拉曼光纤放大器原理

合集下载

光纤拉曼放大技术

光纤拉曼放大技术

(3)要保证有足够的使用寿命,连续工
作时间应不低于100000h; (4)由于拉曼增益与入射光和信号光的 偏振态有关,抽运光与信号光的偏振态 不同得到的增益不同。当两者偏振态一 致时,增益最大;当偏振态相互正交时, 几乎不产生拉曼增益; (5)要保证输出功率可以方便高效地耦 合到光纤中去。
4.抽运方式:
将抽运光耦合进双包层光纤为 端面抽运,第二种方式为侧面抽运。
随着布拉格光纤光栅刻写技术的发展,已经可
以在双包层光纤的两端直接刻写波长和透过率 合适的布拉格光纤光栅来代替由镜面反向构成 谐振腔,这样就可以通过光纤熔接的方法就把 半导体激光器的输出光纤和双包层合为一体。 这种通过直接耦合的方式结构简单紧凑,并且 不需要其他的辅助微调,实现了全光纤化的激 光器,并且可望借助光纤光栅的调谐性能实现 双包层光纤激光器的可调谐输出。
但光纤拉曼放大器在实际应用中最关键
的是获得合适波长的高功率抽运源,这 也是以往限制光纤拉曼放大器实现远距 离大容量光通讯应用,并走向实用化的 主要原因。随着半导体激光器技术、特 种光纤技术的发展,特别是随着高功率 光纤激光器的研制成功,使光纤拉曼放 大器已成为实现超宽大容量远距离光通 讯的最佳选择。
正是由于这一内包层,使得双包层光纤
激光器在保持常规光纤单模激光器近衍 射极限激光输出前提下,同时可以达到 高转化效率和高功率输出。一般来说, 内包层的尺寸都应大于100μ m,经耦合 透镜聚焦后的焦斑为100μ m左右的抽运 光就可以有效地耦合进单模光纤中;并 且内包层的数值孔径较大,一般大于0.4, 收集抽运光的能力强,可以保证抽运光 高效的耦合进入内包层被掺杂纤芯吸收。
这种放大器及其相关产品的研发快速发展,如
Lucent公司利用拉曼放大和EDFA混合放大器 传输1.6Tbit/s(40×40Gbit/s)信号达400km, Alcated 公 司 利 用 拉 曼 放 大 器 获 得 了 32×190Gbit/s信号传输450km无中继;Masuda 等利用多波长抽运和多级放大,在1.55μ m附 近获得132nm透明增益带宽;Suzuki等利用多 波长分布式光纤拉曼放大器将信道间隔为 50GHz、32×10 Gbit/s的DWDM信号传输了 640km。

拉曼光纤放大器的优化设计

拉曼光纤放大器的优化设计

分类号:O437 U D C:D10621-408-(2015)0922-0密级:公开编号:34成都信息工程大学学位论文拉曼光纤放大器的优化设计论文作者姓名:唐洪申请学位专业:电子科学与技术申请学位类别:工学学士指导教师姓名(职称):何修军(副教授)论文提交日期:2015年05月26日拉曼光纤放大器的优化设计摘要拉曼光纤放大器(FRA)的工作原理是基于受激拉曼散射,是迄今为止唯一能在1270 nm到1670 nm的全波段上进行光放大的器件。

本文主要介绍了FRA的发展历史和现状,受激拉曼散射效应基本原理,以及拉曼光纤放大器的工作原理。

介绍了其系统构成,包括增益介质,泵浦源,无源器件,并且在其工作原理的基础上,对特性进行分析,包括增益,噪声,偏振相关性,温度等。

根据对基本理论的的理解,运用optisystem软件优化仿真,对于优化仿真,本论文中做到的是通过对拉曼光纤放大器的阵列泵浦波长,泵浦功率,光纤有效作用面积,光纤长度的优化,达到增益的最大值。

关键词:拉曼光纤放大器;受激拉曼散射效应;优化仿真;阵列泵浦Optimal Design of Raman Fiber AmplifierAbstractThe Raman fiber amplifier's working principle is based on the stimulated Raman scattering, which is the only device that can be optically amplified in the full band of 1670 nm to 1270 nm. This paper introduced the history and current situation of the FRA, the basic principle of Raman scattering, and the working principle of Raman fiber amplifier. And its system structure, including the gain medium, pump source and passive components are introduced.On the basis of the working principle, the paper analyses its characteristics, including the gain, noise, polarization dependence, temperature, etc.According to the basic theory of the understanding,it is used optisystem software to optimize simulation. For optimize simulation, the paper is done by array pump's wavelength, power, the fiber area, fiber length optimized in order to achieve maximum gain.Key words: Raman fiber amplifier; stimulated Raman scattering; optimization simulation; array pump目录论文总页数:27页1 引言错误!未定义书签。

光纤拉曼放大技术解读

光纤拉曼放大技术解读

近年来,国际上发展的以双包层光纤为基础的
包层抽运技术,为提高光纤激光器输出功率提 供了解决途径。利用双包层抽运技术的光纤激 光器的转换功率可达80%,输出功率可提高几 个数量级,并且有着接近衍射极限的光束质量 和小巧、全固化、低域值等显著优点。利用 8W 左右双包层光纤激光器抽运的级联拉曼激 光器,已经可以实现在 1.2~1.5μ m关键波长范 围内抽运光纤拉曼放大器所需关键波长 1W 左 右的激光输出。
保护层 外包层 内包层 纤芯
圆形内包层双包层光纤横剖面
为了提高对抽运光的吸收效率,人们一
直在努力优化内包层的边界条件,并作 了大量的工作。提出了D形、长方形和正 方形、梅花形等内包层形状(图4),并 拉制出这些内包层形状的双包层光纤, 实验表明这些内包层形状的光纤相对于 圆形内包层形状对抽运光的吸收效率大 大提高。
1.基本原理
Snitzer等人巧妙的提出设计了双包层光
纤,其结构如图3所示。
内包层 光纤芯
ቤተ መጻሕፍቲ ባይዱ
保护层
激光输出
泵浦光
外包层
双包层光纤是一种具有特殊结构的光纤,它比
常规光纤增加了一个内包层(最早的内包层形 状为圆形),内包层的横向尺寸和数值孔径均 大于纤芯。纤芯中掺杂稀土元素(Yb,Nd, Er等)。由于内包层绕在单模纤芯的外围,抽 运光在内包层中内反射并多次穿越纤芯被掺杂 离子吸收,从而大大提高了抽运效率。内包层 的作用体现在两方面:一方面,内包层的折射 率大于纤芯折射率,可保证振荡激光在单模纤 芯中传播,使输出激光的模式好、光束质量高; 另一方面内包层的折射率又小于外包层的折射 率,即内包层构成抽运光的传播通道,通过合 理设计内包层形状和选择内包层材料,耦合进 内包层的抽运光可以高效地被掺杂纤芯吸收, 转化为激光。

分布式拉曼光纤放大器的应用

分布式拉曼光纤放大器的应用

分布式拉曼光纤放大器的应用摘要随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。

在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。

本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。

1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。

低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。

这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。

光纤拉曼放大器是SRS的一个重要应用。

由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。

如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。

图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。

主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。

图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。

拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。

采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。

这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。

1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。

这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。

拉曼光纤放大器

拉曼光纤放大器

拉曼光纤放⼤器⼀拉曼光纤放⼤器1.拉曼光纤放⼤器出现的背景随着光纤通信技术的进⼀步发展,通信波段由C带(1528-1562nm)向L带(1570-1610nm)和S带(1485-1520nm)扩展。

由于光纤制造技术的发展,可消除在1.37µm附近的损耗⾼峰,因此通信波段有望扩展到从1.2µm-1.7µm的宽⼴范围内。

掺铒光纤放⼤器(EDFA)⽆法满⾜这样的波长范围,⽽拉曼光纤放⼤器却正好可以在此处发挥巨⼤作⽤。

另外拉曼放⼤器因其分布式放⼤特点,不仅能够减弱光纤⾮线性的影响,还能够抑制信噪⽐的劣化,具有更⼤的增益带宽、灵活的增益谱区、温度稳定性好以及放⼤器⾃发辐射噪声低等优点。

随着⾼功率⼆极管泵浦激光器和光纤光栅技术的发展,泵浦源问题也得到了较好的解决。

拉曼光纤放⼤器逐渐引起了⼈们的重视,并逐渐在光放⼤器领域占据重要地位,成为光通信领域中的新热点。

2.拉曼光纤放⼤器的⼯作原理受激拉曼散射(SRS)是电磁场与介质相互作⽤的结果。

才能过经典⼒学⾓度解释拉曼散射为:介质分⼦或原⼦在电磁场的策动下做受迫共振,由于介质分⼦具有固有的振荡频率,所以在受迫共振下界将出现频率为策动频率与固有频率的和频和差频振荡,分别对应着反斯v是电磁场的振荡频率,v 是介质分⼦固托克斯分量和斯托克斯分量,如图1所⽰,其中有的振荡频率。

图1 经典拉曼振动谱经典理论⽆法解释反斯托克斯线⽐斯托克斯线的强度弱⼏个数量级且总是先于反斯托克斯线出现的实验结果。

从量⼦⼒学的⾓度能够解释受激拉曼散射。

介质中的分⼦和原⼦在其平衡位置附近振动,将量⼦化的分⼦振动称为声⼦。

⾃发拉曼散射是⼊射光⼦与热声⼦相碰撞的结果。

受激声⼦是在⾃发拉曼散射过程中产⽣的,当⼊射光⼦与这个新添的受激声⼦再次发⽣碰撞时,则再产⽣⼀个斯托克斯光⼦的同时⼜增添⼀个受激声⼦,如此继续下去,便形成⼀个产⽣受激声⼦的雪崩过程。

产⽣受激声⼦过程的关键在于要有⾜够多的⼊射光⼦。

掺铒光纤放大器和拉曼光纤放大器分析和比较

掺铒光纤放大器和拉曼光纤放大器分析和比较

掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。

此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。

关键词:掺铒光纤放大器;光纤拉曼放大器0、综述20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。

在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。

但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。

传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。

在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。

20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。

此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。

又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。

1、光放大器分类及原理光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。

光纤拉曼放大器

光纤拉曼放大器

光纤拉曼放大器的发展在许多非线性光学介质中,高能量(波长较短)的泵浦光散射,将一小部分入射功率转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为拉曼效应。

量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵浦光产生称为斯托克斯波的频移光。

研究发现,石英光纤具备很宽的受激拉曼散射(SRS)增益谱,并在13THz附近有一较宽的主峰。

假如一个弱信号和一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可得到放大,这种基于受激拉曼散射机制的光放大器即称为拉曼光纤放大器。

随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。

密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。

掺铒光纤放大器(EDFA)由于其增益平坦及噪声等局限性,已经不能完全满足光通信系统发展的要求。

而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。

并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。

光纤拉曼放大器与新型大有效面积传输光纤、高光谱效率调制码型和向前纠错技术被称为现代大容量、长距离光纤传输的四大关键技术。

拉曼光纤放大器的基本原理、特点和类型在许多非线性光学介质中,高能量(波长较短)的泵浦光散射,将一小部分入射功率转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为拉曼效应。

量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵浦光产生称为斯托克斯波的频移光。

光纤拉曼放大技术

光纤拉曼放大技术

但光纤拉曼放大器在实际应用中最关键 的是获得合适波长的高功率抽运源,这 也是以往限制光纤拉曼放的 主要原因。随着半导体激光器技术、特 种光纤技术的发展,特别是随着高功率 光纤激光器的研制成功,使光纤拉曼放 大器已成为实现超宽大容量远距离光通 讯的最佳选择。
4.抽运方式:
将抽运光耦合进双包层光纤内包层的方 式大体上可以分为两种,第一种方式为 端面抽运,第二种方式为侧面抽运。
随着布拉格光纤光栅刻写技术的发展,已经可 以在双包层光纤的两端直接刻写波长和透过率 合适的布拉格光纤光栅来代替由镜面反向构成 谐振腔,这样就可以通过光纤熔接的方法就把 半导体激光器的输出光纤和双包层合为一体。 这种通过直接耦合的方式结构简单紧凑,并且 不需要其他的辅助微调,实现了全光纤化的激 光器,并且可望借助光纤光栅的调谐性能实现 双包层光纤激光器的可调谐输出。
(3)利用光纤作为增益介质,可通过增加长 度降低对输入信号功率的要求,能获得的增益 高、窜扰少、噪声指数低、频谱范围宽、温度 稳定性好。
因此它可以扩展到掺铒光纤放大器放大的波段, 并可以在1.2~1.6μm光谱范围内进行光放大, 获得比EDFA宽得多的增益带宽;其次,可制 作分立式或分布式FRA。分布式光纤拉曼放大 器可以对信号光进行在线放大,增加光放大的 传输距离,特别适用于海底光缆通信系统。而 且因为放大是沿着光纤分布而不是集中作用, 所以输入光纤的光功率可以大为减少,从而非 线性效应尤其是四波混频效应大大减弱,这对 于大容量DWDM系统是十分适用的。
但在脉冲双包层光纤激光器,特别是双包层光 纤放大器这种抽运方式则显示了它的优越性。
5.抽运波长的选择
掺Yb光纤的吸收和发射谱带非常宽,有潜在的 从975 nm到1200 nm的发射谱段,特别是Yb宽 带增益弥补了其它激光光源1.1~1.2um处的空白。 非常宽的吸收谱带使抽运源的选择具有更多的 灵活性,可供选择的激光器有AlGaAs,InGaAs 半导体激光器,Nd:YAG 激光器和Nd:YLF激光 器等。特别是近年来半导体激光器生产工艺逐
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼光纤放大器原理
拉曼光纤放大器(Raman Fiber Amplifier)是一种基于拉曼散射效应的光纤放大器。

它利用拉曼散射的原理,在光纤中实现光信号的增强。

拉曼散射是一种非线性光学现象,其基本原理是光与光子之间的相互作用。

当光传播在光纤中时,光子与介质中的分子或晶格振动发生耦合,从而使光子的能量转移到介质中的振动模式上。

如果光子能量与介质振动模式的能量相匹配,就会发生拉曼散射。

拉曼散射分为受激拉曼散射(Stimulated Raman Scattering, SRS)和自发拉曼散射(Spontaneous Raman Scattering, SBS)。

受激拉曼散射是指激发光和散射光的频率差等于介质的拉曼频移,而自发拉曼散射是指光子与介质中分子或振动模式发生相互作用,从而形成散射光。

拉曼光纤放大器的工作原理是利用拉曼散射中的受激拉曼散射效应。

当信号光(输入光)和泵浦光同时注入光纤中时,泵浦光的能量被转移到信号光上,从而使信号光的功率增大。

具体而言,当泵浦光与信号光频率差等于光纤中介质的拉曼频移时,就会发生受激拉曼散射。

泵浦光的能量转移到信号光上,使其增强。

拉曼光纤放大器的放大过程可以通过几个关键参数进行描述。

首先是增益带宽,它表示在特定的频率范围内,信号光能够得到明显的增益。

增益带宽取决于光纤的材料和波长。

其次是增益平坦度,它衡量信号光在增益带宽内的增益是否均匀。

增益平坦度对于传输多个波长的光信号非常重要。

最后是增益峰值,它表示在增益带宽内,信号光获得的最大增益。

增益峰值取决于泵浦光的功率和波长。

与其他光纤放大器相比,拉曼光纤放大器具有几个优点。

首先,它可以实现宽增益带宽和高增益峰值,适用于传输多个波长的光信号。

其次,它具有很高的稳定性和可靠性。

由于拉曼增益是通过光与介质相互作用实现的,不需要激光器或半导体放大器,因此拉曼光纤放大器具有长寿命和低功率损耗。

然而,拉曼光纤放大器也存在一些限制。

由于受激拉曼散射效应的增益效率较低,需要较高的泵浦功率来实现所需增益。

此外,由于泵浦光和信号光在光纤中传播的损耗,拉曼光纤放大器的增益也受到限制。

总结起来,拉曼光纤放大器是一种利用拉曼散射原理来实现光信号增强的光纤放大器。

通过选择合适的波长和功率的泵浦光,可以在光纤中实现宽增益带宽和高增益峰值,适用于传输多个波长的光信号。

然而,泵浦功率较高和传输损耗是限制其性能的因素。

尽管如此,拉曼光纤放大器具有长寿命、低功率损耗的优点,因此在光通信系统和传感应用中得到广泛应用。

相关文档
最新文档