矩形、菱形单元

合集下载

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2

华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2一.菱形的性质(共3小题)1.如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④2.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2√3C.2D.13.如图,四边形ABCD是菱形,AE⊥BC,AF⊥CD,分别交CB、CD的延长线于点E、点F.(1)求证:△ABE≌△ADF;(2)若CD=5,AE=3,则四边形AECF的面积为.二.菱形的判定(共3小题)4.已知平行四边形ABCD的对角线相交于点O,补充下列四个条件,能使平行四边形ABCD 成为菱形的是()A.AB=BD B.AC=BD C.∠DAB=90°D.∠AOB=90°5.如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:可使其成为菱形(只填一个即可).6.在▱ABCD 中,对角线AC 、BD 交于点O ,E 是边BC 延长线上的动点,过点E 作EF ⊥BD 于F ,且与CD 、AD 分别交于点G 、H ,连接OH .(1)如图,若AC ⊥AB ,OF =OC ,求证:FG =CG ;(2)若在点E 运动的过程中,存在四边形OCGH 是菱形的情形,试探究▱ABCD 的边和角需要满足的条件.三.菱形的判定与性质(共3小题)7.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .√32C .1D .12 8.如图,△ABC 中,BC =2AB ,点D 、E 分别是BC 、AC 的中点,过点A 作AF ∥BC 交线段DE 的延长线于点F ,取AF 的中点G ,连结DG 交AE 于点H .(1)求证:四边形ABDF 是菱形;(2)连接BE 交DG 于点M ,若AC ⊥AB ,AC =6,求BM .9.如图,在平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,∠ABC 的平分线BF交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=3,BF=4,CE=2,求平行四边形ABCD的面积.四.矩形的性质(共3小题)10.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD 的长为()A.5B.√13C.√10D.√711.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若EF=6cm,则AC的长是.12.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,求菱形AFCE的面积.五.矩形的判定(共3小题)13.在平行四边形ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边形ABCD是矩形的是()A.AC=BD B.AC⊥BD C.OA=OC D.AB=AD14.如图,工人师傅在贴长方形的瓷砖时,为了保证所贴瓷砖的外缘边与上一块瓷砖的两边互相平行,一般将两块瓷砖的一边重合,然后贴下去.这样做的数学依据是.15.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,则当∠BOD=°时,四边形BECD是矩形.六.矩形的判定与性质(共3小题)16.如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH ⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4B.1.4C.1.3D.1.217.如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.18.如图,在▱ABCD 中,AB >AD ,DE 平分∠ADC ,AF ⊥BC 于点F 交DE 于G 点,延长BC 至H 使CH =BF ,连接DH .(1)证明:四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB 、AG 、BF 的数量关系,并证明.七.正方形的性质(共3小题)19.如图,在正方形ABCD 中,AB =6,点Q 是AB 边上的一个动点(点Q 不与点B 重合),点M ,N 分别是DQ ,BQ 的中点,则线段MN =( )A .3√2B .3√22C .3D .620.如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)钉这两块木条的作用是什么?(2)G 点一定是AB 的中点吗?说明理由.21.阅读分析过程,解决问题:如图,正方形ABCD(四条边都相等,四个角都是90°),点E、F在CD、BC上,并且∠EAF=45°,延长CD至点G,使DG=BF,并连接AG.(1)求证:EF=DE+BF;(2)若AB=2,则△EFC的周长=.八.正方形的判定(共3小题)22.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.23.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.24.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC 的平分线,延长DF交AN于点E.连接CE.(1)求证:四边形ADCE是矩形;(2)填空:①若AB=BC=3,则四边形ADCE的面积为;②当△ABC满足四边形ADCE是正方形.九.正方形的判定与性质(共3小题)25.在下列4个判断中正确的是()A.如果四边形的两组对角分别相等,那么这个四边形是矩形B.对角线互相垂直的四边形是菱形C.正方形具有矩形的性质,又具有菱形的性质D.四边相等的四边形是正方形26.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD 的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.27.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且AE=BF=CM=DN.(1)求证:四边形EFMN是正方形;(2)若AB=4,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN 周长的最小值.。

矩形、菱形、正方形】5大知识要点总结

矩形、菱形、正方形】5大知识要点总结

1. 矩形、菱形和正方形的定义及特点- 矩形是指具有四个直角的四边形,对角线相等,且相对边长相等。

- 菱形是指具有四个边长相等的四边形,对角线垂直且平分。

- 正方形是一种特殊的矩形和菱形,具有四个直角和四个边长相等的特点。

2. 矩形、菱形和正方形的性质和公式- 矩形的周长和面积分别用公式2*(长+宽)和长*宽表示。

- 菱形的周长和面积分别用公式4*边长和(对角线1*对角线2)/2表示。

- 正方形的周长和面积分别用公式4*边长和边长^2表示。

3. 矩形、菱形和正方形在几何图形中的应用- 矩形常见于建筑物的平面设计、画框、电视屏幕等。

- 菱形在菱形格子、菱形图案、梁的截面等中常见应用。

- 正方形常见于棋盘、地砖、窗户等设计中。

4. 矩形、菱形和正方形与其他几何图形的联系和区别- 矩形是特殊的平行四边形,与平行四边形和正方形有联系。

- 菱形是特殊的平行四边形,与平行四边形和正方形有联系。

- 正方形是特殊的矩形和菱形,具有独特的特点和应用。

5. 实际生活中的矩形、菱形和正方形的应用案例- 通过实际案例,解释矩形、菱形和正方形在生活中的运用和意义,如建筑结构、家居设计、工程绘图等。

- 分析实际案例中矩形、菱形和正方形的优缺点,引导读者对几何图形的深入思考和应用。

个人观点和总结通过对矩形、菱形和正方形的深入研究和比较,我深刻地认识到这些几何图形在我们日常生活中的重要性和应用广泛性。

它们不仅是数学中的重要概念,也是实际工程和设计中不可或缺的元素。

在未来的学习和工作中,我将更加注重对这些几何图形的认识和运用,以提高自己的学术和职业能力。

PS: 本文仅代表个人观点,如有不同意见,请指正。

矩形、菱形和正方形是我们生活中常见的几何图形,它们在建筑、设计、工程、艺术等领域都有着广泛的应用。

下面将对它们在不同领域的具体应用进行更详细地介绍。

我们来看矩形在建筑和设计中的应用。

矩形具有四个直角和对角线相等的特点,这使得它成为建筑物中常见的平面结构。

数学北师大版九年级上册《矩形、菱形、正方形》 复习课教学设计

数学北师大版九年级上册《矩形、菱形、正方形》 复习课教学设计

《矩形、菱形、正方形》复习课教学设计霞浦八中许凤花一、复习内容分析:本节课是八年级第二学期第四章的内容。

四边形和三角形一样,是基本的平面图形,也是空间立体图形的重要组成部分。

平行四边形、菱形、矩形、正方形之间的区别与联系对灵活的掌握及运用四边形的知识起着重要的作用。

特殊平行四边形概念、性质与判定是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点.本章节的难点是平行四边形和各种特殊平行四边形之间的区别和联系,因为它们的概念之间重叠交错,容易混淆.学生往往搞不清楚它们的共性、特性及其从属关系,应用时常犯多用或少用条件的错误.教学时不仅要讲清矩形、菱形、正方形的特殊性质,尤其要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,要强调它们的从属关系.所以解决这个难点的关键是抓好概念教学,弄清这些概念之间的关系.而要弄清楚这些关系,最好是用图示的办法.本节课的目的就是通过一组基础练习与综合运用的训练,掌握平行四边形、菱形、矩形、正方形之间的联系及区别,培养学生归纳、总结的能力,发展学生的合情推理能力,进一步学习有条理的思考与表达,理解推理与论证的基本过程,建构严谨的思维模式,树立科学、严谨、理论联系实际的良好学风。

在本章内容中,较多地应用转化与化归的思想,以及分类讨论和数形结合的思想方法。

二、学情分析:授课对象是九年级的面临即将中考的学生,学生通过八年级新课的学习已经对特殊的四边形性质和判定方法有了一定的了解,大部分学生已经形成了对几何图形推理与计算的能力,中考的要求需要对学生的运算能力和逻辑推理能力进一步的提升,因此加强对学生运算能力和逻辑推理能力的培养是教学的关键。

同时在前一节课经过三角形相关知识的复习以及平行四边形的复习巩固,学生已经基本掌握了平行四边形的性质及判定,可以采用类比的数学思想方法复习菱形、矩形和正方形,开始学生对这些特殊的平行四边形之间的关系与区别可能比较混乱,经常“张冠李戴”,所以教学中要重视这些几何图形性质和判定的灵活使用,同时加强概念的理解以及提高几何图形的抽象逻辑思维能力。

2020-2021学年华东师大版八年级下册数学 第19章《矩形、菱形与正方形》单元试卷

2020-2021学年华东师大版八年级下册数学 第19章《矩形、菱形与正方形》单元试卷

华东师大版八年级下册数学2020-2021年第19章《矩形、菱形与正方形》单元试卷一、单选题1.平行四边形ABCD 的对角线AC 和BD 交于点O ,添加一个条件不能使平行四边形ABCD 变为矩形的是( )A .OD OC =B .90DAB ∠=︒C .ODA OAD ∠=∠ D .AC BD ⊥ 2.如图,已知菱形ABCD 中,∠A=60°,过AD 中点E 作EF ⊥BD ,交对角线BD 于点M ,交BC 的延长线于点F .连接DF ,若CF =2,BD =4,则DF 的长是( )A .4B .43C .27D .53 3.如图,在正方形ABCD 中,E 为CD 上的一点,连接BE ,若∠EBC =20°,将△EBC 绕点C 按顺时针方向旋转90°得到△FDC ,连接EF ,则∠EFD 的度数为( )A .15°B .20°C .25°D .30° 4.如图,在平行四边形ABCD 中,∠DAB =120°,AB =4,AD =2,点O 为对称中心,点M 从点A 出发沿AB 向点B 运动,到点B 停止运动,连接MO 并延长交CD 于点N ,则四边形AMCN 形状的变化依次为( )A .平行四边形→正方形→平行四边形→矩形→平行四边形B .平行四边形→菱形→平行四边形→矩形→平行四边形C .平行四边形→矩形→菱形→正方形→平行四边形D .平行四边形→菱形→正方形→矩形→平行四边形5.如图,正方形ABCD 的边长为10,AG =CH =8,BG =DH =6,连接GH ,则线段GH 的长为( )A .5B .22C .23D .46.矩形ABCD 中,点M 在对角线AC 上,过M 作AB 的平行线交AD 于E ,交BC 于F ,连接DM 和BM ,已知,2,4DE ME ==,则图中阴影部分的面积是( )A .12B .10C .8D .6 7.如图,在平面直角坐标系中,四边形OABC 是菱形,∠AOC =120°,点B 的坐标为(6,0),点D 是边BC 的中点,现将菱形OABC 绕点O 顺时针旋转,每秒旋转60°,则第2021秒时,点D 的坐标为( )A .(92332B .(﹣92332C .(92332D .(﹣92332 8.如图,矩形ABCD 中,2AB =,点E 在边AD 上,EB 平分AEC ∠,45DCE ∠=︒,则AE 长( )A.2B.222-D.2-C.229.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM 关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.4 C.4.5 D.510.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是()A.当∠B=90°时,则EF=2B.当F恰好为BC的中点时,则▱ABCD的面积为127C.在折叠的过程中,△ABF的周长有可能是△CEF的2倍D.当AE⊥BC时,连结BE,四边形ABEC是菱形二、填空题11.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AM⊥CD于点M,已知AC=6,BD=8,则AM=_____.12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,则添加一个适当的条件:_____可使其成为矩形(只填一个即可).13.如图,在正方形ABCD 中,对角线为AC ,在BC 延长线上取一点F ,有AC =CF ,AF 与DC 相交于点E ,AB =4,则CF =_____,∠AEC =_____.14.如图,ABCD 为正方形,O 为AC 、BD 的交点,△DCE 为直角三角形,∠CED =90°,∠DCE =30°,若正方形的边长为2,则OE 的长为__________.15.如图,矩形ABCD 中,2,4AB BC ==,点E 是矩形ABCD 的边AD 上的一动点,以CE 为边,在CE 的右侧构造正方形CEFG ,当AE =________时,ED 平分FEC ∠;连结AF ,则AF 的最小值为_______.16.如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .当△ABP ≌△ADN时,则BP 的长为_____.三、解答题17.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,DE ∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB =13,DE =5,求四边形AODE 的面积.18.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,//BE DF .求证:AE CF .19.如图,将平行四边形ABCD 折叠,使点C 与点A 重合,折痕EF 交BC 于E 交AD 于F ,交AC 于G ,连接AE ,CF .(1)求证:四边形AECF 为菱形;(2)若四边形AECF 恰为正方形,且AB =5,BC =7,求平行四边形ABCD 的面积.20.如图,在Rt ABC △中,90BAC ∠=︒,D 为BC 的中点,将ADB △沿直线AB 翻折到AEB △.(1)试判断四边形ADBE 的形状,并说明理由;(2)若10BC =,8AC =,求D 、E 两点之间的距离.21.如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点A ,B ,C ,P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M 、N ,且P 为第一限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标; (3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQ NMP S S =,请直接写出符合条件的点Q 的坐标.参考答案1.D解:∵四边形ABCD 是平行四边形, ∴12OA OC AC ==,12OB OD BD ==, A. OD OC =时,AC BD =,∴平行四边形ABCD 是矩形,故选项A 不符合题意;B.四边形ABCD 是平行四边形,90DAB ∠=︒,∴平行四边形ABCD 是矩形,故选项B 不符合题意;C.∵ODA OAD ∠=∠,∴OA OD =,∴AC BD =,∴平行四边形ABCD 是矩形,故选项C 不符合题意;D.四边形ABCD 是平行四边形,AC BD ⊥,∴平行四边形ABCD 是菱形,故选项D 符合题意;故选:D .2.C如图,连接AC 交BD 于O 点,∴AC ⊥BD∵∠BAD =60°,∴△ABD 是等边三角形∴AD =BD =4,∵E 点是AD 中点∴AE =CF =2又AE //CF∴四边形AEFC 是平行四边形∴,AC EF =∵E点是AD中点,∠ADM=60°,EF⊥BD 故∠DEM=30°∴DM=12DE=1,EM=22213-=∵AD=4,OD=2∴AO=224223-=∴AC=43=EF∴MF=EF-EM=33在Rt△DMF中DF=2227DM MF+=故选C.3.C由旋转得:∠EBC=∠FDC=20°,CE=CF,∵∠ECF=90°,∴△CEF是等腰直角三角形,∠CEF=45°,根据三角形的外角定理得:∠EFD=∠CEF-∠FDC=45°-20°=25°,4.B如图,连接AC,∵四边形ABCD是平行四边形,∴OA=OC,AM∥NC,∴∠MAO=∠NCO,∠AMO=∠CNO,∴△MAO≌△NCO,∴MO=NO,∴四边形ANCM是平行四边形,当∠AOM=90°时,四边形ANCM是菱形,当∠AOM>90°,且OA≠OM时,四边形ANCM 是平行四边形,当∠AOM >90°,且OA =OM 时,四边形ANCM 是矩形,当∠AOM >90°,且OA ≠OM 时,四边形ANCM 是平行四边形,∴选B .5.B解:如图,延长BG 交CH 于点E ,∵AB =CD =10,BG =DH =6,AG =CH =8,∴AG 2+BG 2=AB 2,∴△ABG 和△DCH 是直角三角形,在△ABG 和△CDH 中,AB CDAG CH BG DH=⎧⎪=⎨⎪=⎩ , ∴△ABG ≌△CDH (SSS ),∴∠1=∠5,∠2=∠6,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABG ≌△BCE (ASA ),∴BE =AG =8,CE =BG =6,∠BEC =∠AGB =90°,∴GE =BE ﹣BG =8﹣6=2,同理可得HE =2,在Rt △GHE 中,GH =224422GE HE +=+= ,6.C解:过M 作MP ⊥AB 于P ,交DC 于Q ,如图所示:则四边形DEMQ ,四边形QMFC ,四边形AEMP ,四边形MPBF 都是矩形, ∴S △DEM =S △DQM ,S △QCM =S △MFC ,S △AEM =S △APM ,S △MPB =S △MFB ,S △ABC =S △ADC , ∴S △ABC -S △AMP -S △MCF =S △ADC -S △AEM -S △MQC ,∴S 四边形DEMQ =S 四边形MPBF ,∵DE =CF =2,∴S △DEM =S △MFB =12×2×4=4, ∴S 阴=4+4=8,故选:C .7.A解:∵菱形OABC 绕点O 顺时针旋转,每秒旋转60°,而360660︒︒=(秒), ∴当菱形OABC 绕点O 旋转6秒后与自身重合,∵2021÷6=336……5,又∵60°×5=300°,∴第2021秒时,原图顺时针旋转了300°,如图所示,∵菱形的边长为6,∴OB´= B´C´=OC´=6,∴B´(3,33,C´(6,0),∵点D´是边B´C´的中点,∴D´36330 2⎛++⎝⎭,即D´933 22⎛⎝.8.B解:∵四边形ABCD是矩形,∴AB=CD=2,∠A=∠D=∠DCB=90°,∵∠DCE=45°,∴DE=DC=2,∴EC2,∵∠DCE=45°,∴∠DEC=45°,∵EB平分∠AEC,∴∠AEB=∠BEC=12∠AEC=180452︒-︒=67.5°,∵AD∥BC∴∠AEB =∠EBC ,∴∠BEC =∠EBC ,∴BC =CE =22,∴AD =BC =22,∴AE =AD -DE =22-2,9.D解:△AEM 与△ADM 关于AM 所在直线对称,∴△AEM ≅△ADM4AE AD AB ∴===连接BM ,如图,△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,∴△ABF ≅△ADM,AF AM FAB MAD ∴=∠=∠FAB MAE ∴∠=∠FAB BAE MAE BAE ∴∠+∠=∠+∠FAE MAB ∴∠=∠()FAE MAB SAS ∴≅EF BM ∴=在正方形ABCD 中,4BC CD AB ∴===1DM =3CM ∴=在Rt BCM △中,22345BM=+=5EF∴=,10.B解:A、如图1中,∵∠B=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,∵∠DAC=∠CAE,∴∠ACF=∠CAF,∴AF=CF,设AF=CF=x,在Rt△ABF中,则有x2=62+(8﹣x)2,解得x=254,∴EF=8﹣254=74,故选项A不符合题意.B、如图2中,当BF=CF时,∵AF =CF =BF ,∴∠BAC =90°,∴AC =22228627BC AB -=-=,∴S 平行四边形ABCD =AB•AC =6×27=127,故选项B 符合题意. C 、在折叠过程中,△ABF 与△EFC 的周长相等,选项C 不符合题意. D 、如图3中,当AE ⊥BC 时,四边形ABEC 是等腰梯形,选项D 不符合题意. 11.245解:∵四边形是ABCD 菱形,∴AC ⊥BD ,142OD BD ==,1=32OC AC =,11==68=2422ABCD S AC BD ⨯⨯菱形, ∴△DOC 是直角三角形,∴225CD OD OC =+=,∵AM ⊥CD ,∴=ABCD S AM CD 菱形,∴245AM =. 故答案为:245 12.AC BD =(答案不唯一)∵四边形ABCD 为平行四边形,∴添加条件:AC=BD ,即:对角线相等,可使其成为矩形,故答案为:AC=BD(答案不唯一).13.42112.5°∵四边形ABCD是正方形,∴AB=B C=4,∠B=90°,由勾股定理得:AC=22224442AB BC+=+=,∵CF=AC,∴CF=42.∵四边形ABCD是正方形,∴∠BCD=∠D=90°,∴∠ACB=12∠DCB=12×90°=45°,∠DCF=90°,∵AC=CF,∴∠F=∠CAF,∵∠F+∠CAF=∠ACB=45°,∴∠F=12×45°=22.5°,∴∠AEC=∠F+∠DCF=22.5°+90°=112.5°.故答案为:42,112.5°.14.62+.解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD 是正方形,∴OC =OD ,在△COM 和△DON 中,90COM DON N CMO OC OD ∠∠⎧⎪∠∠︒⎨⎪⎩==== ∴△COM ≌△DON (AAS ),∴OM =ON ,∴四边形OMEN 是正方形,∴ME =NE ,∵∠CED =90°,∠DCE =30°,∴DE =12CD =1,CE== ∵NE =ME ,∴1+DNCM ,∴DN=12∴NE =DN +DE=12-1 ∵OE1)==15.2解:答题空1∵四边形ABCD 是矩形,∴CD =AB =2,AD =BC =4,∠D =90°,∵四边形CEFG 是正方形,∴∠FEC =90°,∵ED 平分∠FEC ,∴∠CED =45°,∴CDE 是等腰直角三角形,∴DE =CD =2,∴AE =AD -DE =2,即当AE =2时,ED 平分∠FEC ;故答案为:2;答题空2过F 作FH ⊥ED 垂足为H ,如图所示:∵四边形CEFG 是正方形,∴EF =EC ,∠FEC =∠FED +∠DEC =90°,∵FH ⊥ED ,∴∠FHE =∠D=90°,∠FED +∠EFH =90°,∴∠DEC =∠EFH ,且EF =EC , 在EFH 和EDC 中,FHE DEFH DEC EF EC∠∠⎧⎪∠⎨⎪⎩=== ∴EFH ≌EDC (AAS ),∴EH =DC =2,FH =ED ,∴由勾股定理得:AF 22AH FH +=()22(24)AE AE ++-=22118()AE -+,∴当AE=1时,AF 的最小值为32故答案为:3216.424-解:∵ABP ADN ≅△△时,将ABP △沿直线AP 翻折;∴ABP ADN AEP AEN ≅≅≅△△△△∴119022.544PAB DAN DAB ∠=∠=∠=⨯︒=︒, 在AB 上取一点K 使得AK PK =,设PB z =, ∴22.5KPA KAP ∠=∠=︒,∵45PKB KPA KAP ∠=∠+∠=︒,∴45BPK BKP ∠=∠=︒,∴PB BK z ==,2AK PK z ==, ∴24z z =, ∴424z =, ∴424PB =, 故答案为:424.17.(1)证明://DE AC ,//AE BD ,∴四边形AODE 是平行四边形,在菱形ABCD 中,AC BD ⊥,90AOD ∴∠=︒,∴四边形AODE 是矩形;(2)解:四边形AODE 是矩形,5OA DE ∴==,四边形ABCD 是菱形,OB OD ∴=,AC BD ⊥,12OB ∴===,12OD ∴=,∴四边形AODE 的面积12560OD OA =⨯=⨯=. 18证明:∵四边形ABCD 是正方形,∴,//AB CD AB CD =,∴EAB FCD ∠=∠,∵//BE DF ,∴BEF DFE ∠=∠,∵180BEF BEA DFE DFC ∠+∠=∠+∠=︒, ∴DFC BEA ∠=∠,∴AEB CFD △≌△(AAS ),∴AE CF =.19解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质,可得:∠AEF =∠CEF ,AE =CE ,AF =CF , ∴∠AEF =∠AFE ,∴AF =AE ,∴AF =CF =CE =AE ,∴四边形AFCE 为菱形.(2)设AE =x ,则BE =7- x ,222(7)5x x +-=,解得,14x =,23x =,平行四边形ABCD 的面积为:4×7=28或3×7=21. 20.解:(1)∵90BAC ∠=︒,D 为BC 的中点, ∴AD BD CD ==,由翻折性质得:BE BD =,AE AD =, ∴AD AE BE BD ===,∴四边形ADBE 是菱形;(2)连接DE 与AB 相交于点O ,∵90BAC ∠=︒,10BC =,8AC =, ∴22221086AB BC AC =-=-=, ∵四边形ADBE 是菱形, ∴132OA OB AB ===,12OD OE DE ==,AB DE ⊥, ∵12AD BC =,10BC =, ∴5AD =,在Rt AOD 中,由勾股定理得:2222534OD AD OA =-=-= ∴8DE =.即D 、E 两点之间的距离为8.21.解:(1)由线段的和差,得PC =(4-x ), ∵y =S 梯形ABCP =12(4-x +4)×4=-2x +16, 且x 的取值范围是0<x <4;(2)在y =-2x +16中,令x=0,则y=16,令x=4,则y=8,∵函数图象的两个端点分别为M 、N ,∴M (0,16),N (4,8),以MN 为边,在MN 右侧作正方形MNP 1P ,正方形中心为P 2,则易知P ,P 1,P 2即为所求P 的坐标;示意图如下:分别过点P 和点N 作y 轴的垂线,垂足为E ,F ,∵△PMN 为等腰直角三角形,∴∠PMN =90°,PM =MN ,∴∠PME +∠NMF =90°,又∠PME +∠MPE =90°,∴∠NMF =∠MPE ,又∠PEM =∠MFN ,∴△PEM ≌△MFN (AAS ),∴PE =MF =8,ME =FN =4,∴P (8,20),同理求得P 1(12,12),P 2(6,14),故P 点可能的坐标为(12,12)或(8,20)或(6,14);(3)由S △MNQ =S △NMP ,设Q (-1,m ),QN 所在直线方程为y =kx +b ,把Q 和N 代入方程,得:84m k b k b =-+⎧⎨=+⎩, 解得b =845m +, 则可求S △NMQ =12×|16-b |×[4-(-1)]=|36-2m |, 当P 为(12,12)时,S △MNP =212MN =()()221168402⎡⎤-+-⎣⎦=40,∴|36-2m|=40,解得m=-2或38,当P(8,20),同理解得:m=-2或38,当P(6,14),有S△MNQ=20,∴|36-2m|=20,解得m=8或28,综上,符合条件的Q的坐标为(-1,-2)或(-1,8)或(-1,38)或(-1,28).。

华东师大版2019-2020学年八年级数学第二学期第19章 矩形、菱形、正方形 单元测试题(含答案)

华东师大版2019-2020学年八年级数学第二学期第19章 矩形、菱形、正方形 单元测试题(含答案)

19章矩形、菱形、正方形单元试卷一、选择题 (共1.在平行四边形、矩形、菱形、正方形中,不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.如图,矩形ABCD 中,E 点在DC 上,且AE 平分 BAC ;若DE=4,AC =15,则 AEC 面积为( )A. 15B. 45C. 60D. 303.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A.14B.15C.16D.174. 正方形ABCD 的边长为4cm ,则正方形的对角线长为( )A. 4cmB.24cmC.34cmD.32cm5.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( ) A .20 B .24 C .40 D .486. 小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形.小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )A .小明、小亮都正确B .小明正确,小亮错误C .小明错误,小亮正确D .小明、小亮都错误7.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 的度数是( )A .60° B.45° C . 40° D.30°8.如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、DA 、CD 、BC 的中点.若AB =2,AD =4,则图中阴影部分的面积为( )A.3B.4C.6D.89.如图,在正方形ABCD 外侧作等边△ADE ,AC 、BE 相交于点F ,则∠BFC 的度数是( )A.45°B.55°C.60°D.75°10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.5二、填空题(共6小题,每小题4分,满分24分)11. 已知四边形ABCD中,∠A=∠B=∠C=90°,若再添加一个条件,使得该四边形是正方形,那么这个条件可以是.12. 如图,矩形ABCD的周长是56cm,对角线AC、BD相交于O,△OAB与△OBC周长差是4cm,则矩形ABCD中较短边长是_________cm.13.如图,以正方形ABCD的对角线AC为边长作菱形AEFC,则∠EAF的度数是度.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.15.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.若AB=6,AD=4,则△CDE的周长为.16.如图,正方形ABCD的边长为8,点M在DC上,且CM=3DM,N是AC上的一动点,则DN+MN的最小值为.三、解答题(共9小题,满分86分)17.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.把△AOB平移到△DEC的位置,求证:四边形OCED是矩形.18.(8分)如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. 求菱形的高DM的长.19.(8分)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,求EDF S .20.(8分)如图,在 ABCD 中,E ,F 分别是AD ,BC 上的点,EF 垂直平分AC .求证:四边形AECF 是菱形.21.(8分)如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .猜想图中C E 和DF 的关系,并证明你的猜想.22.(10分)如图,AB=CD=ED ,AD=EB ,BE ⊥DE ,垂足为E .(1)求证:△ABD ≌△EDB ;(2)只需添加一个..条件:_______________,可使四边形ABCD 为矩形,并加以证明.23.(10分)如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接_______;猜想:_________=________;(2)试证明你的猜想.24.(12分)如图,在矩形ABCD 中,对角线AC 与BD 交于点O .设点P 是AB 上的一点,将△OPD 沿边OP 翻折得到△OPG ,若△OPG 与△OPB 重叠部分△OPM 的面积是△PBD 的面积的41. (1)求证:四边形OPGB 是平行四边形;(2)若AD =10,AB =24,求AP 的长.25(14分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE,CF .(1)求证:AF=CE ;(2)若AC ⊥EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论.(3)在第(2)小题中,还需加上一个什么条件,才能使四边形AFCE 成为正方形?不必说明理由.参考答案第19章矩形、菱形、正方形一、选择题1.A. 2. D 3.C 4. B 5. A .6. B 7. D 8. B 9.C 10. C二、填空题11.AB =BC 或AC ⊥BD , 12. 12cm ,13.22.5 ,14.(-5,4) 15.16. 16. 10.三、解答题17.证明:由平移的特征得:CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°.∴平行四边形OCED 是矩形;18. 解:∵四边形ABCD 是菱形 ∴621,821,====⊥BD OB AC AO BD AC , 在Rt △AOB 中,1022=+=OB AO AB∵ABCD 菱形S =BD AC DM AB ⋅=⋅21 ∴12162110⨯⨯=⋅DM ∴6.9=DM cm 19.解:设ED=x ,则AE=5-x由折叠重合可知:A ’E=AE=5-x,A ’D=AB=3cm在Rt △A ’ED 中22'2'ED D A E A =+即222)5(3x x =-+ 解得:517=x 过F 做FH ⊥ED ,垂足为H∵四边形ABCD 是矩形,∴AD ∥BC∴FH=AB=3 ∴)(1051351721212cm FH ED S EDF =⨯⨯=⋅=∆ 20.证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵DE=BF ,∴AE=CF ,∵AE ∥CF ,∴四边形AECF 是平行四边形, ∵AC ⊥EF ,∴四边形AECF 是菱形.21. 猜想CE=DF ,CE ⊥DF证明:∵四边形ABCD 是正方形, ∴AB=BC=CD ,∠EBC =∠FCD =90°. 又∵E 、F 分别是AB 、BC 的中点, ∴BE=CF ,∴△CEB ≌△DFC ,∴CE=DF .∠BCE =∠CDF∵∠BCE +∠ECD=∠FCD =90°∴∠CDF +∠ECD =90°∴CE ⊥DF∴CE=DF ,CE ⊥DF22.(1)证明:在ABD ∆与EDB ∆中, ∵AB=ED ,AD=EB ,BD=DB ; ∴ABD EDB △≌△(S.S.S )(2)添加的条件:AD=BC理由:∵AB=CD ,AD=BC∴ 四边形ABCD 是平行四边形 ∵BE DE ⊥∴︒=∠90E∵ABD EDB △≌△∴︒=∠=∠90E A∴平行四边形ABCD 是矩形23.(1)如图,连接AF ,AF = AE .(2)∵ 四边形ABCD 是菱形,∴AB=AD ,∴ ∠ABD=∠ADB ,∴ ∠ABF=∠ADE.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB∴ △ABF ≌△ADE ,∴AE AF = .24.证明:∵四边形ABCD 是矩形 ∴OB=OD ∴PBD POB POD S S S 21==∆∆ ∵PBD POM S S 41=∆∴POB POM S S 21=∆ ∴PM=MB , 由折叠重合可知:PBD POD POG S S S 21==∆∆ ∴POG POM S S 21=∆ ∴OM=MG∴四边形OPGB 是平行四边形;(2)∵四边形ABCD 是矩形∴090=∠DAB ∴2624102222=+=+=AB AD BD ∴OB=OD=13由(1)得四边形OPGB 是平行四边形; ∴PG=OB=13由折叠重合可知:PD=PG =136910132222=-=-=AD PD AP25.(1)证明:∵AF ∥BE∴CED AFD ∠=∠∵D 是AC 的中点 ∴DC AD = ∵CDE ADF ∠=∠∴ADF ∆≌CDE ∆∴AF CE =(2)若EF AC ⊥,四边形AFCE 是菱形 理由:∵AF ∥CE ,AF=CE ∴ 四边形AFCE 是平行四边形 ∵EF AC ⊥∴平行四边形AFCE 是菱形(3)如AC =EF (答案不唯一)。

八年级数学下册 第19章 矩形、菱形与正方形19.1 矩形 1矩形的性质课件 华东师大版

八年级数学下册 第19章 矩形、菱形与正方形19.1 矩形 1矩形的性质课件 华东师大版

【总结提升】矩形的性质 (1)矩形的性质为我们以后证明线段平行或相等、角的相等提 供了新的方法. (2)由边、角之间的相等关系,特别是有直角,可以将矩形中 的问题转化为直角三角形中有关边角的计算问题. (3)对角线将矩形分成了四个面积相等的等腰三角形,可以解 决有关等腰三角形的问题. (4)矩形既是中心对称图形,同时还是轴对称图形,为解决图 形的旋转和对折提供了依据.
D.6
【解析】选A.∵∠ABC=90°, ∴AB= A C 2 - B C 21 0 2 - 8 2 6 , ∴CD=AB=6, ∵点E,F分别是OD,OC的中点, ∴EF=3.
3.(2013·资阳中考)在矩形ABCD中,对角线AC,BD相交于
点O,若∠AOB=60°,AC=10,则AB=
.
【解析】∵四边形ABCD是矩形,∴OA=OB.
5.如图,把一张矩形纸片ABCD沿BD折叠,使C点落在E处,且BE 与AD相交于点O.判定△OBD的形状,并理由: 根据对称性,∠CBD=∠EBD, ∵AD∥BC, ∴∠CBD=∠ADB, ∴∠EBD=∠ADB, ∴OB=OD, ∴△OBD为等腰三角形.
(打“√”或“×”) (1)矩形的对角线相等且互相平分. ( √ ) (2)矩形的四个角都是直角. ( √ ) (3)矩形是轴对称图形,它有两条对称轴. ( √ )
知识点 1 矩形的性质 【例1】(2013·宁夏中考)在矩形ABCD中,点E是BC上一点, AE=AD,DF⊥AE,垂足为F. 求证:DF=DC.
【变式备选】在上面的题目中,保持条件不变,试判断 △AOB和△EDO面积的大小,说明理由. 【解析】△AOB和△EDO面积相等.理由: 根据矩形的中心对称性,△ABD和△CDB面积相等. 即S△ABD=S△CDB,即S△ABD=S△EDB, ∴S△ABD-S△OBD=S△EDB-S△OBD, ∴△AOB和△EDO面积相等.

矩形、菱形性质与判定

矩形、菱形性质与判定

一、什么是矩形?有一个角是直角的平行四边形叫做矩形.如图平行四边形ABCD ,∠A=90°,四边形ABCD 为矩形 .CABD二、什么是菱形?有一组邻边相等的平行四边形叫做菱形.如图平行四边形ABCD ,AD=AB ,四边形ABCD 为菱形. AC1.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角. ③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半. 直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.矩形、菱形的性质与判定知识回顾知识讲解2.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.3.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.4.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.5.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.中点中点平行中点模块一 矩形的概念与性质【例1】 矩形的定义:__________________的平行四边形叫做矩形.【例2】 矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【例3】 矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【例4】 如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【例5】 矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =12cm ,则BC =______cm ,周长为 .【例6】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。

第19章矩形、菱形和正方形单元测试2021-2022学年华东师大版数学八年级下册(word 含答案)

第19章矩形、菱形和正方形单元测试2021-2022学年华东师大版数学八年级下册(word 含答案)

第19章矩形、菱形和正方形单元测试一.单选题(共10题;共30分)1.取四边形ABCD的各边中点E、F、G、H,依次连结EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )A. 相等B. 相等且平分C. 垂直D. 垂直且平分2.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()A. AO=CO,BO=DOB. AO=CO=BO=DOC. AO=CO,BO=DO,AC⊥BDD. AO=BO=CO=DO,AC⊥BD3.如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A. 67.5°B. 45°C. 22.5°D. 无法确定4.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. (,)B. (,)C. (2,﹣2)D. (,﹣)5.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A. (﹣1,+1)B. (﹣1,1)C. (1,+1)D. (﹣1,2)6.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直7.菱形具有而矩形不具有的性质是()A. 对角线互相平分B. 四条边都相等C. 对角相等D. 邻角互补8.在平面中,下列说法正确的是().A. 四边相等的四边形是正方形B. 四个角相等的四边形是矩形C. 对角线相等的四边形是菱形D. 对角线互相垂直的四边形是平行四边形9.如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1,S2,则S1,S2的关系是()A. S1>S2B. S1<S2C. S1=S2D. 3S1=2S210.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A. 90°B. 80°C. 70°D. 60°二.填空题(共8题;共24分)11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .12.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.13.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为________.14.设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…根据以上规律,第n个正方形的边长a n=________.15.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是________ .17.(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.18.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.三.解答题(共6题;共36分)19.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.20.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)21.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.22.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:因式分解(提取公因式法)
授课教师:四川省自贡市第28中学王敏
教材:华东师大版数学八年纪(上)
一、教学目标:
根据大纲要求,结合本教材特点和学生认知能力,将教学目标确定为:
★知识技能目标:1、理解因式分解的含义,能判断一个式子的变形是否为因式
分解。

2、熟练运用提取公因式法分解因式。

★过程与方法目标:在教学过程中,体会类比思想逐步形成独立思考,主动探索
的习惯。

★情感与态度目标:通过现实情景,让学生认识到数学的应用价值,并提高学生
关注生存环境的环保意识。

二、教学重难点:
★重点:理解因式分解的含义及运用提取公因式法分解因式
(正确理解因式分解的含义是进行因式分解的前提;提公因式法是因式分
解的基本方法,故确定为重点)
★难点:合理分组,运用提取公因式法分解因式
(学生不易预见分组后下一步是否能进行因式分解,只能在实践中获取经
验,故确为难点)
三、教学方法与教学手段:
★教法:类比、探究式教学方法
教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。

★学法:自主、合作、探索的学习方式
在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。

本课将利用多媒体演示,丰富的教学活动激发学生学习的积极性,更好的达成教学目标,突出重点,突破难点。

植树活动共需要多少棵树苗?
列式:37×102+37×93+37×105
有简便算法吗?
=37×(102+93+105)
=37×300=11100(棵)
在这一过程中,把37换成m,
四、板书设计
此板书设计设计采用三栏式,不仅严谨美观,且突出重点。

五、教学设计说明
教学过程不仅是知识传授的过程,更是学生掌握良好学习方法,锻炼思维能力,培养创新能力,感受数学思想的过程。

本课就教学过程作以下几点说明:
1、教材所处的地位和作用:
“提取公因式法分解因式”是“华东师大版八年纪数学(上)”第十四章第四节内容。

本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链接开拓作用。

提取公因式法是因式分解的基本方法,也为学习因式分解的其他方法及利用因式分解解一元二次方程打下坚实的基础。

2、知识结构安排:本课以“问题情境获取新知应用与拓展”的模式展开,符合学生的认知规律。

3、教学方法与设置:教学过程中采用类比、探索式教学,辅以讲练结合,师生互动。

引导学生习得自主、合作、探索的学习方式,符合新课标确立新的学习方式的要求。

本课以现实问题引入,以生活中的实例结束,让学生认识到数学来源于生活,应用于生活,生活中处处有数学。

又通过因数分解引入因式分解,运用类比的数学思想理清因式分解与整式乘法的关系。

在寻找公因式游戏,合理分组和实践等环节中,引导学生主动探索,合作交流并动手实践,培养团结协作精神和创新意识,形成灵活开放与生成发展的课堂教学,营造出平等、轻松、活泼的教学氛围。

4、教学反馈与评价:本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、鼓励,形成发展性评价,提高学生学数学,用数学的信心。

相关文档
最新文档