高度。
小学数学六年级圆柱和圆锥练习题

圆柱和圆锥练习题1、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。
圆柱和圆锥的体积分别是多少?2、一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆柱的体积是多少立方厘米?3、一个圆柱的底面周长是18.84厘米,沿着底面直径将它切成相等的两半,表面积增加了180平方厘米,原来这个圆柱的表面积和体积各是多少?4、把一个半径为10厘米的圆锥形钢材浸没在一只底面半径是30厘米的圆柱形水桶里,当钢材从水桶中拿出,桶里的水面下降了1厘米。
这个圆锥形钢材的高是多少?5、一个圆柱和一个圆锥的体积相等,圆锥高是圆柱高的三分之二,求圆锥和圆柱的底面积比是多少?6、一段长宽高的比是5:4:3的长方体木材,棱长总和是96厘米,把它加工成一个最大的圆锥,这个圆锥的体积是多少?7、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。
当圆锥体取出后,桶内水面将降低多少?8、用直径为40厘米的圆钢锻造长3米、宽10分米、厚2厘米的长方形钢板,应截取多长的一段圆钢?9、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?10、一圆柱形水桶内有一段长4厘米,宽3厘米的长方体铁块浸入水中,水面上升8厘米,如果把长方体竖立,露出水面3厘米,则水面下降1.5厘米,求长方体铁块的体积?11、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?12、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是多少?13、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见下图)。
问:瓶内现有饮料多少立方分米?14、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
六年级数学下册圆柱圆锥的体积测试题

六年级数学下册圆柱圆锥的体积测试题(苏教版)第二单元圆柱、圆锥的体积以及它们之间的关系A:基础题一、填空题1、一根长20厘米的圆钢,分成一样长的两段,表面积增加20平方厘米,原钢的体积是()立方厘米。
2、圆柱的底面半径扩大2倍,高扩大3倍,侧面积扩大()倍,体积扩大()倍。
3、甲圆柱底面周长是乙圆柱的2倍,乙圆柱的高是甲圆柱的1/3,乙圆柱的体积是甲圆柱的()。
4、把一个底面是正方形的长方体削成一个最大的圆柱,圆柱的体积是长方体的()%。
5、一个圆锥的体积是16立方分米,如果搞不变,底面半径缩小到原来的1/3,这是圆锥的体积是()立方分米。
二、解决问题1、有一个圆锥形的小麦堆,底面周长是18.84米,高1.5米,把这些小麦全部装入一个底面直径是3米的圆柱粮囤,结果最上面的小麦离囤口还有0.5米。
求这个粮囤的高。
2、一个圆锥体钢坯,体积是18.84立方厘米,高是4.5厘米,把2个这样的钢坯改铸成一个圆柱形钢坯。
如果底面积不变,改铸后的圆柱形钢坯的高应是多少厘米。
3、有一块立方体木料棱长总和是72厘米,把这块木料削成一个最大的圆锥。
求:削去部分的体积占原木料体积的百分之几。
B:巩固题1、如图所示,一个三角形ABC,线段AB长15厘米,线段CD是这个三角形的高,CD 长4厘米,如果以AB为轴,旋转一周得到一个立体图形。
求:这个立体图形的体积。
2、如下图,是一个棱长是4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米。
这个零件的表面积是多少?体积是多少?3、如图,下面的圆锥容器装有3升水,水面的高度正好是圆锥高度的一半,则这个容器还能装水多少升?C:冲刺题1、一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深12厘米,把酒瓶塞紧后倒置,这时酒深20厘米。
你能算出酒瓶的容积是多少毫升吗?2、两个相同的圆锥容器中各装一些水,使水深都是圆锥高的1/3,那么甲乙两个容器中哪一个水多,多多少倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱圆锥体积练习
教学内容:青岛版小学数学六年级下册第29页内容及补充练习。
教学目标:
1.通过练习,进一步理解圆柱、圆锥体积的含义及计算方法,并能运用计算公式熟练、灵活的解决实际问题。
2.通过解决问题,区分表面积与体积的计算方法,进一步提高分析、推理能力,发展空间观念。
3.在解决圆柱圆锥体积问题的过程中,学会用生活的眼光看数学问题,体会数学与生活的联系。
教学重点:正确熟练的掌握圆柱圆锥体积的计算方法。
教学难点:区分表面积与体积的计算方法,并能灵活运用。
教具准备:多媒体课件、测试题卡 。
教学过程:
一、问题回顾,再现新知
回顾圆柱、圆锥体积的计算方法:
1.出示课件:计算下面图形的体积。
(1)让学生独立完成,并指名板演、集体订正。
回顾计算公式:圆柱体积=底面积×高 V 柱=Sh
圆锥体积=底面积×高×31 V 锥=31Sh (2)说一说:圆
柱、圆锥的体积公式分别是怎样推导出来的?
2.小结并揭示课题:
我们已经掌握了圆柱圆锥体积的计算方法,这节课我们就运用掌握的这些方法来解决一些生活中的实际问题。
板书课题:圆柱圆锥体积练习
二、分层练习,巩固提高。
(一)基本练习,巩固新知。
1.课件出示:计算下面图形的体积。
(1)想一想:长方体、正方体和圆柱,它们体积如何计算?
(2)计算:独立完成各图形的体积计算。
做后集体订正。
(3)说一说:计算立体图形的体积,有什么相同点?(随回答板书:底面积×高)
2.判断:下面的圆锥与哪个圆柱的体积相等?(单位:厘米)
(1)先引导学生认真观察图形的特点。
(2)独立判断:用自己喜欢的方法进行验证。
(3)小组内进行交流方法,然后组织全班展示。
3.出示自主练习第11题:
(1)让学生认真读题,分析信息。
并提出数学问题。
(2)学生提出的问题:这棵巨杉的树干侧面积是多少?体积是多少?
(3)完成后,引导学生回顾:计算圆柱的侧面积和体积时应注意什么?
4.如右图,三角形绕轴旋转一圈后,得到的立体图形是
什么形状的?它的体积是多少立方厘米?
(1)引导理解题意:让学生想像三角形绕轴旋转后会得到怎样的图形。
(2)学生独立完成。
学生会根据圆锥的体积公式进行计算。
(3)展示作业,交流:你是怎么想的?指名学生说出解题思路。
(二)综合练习,应用新知。
1.课件出示自主练习第12题:
欣欣把一块底面半径2厘米、高6厘米的圆柱形橡皮泥捏成一个底面与圆柱底面相等垢圆锥。
圆锥的高是多少厘米呢?
(1)先让学生把题意读懂:什么变了,什么没变?找准数量间的相等关系。
(2)让独立完成。
并提示:可以画一画、列方程。
(3)交流时,重点说各自的想法。
重点理解:当圆柱、圆锥体积和底相等时,高之间的关系。
2.课件出示:
一个装满小麦的粮囤(如图),量得圆柱的底面周长是6.28米。
如果每立方米小麦重750千克。
这囤小麦重多少千克?
(1)引导学生看懂题意和图意。
(2)让学生先独立完成,做后交流做法。
(三)拓展练习,发展新知。
1. 出示自主练习第14题:
如果圆柱、正方体和长方体的底面周长和高都相等,谁的体积最大?
(1)理解题后,先让学生猜测并说出息猜的理由是什么。
(2)举例验证。
(3)组织交流:
课件出示图帮助理解:
圆柱、正方体和长方体的体积都是用:底面积×高
高相等时,谁的底面积大,谁的体积就大。
上学期我们已经验证了:圆、正方形和长方形的周长相等时,圆的面积最大,长方形的面积最小。
所以谁的体积最大就很清楚了。
2.课件出示自主练习中的聪明小屋:
一个零件(如图),它的正中间有一个圆柱形圆孔。
你能算出这个零件的表面积和体积吗?
(1)先引导学生读懂题意,并指导理解:这个零件的表面积如何确定?(组织交流)
(2)理解后尝试解决。
做后交流不同的想法。
三、梳理总结,提升认知。
通过这节课的练习,你对圆柱圆锥体积的计算又有那些新的认识?
引导学生结合练习内容进行总结,加强知识点间的联系与区别及思考方法。
四、当堂体测。
1.填表格:
2.解决问题:
右图是从圆柱中挖去一个圆锥后的剩余部分,请计算剩余部分的体积。
(单位:cm)
板书设计:
圆柱圆锥体积的练习
圆柱体积=底面积×高 V柱=Sh
圆锥体积=底面积×高× V
锥=Sh
圆柱、正方体、长方体的体积:底面积×高
山东省枣庄市薛城区常庄镇北点联校
朱宗亮
2015.4.13。