拉曼抑制光纤光栅
拉曼光纤放大器的优化设计

分类号:O437 U D C:D10621-408-(2015)0922-0密级:公开编号:34成都信息工程大学学位论文拉曼光纤放大器的优化设计论文作者姓名:唐洪申请学位专业:电子科学与技术申请学位类别:工学学士指导教师姓名(职称):何修军(副教授)论文提交日期:2015年05月26日拉曼光纤放大器的优化设计摘要拉曼光纤放大器(FRA)的工作原理是基于受激拉曼散射,是迄今为止唯一能在1270 nm到1670 nm的全波段上进行光放大的器件。
本文主要介绍了FRA的发展历史和现状,受激拉曼散射效应基本原理,以及拉曼光纤放大器的工作原理。
介绍了其系统构成,包括增益介质,泵浦源,无源器件,并且在其工作原理的基础上,对特性进行分析,包括增益,噪声,偏振相关性,温度等。
根据对基本理论的的理解,运用optisystem软件优化仿真,对于优化仿真,本论文中做到的是通过对拉曼光纤放大器的阵列泵浦波长,泵浦功率,光纤有效作用面积,光纤长度的优化,达到增益的最大值。
关键词:拉曼光纤放大器;受激拉曼散射效应;优化仿真;阵列泵浦Optimal Design of Raman Fiber AmplifierAbstractThe Raman fiber amplifier's working principle is based on the stimulated Raman scattering, which is the only device that can be optically amplified in the full band of 1670 nm to 1270 nm. This paper introduced the history and current situation of the FRA, the basic principle of Raman scattering, and the working principle of Raman fiber amplifier. And its system structure, including the gain medium, pump source and passive components are introduced.On the basis of the working principle, the paper analyses its characteristics, including the gain, noise, polarization dependence, temperature, etc.According to the basic theory of the understanding,it is used optisystem software to optimize simulation. For optimize simulation, the paper is done by array pump's wavelength, power, the fiber area, fiber length optimized in order to achieve maximum gain.Key words: Raman fiber amplifier; stimulated Raman scattering; optimization simulation; array pump目录论文总页数:27页1 引言错误!未定义书签。
拉曼光谱原理

拉曼光谱、红外光谱、XPS的原理与应用拉曼光谱的原理与应用拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。
这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光与信号过滤整合的光纤探头。
这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以与体积小、容易使用的拉曼光谱仪。
(一)含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征(二)拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。
c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。
这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
(三)拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。
激光拉曼光谱法的原理是拉曼散射效应。
拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。
这种频率变化了的散射就称为拉曼散射。
对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。
因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。
这就是拉曼光谱可以作为分子结构的分析工具的理论工具。
拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。
应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
拉曼光谱仪-学习

1940~1960年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太 弱(约为入射光强的10-6),并要求被测样品的体积必须足够大、 无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和 商品化更使拉曼光谱的应用一度衰落;
前…
后…
入射光 分子
分子
散射光
散射光与入射光有相同的频率
emission
excitation
光散射 - 拉曼
散射光中的1010光子之一是非弹性散射(拉曼 )
前…
后…
入射光 分子
分子振动
散射光
emission
excitationexcit.-vib.
激光拉曼光谱基本原理
principle of Raman spectroscopy
在激光拉曼光谱中,完全自由取向的分子所散射的光 也可能是偏振的,因此一般在拉曼光谱中用退偏振比 (或称去偏振度)ρ表征分子对称性振动模式的高低。
I
I //
I∥和I⊥—3—的分别谱代带表称与为激偏光振电矢谱量带平,行表和示垂分直的子谱有线较的高强的度 对称振4 动模式 。
3 的谱带称为退偏振谱带,表示分子对称振 动模式4 较低。
500
Raman shift (cm-1)
不同复印机墨的 拉曼光谱比对
In t
Int
司法科学-理化检验
400 Sun Dec 28 11:53:18 2008 (GMT+08:00)
350 300
轿车
250
200
150
100
50
光纤传感技术的创新与商业应用

光纤传感技术的创新与商业应用随着科技的不断发展和进步,光纤传感技术逐渐走进人们的视野,并在各行各业带来了广泛的应用。
光纤传感技术以其高精度、高灵敏度和高可靠性的特点,成为当前传感领域的重要创新,为商业应用带来了巨大的潜力和机遇。
一、光纤传感技术的基本原理和分类光纤传感技术是基于光纤传输介质的一种传感技术,其基本原理是利用光纤的光学特性来实现对物理量或环境参数的感知和测量。
根据不同的应用需求,光纤传感技术可分为光纤光栅传感技术、拉曼光纤传感技术、布里渊光纤传感技术等多种分类。
1. 光纤光栅传感技术光纤光栅传感技术利用光栅的衍射原理,将光纤中的衍射光束与环境参数或物理量之间的关系转换为光纤光栅衍射特性的变化。
通过监测光栅的弯曲、压力或温度等变化,实现对相关参数的测量和监控。
2. 拉曼光纤传感技术拉曼光纤传感技术是利用拉曼散射效应来实现对物质性质和环境参数的检测。
光纤中的光束经过物质散射后,产生了与物质分子振动和转动有关的散射光,通过测量散射光的频移和强度变化,可以得到物质的成分、浓度以及环境参数的信息。
3. 布里渊光纤传感技术布里渊光纤传感技术是基于布里渊散射原理的一种传感技术。
当光纤受到外界温度、应变等因素的影响时,光纤内部的光子与声子发生相互作用,产生了布里渊散射。
通过监测布里渊散射光的频移和强度变化,可以实现对温度、应变等参数的高精度测量。
二、光纤传感技术在工业领域的应用1. 油气管道监测光纤传感技术可以应用于油气管道的监测和安全防护。
通过在光纤表面涂覆特殊材料或使用光纤光栅传感技术,可以实时监测管道的压力、温度、应变等参数,及时发现异常情况并采取相应的措施,保障管道的安全运行。
2. 环境监测光纤传感技术在环境监测方面也有着广泛的应用。
通过布置光纤传感网络,可以实时监测大气污染、水质污染、土壤湿度等环境参数,提供准确的监测数据,帮助环境监测部门及时了解环境状况,采取相应的环境保护措施。
3. 结构安全监测光纤传感技术被广泛应用于结构安全监测领域。
拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用;这些技术是:CCD系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头;这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪;一含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光;在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应;由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关;因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息;目前拉曼光谱技术已广泛应用于物质的鉴定,分子结构的研究谱线特征二拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量;c. 一般情况下,斯托克斯线比反斯托克斯线的强度大;这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数;三拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量;此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具;2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析;相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究;在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关;4 因为激光束的直径在它的聚焦部位通常只有毫米,常规拉曼光谱只需要少量的样品就可以得到;这是拉曼光谱相对常规红外光谱一个很大的优势;而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品;5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍;四几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术五拉曼频移,拉曼光谱与分子极化率的关系1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析2、拉曼光谱与分子极化率的关系分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积诱导偶极矩与外电场的强度之比为分子的极化率分子中两原子距离最大时,极化率也最大拉曼散射强度与极化率成正比例六应用激光光源的拉曼光谱法应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱;其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高;已应用于生物、药物及环境分析中痕量物质的检测;共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法;共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测;已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究;激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段1、共振拉曼光谱的特点:1、基频的强度可以达到瑞利线的强度;2、泛频和合频的强度有时大于或等于基频的强度;3、通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质;4、和普通拉曼相比,其散射时间短,一般为10-12~10-5S;2、共振拉曼光谱的缺点:需要连续可调的激光器,以满足不同样品在不同区域的吸收;七电化学原位拉曼光谱法电化学原位拉曼光谱法, 是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光包括圆偏振光和线偏振光激发受电极电位调制的电极表面, 通过测定散射回来的拉曼光谱信号频率、强度和偏振性能的变化与电极电位或电流强度等的变化关系;一般物质分子的拉曼光谱很微弱, 为了获得增强的信号, 可采用电极表面粗化的办法, 可以得到强度高104-107倍的表面增强拉曼散射Surface Enahanced Raman Scattering, SERS 光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射SERRS光谱, 其强度又能增强102-103;电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分;拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成, 光源一般采用能量集中、功率密度高的激光, 收集系统由透镜组构成, 分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件;原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置;为了避免腐蚀性溶液和气体侵蚀仪器, 拉曼池必须配备光学窗口的密封体系;在实验条件允许的情况下, 为了尽量避免溶液信号的干扰, 应采用薄层溶液电极与窗口间距为~1mm , 这对于显微拉曼系统很重要, 光学窗片或溶液层太厚会导致显微系统的光路改变, 使表面拉曼信号的收集效率降低;电极表面粗化的最常用方法是电化学氧化- 还原循环Oxidation-Reduction Cycle,ORC法, 一般可进行原位或非原位ORC处理;目前采用电化学原位拉曼光谱法测定的研究进展主要有: 一是通过表面增强处理把测检体系拓宽到过渡金属和半导体电极;虽然电化学原位拉曼光谱是现场检测较灵敏的方法, 但仅能有银、铜、金三种电极在可见光区能给出较强的SERS;许多学者试图在具有重要应用背景的过渡金属电极和半导体电极上实现表面增强拉曼散射;二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS 光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述;三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS 谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题;八拉曼信号的选择入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正;其内标的选择原则和定量分析方法与其他光谱分析方法基本相同;斯托克斯线能量减少,波长变长反斯托克斯线能量增加,波长变短九拉曼光谱的应用方向拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动;拉曼光谱的分析方向有:定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析;结构分析:对光谱谱带的分析,又是进行物质结构分析的基础;定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力;十拉曼光谱用于分析的优点和缺点1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点2、拉曼光谱用于分析的不足1拉曼散射面积2不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响3荧光现象对傅立叶变换拉曼光谱分析的干扰4在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题5任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响十一新进展及发展前景十多年来,虽然已经有一些关于在高真空体系、大气下、以及固/液体系电化学体系中研究单晶金属体系表面拉曼光谱的报道89~91,但直至近年光滑单晶电极体系的SERS研究才取得了重要进展.Bryant等记录了以单分子层吸附在光滑Pt 电极表面的噻吩拉曼谱89,Furtak等使用具有Kretchmann光学构型的ATR电解池并利用表面等离子体增强效应,获得了吸附物种在平滑的Ag111单晶面上的弱SERS信号90.由于拉曼光谱系统的检测灵敏度的限制,所获得的表面信号极弱,无法进行较为详细的研究.Otto小组和Futamata小组分别成功地采用Otto光学构造的ATR电解池,利用表面等离子激元增强方法获得了光滑单晶电极上相对较强的表面Raman信号92~94.前者发现不同的Cu单晶电极表面的增强因子有所不同,有较高指数或台阶的晶面的信号明显增强92.Futamata等甚至可在Pt和Ni 金属的单晶表面上观察到SERS信号, 计算表明其表面增强因子为1~2个数量级93.目前可用于单晶表面电极体系的SERS研究还局限于Raman散射截面很大的极少数分子,尚需进一步改进和寻找实验方法,以拓宽可研究的分子体系.若能成功地将各种单晶表面电极的SERS信号与经过不同粗糙方式处理的电极表面信号进行系统地比较和研究, 不但对定量研究SERS机理和区分不同增强机制的贡献大有益处, 而且将有利于提出正确和可靠的拉曼光谱的表面选择定律.随着科学技术的迅速发展, 各类制备不同纳米颗粒以及二维有序纳米图案的技术和方法将日益成熟, 人们可以比较方便地在理论的指导下,寻找在过渡金属上产生强SERS效应的最佳实验条件.这些突破无疑将为拉曼光谱技术广泛应用于各种过渡金属电极和单晶电极体系的研究开创新局面.总之,通过摸索合适的表面处理方法并采用新一代高灵敏度的拉曼谱仪, 可将拉曼光谱研究拓展至一系列重要的过渡金属和半导体体系, 进而将该技术发展成为一个适用性广、研究能力强的表面界面谱学工具,同时推动有关表面界面谱学理论的发展.各种相关的检测和研究方法也很可能得到较迅速的发展和提高.在提高检测灵敏度的基础上,人们已不满足于仅仅检测电极表面物种, 而是注重通过提高其检测分辨率包括谱带分辨、时间分辨和空间分辨来研究电化学界面结构和表面分子的细节和动态过程.今后的主要研究内容可能从稳态的界面结构和表面吸附逐渐扩展至其反应的动态过程,并深入至分子内部的各基团, 揭示分子水平上的化学反应吸附动力学规律, 研究表面物种间以及同电解质离子或溶剂分子间的弱相互作用等.例如将电化学暂态技术时间-电流法、超高速循环伏安法同时间分辨光谱技术结合, 开展时间分辨为ms或μs级的研究95.采用SERS同电化学暂态技术结合进行的时间分辨实验可检测鉴别电化学反应的产物及中间物96, 新一代的增强型电荷耦合列阵检测器ICCD和新一代的拉曼谱仪如:富立叶变换拉曼仪和哈德玛变换仪的推出, 都将为时间分辨拉曼光谱在电化学的研究提供新手段.最近, 我们利用电化学本身的优势, 提出的电位平均表面增强拉曼散射hePotential Averaged SERS, PASERS新方法17, 通过在Ag和Pt微电极上采集在不同调制电位频率下的PASERS谱, 并进行解谱, 可在不具备从事时间分辨研究条件的仪器上进行时间分辨为μs级的电化学时间分辨拉曼光谱研究.拉曼光谱研究的另一发展方向是采用激光拉曼光谱微区显微技术97开展空间分辨研究并进而开展电极表面微区结构与行为的研究.Fujishima等人利用共焦显微拉曼系统和SERS技术发展了表面增强拉曼成像技术,并研究了SERS活性银表面吸附物以及自组装膜的SERI图象98,99.该技术和具有三维空间分辨的共焦显光谱方法在研究导电高聚物、L-B膜和自组装膜电极以及电极钝化膜和微区腐蚀等方面将发挥其重要作用98~100.突破光学衍射极限的、空间分辨值达数十纳米的近场光学Raman 显微技术则很可能异军突起101.为多方位获得详细信息,达到取长补短的目的,开展Raman光谱与其他先进技术联用的研究势在必行.光导纤维技术可在联用耦合方面发挥关键作用102,103,如将表面Raman光谱技术与扫描探针显微技术进行实时联用104.针对性的联用技术可望较全面地研究复杂体系并准确地解释疑难的实验现象,为各种理论模型和表面选则定律提供实验数据, 促进谱学电化学的有关理论和表面量子化学理论的发展.可以预见, 在不久的将来,随着表面检测技术的快速发展,SERS及其应用于电化学的研究将进入一个新的阶段.。
光纤拉曼放大技术

在这方面应用高功率光纤激光器作为抽
运源显示出了明显的优势。虽然用波长 合适的半导体激光器可以直接抽运光纤 拉曼放大器,但能发射光纤拉曼放大所 需关键抽运波长的半导体激光器种类非 常有限,目前主要是~1.4μ m的LD,而 且LD通常受到其固有特性的限制,输出 功率也较低,无法满足远距离大容量通 讯,特别是跨洋通讯光缆等拉曼放大的 要求。
我国在“十五”863计划中明确提出研制
宽带光纤拉曼放大器,要求在2003年11 月底前掌握波分服用(WDM)超长距离 光传输的系统技术,研制出宽带拉曼光 纤放大器。
宽带拉曼光纤放大器对抽运源 的要求主要有以下几点:
(1)要有较高的输出功率,对于分立式放大
器抽运功率要达到1W左右,分布式放大器的 抽运功率也需200mW以上; (2)要有合适的输出波长,抽运波长的选取 主要依据所需拉曼增益谱的中心波长而定。对 于石英光纤,拉曼增益峰的抽运光与信号光频 移约13.2THz(110nm),同时为了得到宽带、 平坦的增益曲线,通常也需采用多波长抽运。 为了使系统更简化,也希望实现一台抽运源能 提供多波长的高功率抽运,同时要求输出波长 稳定。为了抑制受激布里渊散射,各个抽运源 的线宽要大于1nm;
这种放大器及其相关产品的研发快速发展,如
Lucent公司利用拉曼放大和EDFA混合放大器 传输1.6Tbit/s(40×40Gbit/s)信号达400km, Alcated 公 司 利 用 拉 曼 放 大 器 获 得 了 32×190Gbit/s信号传输450km无中继;Masuda 等利用多波长抽运和多级放大,在1.55μ m附 近获得132nm透明增益带宽;Suzuki等利用多 波长分布式光纤拉曼放大器将信道间隔为 50GHz、32×10 Gbit/s的DWDM信号传输了 640km。
拉曼光纤放大器

拉曼光纤放⼤器⼀拉曼光纤放⼤器1.拉曼光纤放⼤器出现的背景随着光纤通信技术的进⼀步发展,通信波段由C带(1528-1562nm)向L带(1570-1610nm)和S带(1485-1520nm)扩展。
由于光纤制造技术的发展,可消除在1.37µm附近的损耗⾼峰,因此通信波段有望扩展到从1.2µm-1.7µm的宽⼴范围内。
掺铒光纤放⼤器(EDFA)⽆法满⾜这样的波长范围,⽽拉曼光纤放⼤器却正好可以在此处发挥巨⼤作⽤。
另外拉曼放⼤器因其分布式放⼤特点,不仅能够减弱光纤⾮线性的影响,还能够抑制信噪⽐的劣化,具有更⼤的增益带宽、灵活的增益谱区、温度稳定性好以及放⼤器⾃发辐射噪声低等优点。
随着⾼功率⼆极管泵浦激光器和光纤光栅技术的发展,泵浦源问题也得到了较好的解决。
拉曼光纤放⼤器逐渐引起了⼈们的重视,并逐渐在光放⼤器领域占据重要地位,成为光通信领域中的新热点。
2.拉曼光纤放⼤器的⼯作原理受激拉曼散射(SRS)是电磁场与介质相互作⽤的结果。
才能过经典⼒学⾓度解释拉曼散射为:介质分⼦或原⼦在电磁场的策动下做受迫共振,由于介质分⼦具有固有的振荡频率,所以在受迫共振下界将出现频率为策动频率与固有频率的和频和差频振荡,分别对应着反斯v是电磁场的振荡频率,v 是介质分⼦固托克斯分量和斯托克斯分量,如图1所⽰,其中有的振荡频率。
图1 经典拉曼振动谱经典理论⽆法解释反斯托克斯线⽐斯托克斯线的强度弱⼏个数量级且总是先于反斯托克斯线出现的实验结果。
从量⼦⼒学的⾓度能够解释受激拉曼散射。
介质中的分⼦和原⼦在其平衡位置附近振动,将量⼦化的分⼦振动称为声⼦。
⾃发拉曼散射是⼊射光⼦与热声⼦相碰撞的结果。
受激声⼦是在⾃发拉曼散射过程中产⽣的,当⼊射光⼦与这个新添的受激声⼦再次发⽣碰撞时,则再产⽣⼀个斯托克斯光⼦的同时⼜增添⼀个受激声⼦,如此继续下去,便形成⼀个产⽣受激声⼦的雪崩过程。
产⽣受激声⼦过程的关键在于要有⾜够多的⼊射光⼦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼抑制光纤光栅
光纤光栅是一种重要的光纤传感器元件,它通过在光纤中引入周期性的折射率变化,实现对光信号的调制和传感。
而拉曼抑制光纤光栅则是一种特殊的光纤光栅,它能够有效地抑制光纤中的拉曼散射,提高光纤传输的性能和质量。
拉曼散射是光纤传输中的一种重要的非线性光学效应,它会导致光信号的衰减和失真。
在长距离光纤通信系统中,拉曼散射会限制光信号的传输距离和传输容量,降低系统的性能。
因此,研究和应用拉曼抑制光纤光栅成为了解决这一问题的重要途径。
拉曼抑制光纤光栅的工作原理是通过在光纤中引入特殊的折射率分布,使得光信号在传输过程中发生相位匹配,从而抑制拉曼散射的发生。
具体来说,拉曼抑制光纤光栅通过周期性改变光纤的折射率,使得光信号在传输过程中与拉曼散射产生的散射光发生相位反向,从而相互抵消。
这样一来,拉曼散射的影响就被有效地抑制了。
拉曼抑制光纤光栅的设计和制备是一个复杂而精细的过程。
首先,需要选择合适的光纤材料和光纤结构,以实现所需的折射率分布。
然后,利用光纤光栅制备技术,在光纤中引入周期性的折射率变化。
最后,通过精确控制光纤光栅的参数,如周期、长度和折射率变化等,来实现对拉曼散射的抑制。
拉曼抑制光纤光栅在光通信、光传感和光纤激光器等领域具有广泛的应用前景。
在光通信系统中,拉曼抑制光纤光栅可以提高光信号的传输距离和传输容量,提高系统的性能和可靠性。
在光传感领域,拉曼抑制光纤光栅可以用于实现高灵敏度的光纤传感器,用于测量温度、压力、应变等物理量。
在光纤激光器中,拉曼抑制光纤光栅可以用于抑制拉曼散射的发生,提高激光器的输出功率和光谱纯度。
拉曼抑制光纤光栅是一种重要的光纤传感器元件,它能够有效地抑制光纤中的拉曼散射,提高光纤传输的性能和质量。
通过精确的设计和制备,拉曼抑制光纤光栅在光通信、光传感和光纤激光器等领域具有广泛的应用前景。
随着光纤技术的不断发展和创新,相信拉曼抑制光纤光栅将会在未来发挥更加重要的作用,推动光纤通信和光纤传感技术的进一步发展。