山东省济宁市曲阜市2020-2021学年九年级上学期期末数学试题 (1)
专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)1.(2019·山东九年级期末)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y (万件)与销售单价x (元)之间的函数关系如下表格所示:(1)求每月的利润W (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【答案】(1)221321600W x x =-+-;(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.(1)由表格可知,y 与x 之间的函数关系是一次函数, 设y 与x 之间的函数关系式为y kx b =+, 将(30,40)和(40,20)代入得:30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为2100y x =-+, 因此,(16)(16)(2100)W x y x x =-=--+, 即221321600W x x =-+-;(2)由题意得:221321600480x x -+-=, 整理得:26610400x x -+=, 解得26x =或40x =,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元; (3)由题意得:48003016y ≤≤=, 则0210030x ≤-+≤, 解得3550x ≤≤,将二次函数221321600W x x =-+-化成顶点式为22(33)578W x =--+, 由二次函数的性质可知,在3550x ≤≤范围内,W 随x 的增大而减小, 则当35x =时,W 取得最大值,最大值为22(3533)578570-⨯-+=(万元), 答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.2.(2020·迁安市迁安镇第一初级中学九年级期末)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x 元,填写下表.(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少; (3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x ;180;180-10x ;(2)60元;(3)2240元 解:(1)若设第二个月的销售定价每套增加x 元,填写下表:故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得: (52-40)×180+(52+x-40)(180-10x )=4160, 解得:x 1=-2(舍去),x 2=8, 当x=-2时,52+x=50(舍去),当x=8时,52+x=60.答:第二个月销售定价每套应为60元. (3)设第二个月利润为y 元. 由题意得到:y=(52+x-40)(180-10x ) =-10x 2+60x+2160 =-10(x-3)2+2250 ∵-10<0∴当4≤x≤6时,y 随x 的增大而减小, ∴当x=4时,y 取最大值,此时y=2240, ∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元. 【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 3.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭;(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要1⎛+ ⎝⎭米.(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩,解得274b c =⎧⎪⎨=⎪⎩,则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+,则当1x =时,y 取得最大值,最大值为114,故喷出的水流距水面的最大高度是114米;(3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外. 【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.4.(2020·保定市第二十一中学九年级期末)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x (元)()40x >,请你分别用含x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)1000-10x ,-10x 2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元. 解:(1)∵根据销售单价每涨1元,就会少售出10件玩具, ∵销售量y (件)为:600-10(x-40)=1000-10x ;销售玩具获得利润w (元)为: [600-10(x-40)](x-30) =-10x 2+1300x-30000 故答案为:1000-10x ,-10x 2+1300x-30000;(2)令-10x 2+1300x-30000=10000,解得:x=50 或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润; (3)根据题意得:10001054044x x -≥⎧⎨≥⎩解得:44≤x≤46由w=-10x 2+1300x-30000=-10(x-65)2+12250 ∵-10<0,对称轴是直线x=65. ∵当44≤x≤46时,w 随增大而增大 ∵当x=46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.5.(2020·河北九年级期末)某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. (1)当x=6时,y 1=3,y 2=1, ∵y 1-y 2=3-1=2,∵6月份出售这种蔬菜每千克的利润是2元; (2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩,∴1273=-+y x ; 将(3,4)代入y 2=a(x-6)2+1,得, 4=a (3-6)2+1, 解得:a=13, ∵()222116141333y x x x =-+=-+,∵P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∵当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000, ∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.6.(2020·福建九年级期末)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元. (1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款; (2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.【答案】(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗. 解:(1)∵50<60, ∵120506000⨯=(元),∵答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为120607200⨯=元8800<元, ∵该中学购买的树苗超过60棵. 又∵120100601000.5-+=,∵购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元, 此时所需支付的树苗款超过10000元,而100008800>, ∵该中学购买的树苗不超过100棵. 设购买了()60100x x <≤棵树苗, 依题意,得()1200.5608800x x --=⎡⎤⎣⎦, 化简,得2300176000x x -+=, 解得1220100x =>(舍去),280x =. 答:这所中学购买了80棵树苗. 【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.7.(2020·四川九年级期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣, 解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-<∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能. 【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析.8.(2018·河北新河中学九年级期末)如图,在矩形 ABCD 中,AB =6cm ,BC =8cm ,动点 P 以 2cm /s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm /s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P 、Q 两点移动 ts (0<t <5)后,△CQP 的面积为 Scm 2.在 P 、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm 2?若能,求出此时 t 的值;若不能,请说明理由.【答案】2 或 3 解:在矩形 ABCD 中, ∵AB =6cm ,BC =8cm ,∴AC =10cm ,AP =2tcm ,PC =(10﹣2t )cm , CQ =tcm ,过点 P 作 PH ⊥BC 于点 H ,易知:PH PC AB AC ==10210t-,∴PH =35(10﹣2t )cm , 根据题意,得12t •35(10﹣2t )=3.6, 解得:t 1=2,t 2=3.答:△CQP 的面积等于 3.6cm 2 时,t 的值为 2 或 3.【点睛】本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用.9.(2021·安徽九年级月考)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间 解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∴当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∴当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =; (3)当40y =时,8002040x ==. ∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤, 即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.10.(2020·内蒙古和林格尔县第三中学九年级月考)某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时)与时间x (小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x ≥时,求出风速y (千米/小时)与时间x (小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.【答案】(1)32,10;(2)640y x=;(3)共有59.5小时 解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =, 解得:640k =. 所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =. (3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =, 得64010x=,解得64x =, 64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】 本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.11.(2020·浙江九年级一模)2020年4月,学校复学后,为确保学生的安全,某校对各教室进行“84”消毒液消毒,如下左图描述了防疫人员消毒阶段室内每立方米空气中含药量()mg y 与时间()min x 的关系:表格记录了消毒结束后室内每立方米空气中含药量()mg y 与时间()min x 的部分数据.(1)求前3分钟消毒阶段y 关于x 的函数表达式;(2)在给出的平面直角坐标系中,根据表中数据画出消毒后y 关于x 的函数图象,并求出该函数表达式;(3)研究表明,当每立方米空气中含药量低于1.2mg 时,对人体无毒害作用,那么在哪个时段学生不能停留在教室里?【答案】(1)y=83x (0≤x≤3);(2)图像见详解,y=24x (x >3);(3)在920分钟到20分钟内不能停留在教室解:(1)设前3分钟消毒阶段的解析式为y=kx ,将(3,8)代入得8=3k ,解得k=83, ∴解析式为:y=83x (0≤x≤3);(2)图像如下:设函数表达式为y=k x, 将(6,4)代入得k=24,∴解析式为:y=24x(x >3); (3)当y=1.2时,在前三分钟内:得1.2=83x (0≤x≤3), 解得x=920, 在后期1.2=24x (x >3), 解得x=20, ∴920<x <20 ∴在920<x <20这段时间内不能回教室. 【点睛】本题考查了反比例函数和一次函数的综合,求出解析式是解题关键.12.(2020·河南九年级其他模拟)某校科技小组进行野外考察,途中遇到一片湿地,为了人员和设备能够安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.根据学习函数的经验,该小组对木板对地面的压强与木板的面积之间的关系进行探究.已知当压力不变时,木板对地面的压强()P Pa 与木板面积()2S m的对应值如下表:(1)求P 与S 之间满足的函数关系式;(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (3)结合图形,如果要求压强不超过4000Pa ,木板的面积至少要多大?【答案】(1)600Sp =;(2)见解析;(3)当压强不超过4000Pa 时,木板面积至少20.15m 解:(1)1600154002300600⨯=⨯=⨯=.,600Sp ∴=; (2)如图所示,(3)当4000p =时,20.15s m =.答:当压强不超过4000Pa 时,木板面积至少20.15m .【点睛】本题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题,要认真观察图象得出正确的结果.13.(2020·广东深圳实验学校九年级期中)如图1,大桥桥型为低塔斜拉桥,图2是从图1抽象出的平面示意图,现测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离B C 为4米,两拉索底端距离AD 为20米,试求立柱BE 的长.(结果精确到0.1 1.732≈)【答案】立柱BE 的长约为15.3米如图2,设BE=x 米,由BC=4米得CE=(x-4)米,在Rt △ABE 中 ∵tan BE A AE=,∠A=30°∴tan tan 30BE x AE A ===︒米; 在Rt △DCE 中 ∵tan CDE CE DE∠=,∠CDE=60°∴4D 4)tan tan 60CE x E x CDE -===-∠︒米 由AE-DE=20米,得4)20x -=解之得215.3x =≈.答:立柱BE 的长为15.3米.【点睛】此题考查三角函数的实际应用.此题关键是要分别在两个直角形内运用三角函数列关系式,再据题意例方程求解.14.(2020·长春吉大附中力旺实验中学九年级月考)数学爱好小组要测量5G 信号基站高度,一名同学站在距离5G 信号基站30m 的点E 处,测得基站项部的仰角52ACD ∠=°,已知测角仪的高度15m CE =..求这个5G 信号基站的高AB (精确到1m ).(参考数据:sin520.79,cos520.62,tan52 1.28===)【答案】40解:如图,过点C 作CD AB ⊥,垂足为D .则四边形CEBD 是矩形,15m BD CE ==.,在Rt ACD △中,30m,52CD EB ACD ==∠=︒ ∵tan AD ACE CD∠=, ∴tan 30 1.2838.4(m)AD CD ACD ∠=⋅≈⨯=.∴38.4 1.540(m)AB AD BD =+=+≈.答:这个5G 信号基站的高AB 约为40m .【点睛】本题主要考查锐角三角函数的应用.通过做辅助线,分割图形,构建直角三角形,并解直角三角形是解答本题的关键.15.(2020·潍坊市寒亭区教学研究室九年级一模)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45︒,小明从A 点出发沿斜坡走D ,在此处测得树顶端点B 的仰角为31︒,且斜坡AF 的坡比为1:2.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC 的高度?若能,请计算:若不能,请说明理由.(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)【答案】(1)4米 (2)能;22米解:(1)作DH AE ⊥于H ,如图所示:在Rt ADH ∆中, ∵12DH AH =, ∴2AH DH =,∵222AH DH AD +=,∴()(2222DH DH +=, ∴4DH =.答:小明从点A 到点D 的过程中,他上升的高度为4米.(2)如图所示:过点D 作DG BC ⊥于点G ,设BC xm =,在Rt ABC ∆中,45BAC ∠=︒,∴AC BC x ==,由(1)得28AH DH ==,在矩形DGCH 中,4DH CG ==,8DG CH AH AC x ==+=+,在Rt BDG ∆中,由4tan 0.68BG x BAG DG x ∠-==≈+, 解得:22x =答:大树的高度约为22米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.16.(2020·浙江九年级一模)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.【答案】(1)点D′到BC 的距离为()厘米;(2)E∵E′两点的距离是 解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFD′=∠BHD′=90°.在Rt △AD′F 中,D′F=AD′•sin ∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC 的距离为(453+70)厘米.(2)连接AE ,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=厘米,∴EE′=3010厘米.答:E 、E′两点的距离是3010厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.17.(2019·甘州中学九年级月考)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32º,底部C 的俯角为45º,观测点与楼的水平距离AD 为31m ,则楼BC 的高度大约为多少米?(结果取整数).(参考数据:sin 320.5︒≈,cos320.8︒≈,tan 320.6︒≈)【答案】50.解:在Rt △ABD 中, ∵AD =31,∠BAD =32°, ∴BD =AD ⋅tan32°=31×0.6=18.6, 在Rt △ACD 中, ∵∠DAC =45°, ∴CD =AD =31,∴BC =BD +CD =18.6+31≈50m . 答:楼BC 的高度大约为50米. 【点睛】本题考查了仰角与俯角的知识,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键. 18.(2020·浙江九年级一模)如图,小区内有一条南北方向的小路MN ,快递员从小路旁的A 处出发沿南偏东53°方向行走200m 将快递送至B 楼,又继续从B 楼沿南偏西30°方向行走120m 将快递送至C 楼,求此时快递员到小路MN 的距离.(计算结果精确到1m .参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】120m如图,过B 作BD ⊥MN 于D ,过C 作CE ⊥MN 于E ,过B 作BF ⊥EC 于F , 则四边形DEFB 是矩形, ∴BD =EF ,在Rt △ABD 中,ADB 90∠=︒ ,53DAB ∠=︒,AB =200m , ∴sin532000.8160BD AB =︒=⨯=m ,在Rt △BCF 中,90BFC ∠=︒ ,3CBF 0∠=︒,BC =120m , ∴1602CF BC ==m , ∴16060100CE EF CF =-=-=m , 答:快递员到小路MN 的距离是100m .【点睛】此题主要考查了解直角三角形的应用-方向角问题,正确把握定义是解题关键.19.(2020·浙江省临海市回浦实验中学九年级期中)在我市开展的创建文明城市活动中,某居民小区要在一块一边靠墙(墙长18m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC 边长为()x m ,花园的面积为2()y m(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到2200m 吗?若能,求出此时x 的值;若不能,说明理由; (3)当x 取何值时,花园的面积最大?最大面积为多少?【答案】(1)2240(1120)y x x x =-+≤<;(2)不能,理由见解析;(3)当x 取11米时,花园的面积最大,最大面积是2198m . 解:(1)由题意可得,()2402240y x x x x =⋅-=-+,0040218x x >⎧⎨<-≤⎩解不等式得11≤x <20即2240(1120)y x x x =-+≤<; (2)不能,理由:将200y =代入2240y x x =-+, 得2200240x x =-+, 解得,121011x x ==<,答:花园面积不能达到2200m ;(3)∵222402(10)200y x x x =-+=--+,∴函数图象的顶点为()10,200,开口向下,当10x <时,y 随x 的增大而增大,当10x >时,y 随x 的增大而减小,由题意可知,1120x ≤<,∴当11x =时,y 最大,此时198y =,答:当x 取11米时,花园的面积最大,最大面积是2198m . 【点睛】本题考查了二次函数的应用,结合实际问题并从中抽象出函数模型,借助二次函数解决实际问题是解决本题的关键.20.(2020·浙江九年级其他模拟)如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径和爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表:(1)根据这些数据在图2的直角坐标系中画出相应的点,选择适当的函数表示h (米)与t (秒)之间的关系,并求出相应的函数表达式;(2)当第一发花弹发射2秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于18米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?【答案】(1)h=-2(t-3)2+19.8;(2)6.28米;(3)花弹的爆炸高度符合安全要求,理由见详解解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t-3)2+19.8,把点(0,1.8)代入得:1.8=a(0-3)2+19.8,∴a=-2,∴h=-2(t-3)2+19.8,故相应的函数解析式为:h=-2(t-3)2+19.8,(2)∵花每隔1.6秒发射一发花弹∴当第一发花弹发射2秒后,第二发已经飞行了0.4秒,∴把t=0.4代入关系式h=-2(t-3)2+19.8即h=-2(0.4-3)2+19.8=6.28米,∴当第一发花弹发射2秒后,第二发花弹达到的高度为6.28米(3)∵这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=-2(t-3)2+19.8,∴第二发花弹的函数解析式为:h′=-2(t-4.6)2+19.8,皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,则令h=h′得-2(t-3)2+19.8=-2(t-4.6)2+19.8∴t=3.8秒,此时h=h′=18.52米>18米,答:花弹的爆炸高度不符合安全要求.【点睛】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.。
2020-2021学年山东省济宁市曲阜市九年级(上)期中数学试卷 解析版

2020-2021学年山东省济宁市曲阜市九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为()A.a=2B.a≠﹣2C.a≠±2D.a≠22.下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣34.抛物线y=2(x+1)2﹣2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2 5.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,若∠DAC=25°,则∠CAB的度数为()A.30°B.40°C.50°D.60°6.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)7.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)8.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.39.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤010.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,满分15分)11.已知,点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,则2a+b=.12.已知是二次函数,则m=.13.某测温仪公司2020年四月份生产测温仪1000台,2020年六月份生产测温仪4000台,设五、六月份每月的平均增长率为x,根据题意可列方程.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为.15.如图,在平面直角坐标系中,将Rt△OAB绕点O逆时针旋转60°后得到Rt△OA1B1,依此方式,绕点O连接旋转20次得到Rt△OA20B20,如果点A的坐标为(1,),那么点B20的坐标为.三、解答题(共7小题,满分55分)16.(6分)解一元二次方程:x2﹣2x﹣3=0.17.(6分)如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.18.(7分)如图所示,施工队要修建一个横断面为抛物线的公路隧道,OM宽度为16米,其顶点P到OM的距离为8米.(1)请建立适当的平面直角坐标系,并求出这条抛物线的函数解析式;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明.19.(8分)已知关于x的方程x2﹣mx+m﹣1=0.(1)求证:无论m取任何实数时,方程恒有实数根.(2)任取一个你喜欢的m值代入,并求出此时方程的根.20.(8分)如图,已知△ABC中,AB=AC.(Ⅰ)把△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E落在AB边上,用尺规作图的方法作出△DEC;(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,连接AD,求证:AD=BC.21.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE 的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,若CD=1,EH=3,求BE长.22.(11分)如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接P A、PE及AE,当t为何值时,△P AE的面积最大?最大面积是多少?(3)是否存在点P,使△P AE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.2020-2021学年山东省济宁市曲阜市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为()A.a=2B.a≠﹣2C.a≠±2D.a≠2【分析】根据一元二次方程定义可得a﹣2≠0,再解即可.【解答】解:由题意得:a﹣2≠0,解得:a≠2,故选:D.2.下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】旋转180°后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣3【分析】把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,然后解关于a的方程即可.【解答】解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故选:B.4.抛物线y=2(x+1)2﹣2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2【分析】根据题目中的抛物线解析式,可以直接写出该抛物线的对称轴,本题得以解决.【解答】解:抛物线y=2(x+1)2﹣2的对称轴是:直线x=﹣1.故选:B.5.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,若∠DAC=25°,则∠CAB的度数为()A.30°B.40°C.50°D.60°【分析】利用圆周角定理得到∠ABD=∠DAC=25°,∠ADB=90°,然后利用三角形内角和计算∠CAB的度数.【解答】解:∵弧AD=弧CD,∴∠ABD=∠DAC=25°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°,∴∠CAB=∠DAB﹣∠DAC=65°﹣25°=40°.故选:B.6.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)【分析】作出对应点连线的垂直平分线,它们的交点就是M点.【解答】解:如图,点M的坐标是(1,﹣1),故选:B.7.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=2x2﹣1向左平移1个单位长度,得:y=2(x+1)2﹣1;再向上平移2个单位长度,得:y=2(x+1)2+1.此时抛物线顶点坐标是(﹣1,1).故选:D.8.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.3【分析】先根据切线的性质得∠OAP=90°,再利用含30度的直角三角形三边的关系得到AP=OA=4,接着计算出∠C=30°,从而得到AC=AP=4.【解答】解:∵P A切⊙O于点A,∴OA⊥P A,∴∠OAP=90°,在Rt△OAP中,∵∠P=30°,∴∠AOP=60°,AP=OA=4,∵∠AOP=∠C+∠OAC=60°,而∠C=∠OAC,∴∠C=30°,∴AC=AP=4.故选:A.9.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤0【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:k﹣1≠0且4k2﹣4k(k﹣1)≥0,∴k≥0且k≠1,故选:A.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二、填空题(共5小题,每小题3分,满分15分)11.已知,点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,则2a+b=﹣1.【分析】根据关于原点对称点的坐标特点可得a﹣1=﹣2,﹣2b﹣1=﹣3,解出a、b的值,然后可得答案.【解答】解:∵点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,∴a﹣1=﹣2,﹣2b﹣1=﹣3,解得:a=﹣1,b=1,∴2a+b=﹣1,故答案为:﹣1.12.已知是二次函数,则m=2.【分析】根据二次函数的定义得出m+2≠0,m2﹣2=2,求出即可.【解答】解:∵是二次函数,∴m+2≠0,m2﹣2=2,解得:m=2,故答案为:2.13.某测温仪公司2020年四月份生产测温仪1000台,2020年六月份生产测温仪4000台,设五、六月份每月的平均增长率为x,根据题意可列方程1000(1+x)2=4000.【分析】由该测温仪公司2020年四月份及六月份生产测温仪的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意可列方程为1000(1+x)2=4000,故答案为:1000(1+x)2=4000.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为6.【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD 的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【解答】解:如图所示,连接OD.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=16,∴CE=DE=CD=8,又∵OD=AB=10,∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE==6,则OE的长度为6.15.如图,在平面直角坐标系中,将Rt△OAB绕点O逆时针旋转60°后得到Rt△OA1B1,依此方式,绕点O连接旋转20次得到Rt△OA20B20,如果点A的坐标为(1,),那么点B20的坐标为(﹣,).【分析】求出B1,B2,B3…的坐标,探究规律,利用规律解决问题即可.【解答】解:∵A(1,),∴OB=1,AB=,∴tan∠AOB==,∴∠AOB=60°,∴∠A=30°,∴AO=2OB,∴OB1=AB1,∴B1(,),由题意B2(﹣,),B3(﹣1,0),B4(﹣,﹣),B5(,﹣),B6(1,0),…,6次一个循环,20÷6=3…2,∴B20与B2坐标相同,B20(﹣,).故答案为(﹣,).三、解答题(共7小题,满分55分)16.(6分)解一元二次方程:x2﹣2x﹣3=0.【分析】先把方程左边分解,原方程转化为x+1=0或x﹣3=0,然后解一次方程即可.【解答】解:∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3.17.(6分)如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标(1,1)或(﹣3,﹣1)或(﹣5,3).【分析】(1)根据旋转的性质即可作出△ABC关于原点O成中心对称的△A1B1C1;(2)根据网格即可写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)顶点D的坐标为:D1(1,1)或D2(﹣3,﹣1)或D3(﹣5,3).故答案为:(1,1)或(﹣3,﹣1)或(﹣5,3).18.(7分)如图所示,施工队要修建一个横断面为抛物线的公路隧道,OM宽度为16米,其顶点P到OM的距离为8米.(1)请建立适当的平面直角坐标系,并求出这条抛物线的函数解析式;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明.【分析】(1)直接利用顶点式求出二次函数解析式得出答案;(2)直接利用已知得出x=4,进而得出y的值,即可得出答案.【解答】解:(1)以O为原点,抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:,故函数的表达式为:,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行.19.(8分)已知关于x的方程x2﹣mx+m﹣1=0.(1)求证:无论m取任何实数时,方程恒有实数根.(2)任取一个你喜欢的m值代入,并求出此时方程的根.【分析】(1)根据题意求出△的值,判断出△的符号即可;(2)取m=0时,得到方程x2﹣1=0,解方程即可求解.【解答】(1)证明:∵△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∴无论m取任何实数时,方程恒有实数根.(2)解:当m=0时,方程x2﹣mx+m﹣1=0为方程x2﹣1=0,解得x1=﹣1,x2=1.故m=0时,方程的根是x1=﹣1,x2=1.20.(8分)如图,已知△ABC中,AB=AC.(Ⅰ)把△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E落在AB边上,用尺规作图的方法作出△DEC;(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,连接AD,求证:AD=BC.【分析】(Ⅰ)根据旋转的性质即可把△ABC绕点C顺时针旋转得到△DEC,使得点B 的对应点E落在AB边上;(Ⅱ)在(Ⅰ)的条件下,连接AD,根据等腰三角形的性质和平行四边形的判定与性质即可证明AD=BC.【解答】解:(Ⅰ)如图,△DEC即为所作;(Ⅱ)由(Ⅰ)知∠DCE=∠ACB,∵AB=AC,∴∠ACB=∠B.∴∠DCE=∠B,又由(Ⅰ)知CE=CB,∴∠CEB=∠B.∴∠CEB=∠DCE,∴AB∥CD,由(Ⅰ)CD=CA,又∵CA=BA,∴AB=CD,∴四边形ABCD为平行四边形,∴AD=BC.21.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE 的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,若CD=1,EH=3,求BE长.【分析】(1)连结OE,根据BE平分∠ABC,可得∠CBE=∠ABE,证明OE∥AC,进而可以证明AC是⊙O的切线;(2)连结DE,根据AE平分∠ABC,AC⊥BC、EH⊥AB,可得CE=EH,再证明Rt△CDE≌△Rt△HFE,得CD=HF,再根据勾股定理即可求得BE的长.【解答】解:(1)证明:连结OE,∵BE平分∠ABC,∴∠CBE=∠ABE又OB=OE,∠ABE=∠BEO,∴∠CBE=∠BEO∴OE∥BC又∠C=90°即AC⊥BC.∴OE⊥AC,即AC是⊙O的切线;(2)连结DE,∵AE平分∠ABC,AC⊥BC、EH⊥AB∴CE=EH,DE=EF,∴Rt△CDE≌△Rt△HFE(HL),∴CD=HF,∵CD=1,∴HF=1∵OH=3,∵OE2=OH2+HE2,∴OE2=(OE﹣1)2+32解得:0E=5,∴BH=9∴.22.(11分)如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接P A、PE及AE,当t为何值时,△P AE的面积最大?最大面积是多少?(3)是否存在点P,使△P AE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),则函数的对称轴为:x=1,即可求解;(2)△P AE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t),即可求解;(3)分∠PEA=90°、∠P AE=90°两种情况,分别求解即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),∴抛物线的对称轴为x=1,∵点C与点A关于抛物线的对称轴对称,点A(0,﹣3),∴C(2,﹣3),抛物线表达式为y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线交AE于点H,由点A,E的坐标得直线AE的表达式为y=x﹣3,设点P(t,t2﹣2t﹣3),则点H(t,t﹣3),∴△P AE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t)=﹣,∴当t=时,S有最大值;(3)∵直线AE表达式中的k值为1,∴∠AEO=45°,①当∠PEA=90°时,∵PE⊥AE,∴直线PE与x轴的夹角为45°,∴设直线PE的表达式为y=﹣x+b,将点E的坐标代入并解得b=3,∴直线PE的表达式为y=﹣x+3,联立得,解得x=﹣2或3(不合题意,舍去)故点P的坐标为(﹣2,5),②当∠P AE=90°时,同理可得,点P(1,﹣4),综上,点P的坐标为(﹣2,5)或(1,﹣4).。
2019年济宁市曲阜市九年级上期末数学模拟试卷含答案(PDF版)

2018-2019学年山东省济宁市曲阜市九年级(上)期末数学模拟试卷一.选择题(共10小题,满分27分)1.如图图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣24.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°5.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:96.下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣x D.x2﹣mx﹣2=0 7.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1B.2C.3D.48.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4B.﹣4C.2D.±29.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM 和的长分别为()A.2,B.,πC.2,D.2,10.方程x2+4x﹣1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在()范围内.A.﹣1<x0<0B.0<x0<1C.1<x0<2D.2<x0<3二.填空题(共5小题,满分15分,每小题3分)11.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为.12.设a,b是方程x2+x﹣2011=0的两个实数根,则a2+2a+b的值为.13.抛掷一枚均匀的硬币,前5次都正面朝上,则抛掷第50次正面朝上的概率是.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.15.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2﹣4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=﹣1,x2=3.三.解答题(共7小题,满分55分)16.解方程:x2﹣6x+4=0(用配方法)17.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.18.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?19.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.在甲、乙两个不透明的布袋中,甲袋装有3个完全相同的小球,分别标有数字0,1,2;乙袋装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,小球上的数字记为x,再从乙袋中随机抽取一个小球,小球上的数字记为y,设点M 的坐标为(x,y).(1)用树形图或列表法求出点M的所有等可能个数;(2)分别求点M在函数y=﹣x+1图象上的概率和点M在第四象限的概率.21.我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.22.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分27分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.3.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.4.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.5.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选:D.6.【解答】解:A、△=5>0,方程有两个不相等的实数根;B、△=﹣108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.【解答】解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1或y2<y1或y2=y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.8.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.9.【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OA=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.10.【解答】解:∵方程x3+mx﹣1=0变形为x2+m﹣=0,∴方程x3+mx﹣1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,∵当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,∴它们的交点在第一象限,即它们的交点的横坐标为正数,∵当m取任意正实数时,函数y=x2+m的图象沿y轴上下平移,且总在x轴上方,抛物线顶点越低,与函数的图象的交点的横坐标越大,当m=0时,y=x2与的交点A的坐标为(1,1),∴当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在0<x0<1的范围内.故选:B.二.填空题(共5小题,满分15分,每小题3分)11.【解答】解:如图,线段OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为(﹣3,2),点A′在第二象限.故答案为(﹣3,2).12.【解答】解:∵a是方程x2+x﹣2011=0的实数根,∴a2+a﹣2011=0,即a2=﹣a+2011,∴a2+2a+b=﹣a+2011+2a+b=a+b+2011,∵a,b是方程x2+x﹣2011=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=﹣1+2011=2010.故答案为2010.13.【解答】解:∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第50次正面朝上的概率是,故答案为:.14.【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.15.【解答】解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴abc>0,结论①正确;②∵当x=1时,y<0,∴a+b+c<0,结论②错误;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,结论③错误;④∵抛物线与x轴交于点(﹣1,0),(3,0),∴抛物线的对称轴为直线x=1.∵抛物线开口向上,∴当x>1时,y随x的增大而增大,结论④正确;⑤∵抛物线与x轴交于点(﹣1,0),(3,0),∴方程ax2+bx+c=0(a≠0)的根是x1=﹣1,x2=3,结论⑤正确.故答案为:①④⑤.三.解答题(共7小题,满分55分)16.【解答】解:由原方程移项,得x2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得x2﹣6x+9=﹣4+9,即(x﹣3)2=5,∴x=±+3,∴x1=+3,x2=﹣+3.17.【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD∥AC;(2)解:令⊙O的半径为r,根据垂径定理可得:BE=CE=BC=4,由勾股定理得:r2=42+(r﹣3)2,解得:r=,所以⊙O的直径为.18.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.19.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),=S△AOC+S△BOC=×3×1+×3×4=7.5;∴S△AOB(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.20.【解答】解:(1)列表如下:012﹣1(0,﹣1)(1,﹣1)(2,﹣1)﹣2(0,﹣2)(1,﹣2)(2,﹣2)0(0,0)(1,0)(2,0)所以点M的所有等可能的个数是9;(2)满足点(x,y)落在函数y=﹣x+1图象上的结果有2个,即(2,﹣1),(1,0),所以点M(x,y)在函数y=﹣x+1图象上的概率是,因为点(1,﹣1),(2,﹣1),(1,﹣2)和(2,﹣2)落在第四象限,所以点M在第四象限的概率是.21.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.22.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。
2020-2021学年山东省济宁市兖州区九年级(上)期末数学试卷(含解析)

2020-2021学年山东省济宁市兖州区九年级第一学期期末数学试卷一、选择题(共10小题).1.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,正面向上B.任意买一张电影票,座位号是3的倍数C.从一个只有白球的盒子里摸出一个球是白球D.汽车走过一个红绿灯路口时,前方正好是绿灯2.身高为165cm的小冰在中午时影长为55cm,小雪此时在同一地点的影长为60cm,那么小雪的身高为()A.185cm B.180cm C.170cm D.160cm3.如图,在⊙O中,=,∠C=75°,则∠A的度数为()A.30°B.35°C.45°D.60°4.方程x(x+3)=x的解是()A.x1=x2=﹣3B.x1=1,x2=3C.x1=0,x2=﹣3D.x1=0.x2=﹣2 5.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)6.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>27.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定8.如图,在5×5的网格中,每个小正方形的边长均为1,点A、B、O都在格点上.若将△OAB绕点O逆时针旋转90°,得到△OA′B′,A、B的对应点分别为A′、B′,则A、B′之间的距离为()A.2B.5C.D.9.在一次手工课上,小明把一张长AB=acm,宽BC=bcm的矩形报纸ABCD沿着过AB、CD的中点的直线EF对折后,发现矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.B.C.D.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果.11.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.12.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.13.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.14.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=.15.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.已知关于x的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.17.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长18.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.19.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E.(1)设DP=y,AE=x,求y与x之间函数关系式;(2)写出自变量x的取值范围,并求出y的最大值.20.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.21.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.22.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连接AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.参考答案一、选择题(共10小题).1.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,正面向上B.任意买一张电影票,座位号是3的倍数C.从一个只有白球的盒子里摸出一个球是白球D.汽车走过一个红绿灯路口时,前方正好是绿灯解:A、掷一枚质地均匀的硬币,正面向上,是随机事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、从一个只有白球的盒子里摸出一个球是白球,是必然事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:C.2.身高为165cm的小冰在中午时影长为55cm,小雪此时在同一地点的影长为60cm,那么小雪的身高为()A.185cm B.180cm C.170cm D.160cm解:∵=,∴小雪的身高=×小雪的影长=×60=180(cm).故选:B.3.如图,在⊙O中,=,∠C=75°,则∠A的度数为()A.30°B.35°C.45°D.60°解:∵⊙O中,=,∠C=75°,∴∠B=∠C=75°,∴∠A=180°﹣75°×2=30°.故选:A.4.方程x(x+3)=x的解是()A.x1=x2=﹣3B.x1=1,x2=3C.x1=0,x2=﹣3D.x1=0.x2=﹣2解:方程变形得:x(x+3)﹣x=0,分解因式得:x(x+3﹣1)=0,可得x=0或x+2=0,解得:x1=0,x2=﹣2.故选:D.5.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.6.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2解:A、把(﹣2,1)代入解析式得:左边=右边,故本选项正确,不符合题意;B、因为﹣2<0,图象在第二、四象限,故本选项正确,不符合题意;C、当x<0,且k<0,y随x的增大而增大,故本选项正确,不符合题意;D、在第三象限时,当x>﹣1时,y>2,故本选项错误,符合题意.故选:D.7.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定【解答】解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.8.如图,在5×5的网格中,每个小正方形的边长均为1,点A、B、O都在格点上.若将△OAB绕点O逆时针旋转90°,得到△OA′B′,A、B的对应点分别为A′、B′,则A、B′之间的距离为()A.2B.5C.D.解:如图,由旋转的性质作出△A'OB',连接AB',∵每个小正方形的边长均为1,∴AB'==,故选:C.9.在一次手工课上,小明把一张长AB=acm,宽BC=bcm的矩形报纸ABCD沿着过AB、CD的中点的直线EF对折后,发现矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.B.C.D.解:根据题意,AE=AB=cm,,即,整理得=2,∴a:b=:1.故选:A.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=,所以C选项的结论正确;∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.故选:D.二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果.11.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.12.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.解:共有球3+2=5个,白球有2个,因此摸出的球是白球的概率为:.故答案为:.13.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有8家公司参加了这次会议.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.14.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=12.解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D,y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故答案为:12.15.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.已知关于x的一元二次方程x2﹣4x+m+1=0有两个不相等的实数根,(1)求m的取值范围;(2)当m=﹣1时,求出此时方程的两个根.解:(1)根据题意得△=(﹣4)2﹣4(m+1)>0,解得m<3;(2)当m=﹣1时,方程变形为x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.17.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=4.18.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.解:(1)此次共调查的学生有:40÷=200(名);(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是=.19.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E.(1)设DP=y,AE=x,求y与x之间函数关系式;(2)写出自变量x的取值范围,并求出y的最大值.解:(1)在矩形ABCD中,AB=3,BC=4,∴DC=AB=3,AD=BC=4,∠C=90°,AD∥BC,∴∠ADE=∠DPC,∵AE⊥DP,∴∠AED=90°,∴∠ADE=∠DPC,∠AED=∠C,∴△ADE∽△DPC,∴AD:DP=AE:DC,∵DP=y,AE=x,AD=4,DC=3,∴4:y=x:3,∴y=.∴y与x之间函数关系式为y=;(2)在Rt△BCD中,BC=4,DC=3,由勾股定理得BD=5,当点P与点B重合时x最短,此时x==;当点P与点C重合时x最长,为4.如图所示:∴自变量x的取值范围为≤x≤4,∵在第一象限内,y=随x的增大而减小,∴当x=时,y有最大值,最大值为5.∴自变量x的取值范围为≤x≤4,y的最大值为5.20.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.21.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.解:(1)∵y与x满足一次函数的关系,∴设y=kx+b,将x=12,y=1200;x=13,y=1100代入得:,解得:,∴y与x的函数关系式为:y=﹣100x+2400;(2)设线上和线下月利润总和为m元,则m=400(x﹣2﹣10)+y(x﹣10)=400x﹣4800+(﹣100x+2400)(x﹣10)=﹣100(x﹣19)2+7300,∴当x为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.22.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连接AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED﹣∠FED=∠FAC﹣∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AB=8,∠ABG=45°,∴AG=,在Rt△ADE中,AE=AD,∴,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S△DEF=DE•FM=.。
2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。
2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x2﹣x﹣2≤0},B={x|y=ln(x﹣1)},则A∩B=()A.(1,2]B.(0,2]C.(2,+∞)D.[2,+∞)2.若复数(i为虚数单位)为纯虚数,则实数a的值为()A.﹣B.﹣C.D.3.若tanα=2,则=()A.B.C.D.14.“a=1”是“直线ax+(2a﹣1)y+3=0与直线(a﹣2)x+ay﹣1=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.2020年11月,中国国际进口博览会在上海举行,本次进博会设置了“云采访”区域,通过视频连线,帮助中外记者采访因疫情影响无法来沪参加进博会的跨国企业CEO或海外负责人.某新闻机构安排4名记者和3名摄影师对本次进博会进行采访,其中2名记者和1名摄影师负责“云采访”区域的采访,另外2名记者和2名摄影师分两组(每组记者和摄影师各1人),分别负责“汽车展区”和“技术装备展区”的现场采访.如果所有记者、摄影师都能承担三个采访区域的相应工作,则所有不同的安排方案有()A.36种B.48种C.72种D.144种6.函数f(x)=x﹣ln|e2x﹣1|的部分图象可能是()A.B.C.D.7.已知抛物线C:y2=2px(p>0)的焦点为F,过F作斜率为的直线l交抛物线C于A、B两点,若线段AB中点的纵坐标为,则抛物线C的方程是()A.y2=3x B.y2=4x C.y2=6x D.y2=8x8.已知函数f(x)(x∈R)的导函数是f′(x),且满足∀x∈R,f(1+x)=﹣f(1﹣x),当x>1时,f(x)+ln(x﹣1)•f′(x)>0,则使得(x﹣2)f(x)>0成立的x 的取值范围是()A.(0,1)⋃(2,+∞)B.(﹣∞,﹣2)⋃(2,+∞)C.(﹣2,﹣1)⋃(1,2)D.(﹣∞,1)⋃(2,+∞)二、选择题(共4小题).9.已知a,b,c,d均为实数,下列说法正确的是()A.若a>b>0,则>B.若a>b,c>d,则a﹣d>b﹣cC.若a>b,c>d,则ac>bd D.若a+b=1,则4a+4b≥410.直线l过点P(1,2)且与直线x+ay﹣3=0平行,若直线l被圆x2+y2=4截得的弦长为2,则实数a的值可以是()A.0B.C.D.﹣11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象12.如图,在菱形ABCD中,AB=2,∠ABC=60°,M为BC的中点,将△ABM沿直线AM翻折成△AB1M,连接B1C和B1D,N为B1D的中点,则在翻折过程中,下列说法中正确的是()A.AM⊥B1CB.CN的长为定值C.AB1与CN的夹角为D.当三棱锥B1﹣AMD的体积最大时,三棱锥B1﹣AMD的外接球的表面积是8π三、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年山东省济宁市九年级上学期期末考试数学试卷及答案解析

第 1 页 共 24 页
2020-2021学年山东省济宁市九年级上学期期末考试数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同.从袋中摸出4个球,下列
属于必然事件的是( )
A .摸出的4个球其中一个是绿球
B .摸出的4个球其中一个是红球
C .摸出的4个球有一个绿球和一个红球
D .摸出的4个球中没有红球
2.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D .
3.用配方法解一元二次方程x 2﹣6x +1=0,则配方后所得的方程为( )
A .(x +3)2=10
B .(x +3)2=8
C .(x ﹣3)2=10
D .(x ﹣3)2=8
4.如图,⊙O 的半径为2,点A 为⊙O 上一点,半径OD ⊥弦BC 于D ,如果∠BAC =60°,
那么BC 的长是( )
A .2√3
B .√3
C .1
D .√32
5.点A (﹣3,y 1),B (0,y 2),C (3,y 3)是二次函数y =﹣(x +2)2+m 图象上的三点,
则y 1,y 2,y 3的大小关系是( )
A .y 1<y 2<y 3
B .y 1=y 3<y 2
C .y 3<y 2<y 1
D .y 1<y 3<y 2 6.如图,点Q (m ,n )(m >1)是反比例函数y =1x 上的动点,过Q 分别作x 轴,y 轴的垂
线,垂足分别为A ,B .随着m 的增大,四边形OAQB 的面积( )。
2020-2021学年山东省济宁市曲阜市九年级(上)期中数学试卷(解析版)

2020-2021学年山东省济宁市曲阜市九年级(上)期中数学试卷一、选择题(共10小题).1.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为()A.a=2B.a≠﹣2C.a≠±2D.a≠22.下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣34.抛物线y=2(x+1)2﹣2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2 5.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,若∠DAC=25°,则∠CAB的度数为()A.30°B.40°C.50°D.60°6.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)7.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)8.如图,AB是⊙O的直径,PA切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.39.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤010.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.4二、填空题(共5小题)11.已知,点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,则2a+b=.12.已知是二次函数,则m=.13.某测温仪公司2020年四月份生产测温仪1000台,2020年六月份生产测温仪4000台,设五、六月份每月的平均增长率为x,根据题意可列方程.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为.15.如图,在平面直角坐标系中,将Rt△OAB绕点O逆时针旋转60°后得到Rt△OA1B1,依此方式,绕点O连接旋转20次得到Rt△OA20B20,如果点A的坐标为(1,),那么点B20的坐标为.三、解答题(共7小题,满分55分)16.(6分)解一元二次方程:x2﹣2x﹣3=0.17.(6分)如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.18.(7分)如图所示,施工队要修建一个横断面为抛物线的公路隧道,OM宽度为16米,其顶点P到OM的距离为8米.(1)请建立适当的平面直角坐标系,并求出这条抛物线的函数解析式;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明.19.(8分)已知关于x的方程x2﹣mx+m﹣1=0.(1)求证:无论m取任何实数时,方程恒有实数根.(2)任取一个你喜欢的m值代入,并求出此时方程的根.20.(8分)如图,已知△ABC中,AB=AC.(Ⅰ)把△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E落在AB边上,用尺规作图的方法作出△DEC;(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,连接AD,求证:AD=BC.21.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE 的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,若CD=1,EH=3,求BE长.22.(11分)如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E (3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?(3)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为()A.a=2B.a≠﹣2C.a≠±2D.a≠2解:由题意得:a﹣2≠0,解得:a≠2,故选:D.2.下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣3解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故选:B.4.抛物线y=2(x+1)2﹣2的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2解:抛物线y=2(x+1)2﹣2的对称轴是:直线x=﹣1.故选:B.5.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,若∠DAC=25°,则∠CAB的度数为()A.30°B.40°C.50°D.60°解:∵弧AD=弧CD,∴∠ABD=∠DAC=25°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°,∴∠CAB=∠DAB﹣∠DAC=65°﹣25°=40°.故选:B.6.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)解:如图,点M的坐标是(1,﹣1),故选:B.7.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)解:抛物线y=2x2﹣1向左平移1个单位长度,得:y=2(x+1)2﹣1;再向上平移2个单位长度,得:y=2(x+1)2+1.此时抛物线顶点坐标是(﹣1,1).故选:D.8.如图,AB是⊙O的直径,PA切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.3解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,在Rt△OAP中,∵∠P=30°,∴∠AOP=60°,AP=OA=4,∵∠AOP=∠C+∠OAC=60°,而∠C=∠OAC,∴∠C=30°,∴AC=AP=4.9.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤0解:由题意可知:k﹣1≠0且4k2﹣4k(k﹣1)≥0,∴k≥0且k≠1,故选:A.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.4解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.二、填空题(共5小题,每小题3分,满分15分)11.已知,点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,则2a+b=﹣1.解:∵点A(a﹣1,3)与点B(2,﹣2b﹣1)关于原点对称,∴a﹣1=﹣2,﹣2b﹣1=﹣3,解得:a=﹣1,b=1,∴2a+b=﹣1,故答案为:﹣1.12.已知是二次函数,则m=2.解:∵是二次函数,∴m+2≠0,m2﹣2=2,解得:m=2,故答案为:2.13.某测温仪公司2020年四月份生产测温仪1000台,2020年六月份生产测温仪4000台,设五、六月份每月的平均增长率为x,根据题意可列方程1000(1+x)2=4000.解:根据题意可列方程为1000(1+x)2=4000,故答案为:1000(1+x)2=4000.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为6.解:如图所示,连接OD.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=16,∴CE=DE=CD=8,又∵OD=AB=10,∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE==6,则OE的长度为6.15.如图,在平面直角坐标系中,将Rt△OAB绕点O逆时针旋转60°后得到Rt△OA1B1,依此方式,绕点O连接旋转20次得到Rt△OA20B20,如果点A的坐标为(1,),那么点B20的坐标为(﹣,).解:∵A(1,),∴OB=1,AB=,∴tan∠AOB==,∴∠AOB=60°,∴∠A=30°,∴AO=2OB,∴OB1=AB1,∴B1(,),由题意B2(﹣,),B3(﹣1,0),B4(﹣,﹣),B5(,﹣),B6(1,0),…,6次一个循环,20÷6=3…2,∴B20与B2坐标相同,B20(﹣,).故答案为(﹣,).三、解答题(共7小题,满分55分)16.(6分)解一元二次方程:x2﹣2x﹣3=0.解:∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3.17.(6分)如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标(1,1)或(﹣3,﹣1)或(﹣5,3).解:(1)如图,△A1B1C1即为所求;(2)顶点D的坐标为:D1(1,1)或D2(﹣3,﹣1)或D3(﹣5,3).故答案为:(1,1)或(﹣3,﹣1)或(﹣5,3).18.(7分)如图所示,施工队要修建一个横断面为抛物线的公路隧道,OM宽度为16米,其顶点P到OM的距离为8米.(1)请建立适当的平面直角坐标系,并求出这条抛物线的函数解析式;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明.解:(1)以O为原点,抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:,故函数的表达式为:,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行.19.(8分)已知关于x的方程x2﹣mx+m﹣1=0.(1)求证:无论m取任何实数时,方程恒有实数根.(2)任取一个你喜欢的m值代入,并求出此时方程的根.【解答】(1)证明:∵△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∴无论m取任何实数时,方程恒有实数根.(2)解:当m=0时,方程x2﹣mx+m﹣1=0为方程x2﹣1=0,解得x1=﹣1,x2=1.故m=0时,方程的根是x1=﹣1,x2=1.20.(8分)如图,已知△ABC中,AB=AC.(Ⅰ)把△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E落在AB边上,用尺规作图的方法作出△DEC;(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,连接AD,求证:AD=BC.解:(Ⅰ)如图,△DEC即为所作;(Ⅱ)由(Ⅰ)知∠DCE=∠ACB,∵AB=AC,∴∠ACB=∠B.∴∠DCE=∠B,又由(Ⅰ)知CE=CB,∴∠CEB=∠B.∴∠CEB=∠DCE,∴AB∥CD,由(Ⅰ)CD=CA,又∵CA=BA,∴AB=CD,∴四边形ABCD为平行四边形,∴AD=BC.21.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE 的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,若CD=1,EH=3,求BE长.解:(1)证明:连结OE,∵BE平分∠ABC,∴∠CBE=∠ABE又OB=OE,∠ABE=∠BEO,∴∠CBE=∠BEO∴OE∥BC又∠C=90°即AC⊥BC.∴OE⊥AC,即AC是⊙O的切线;(2)连结DE,∵AE平分∠ABC,AC⊥BC、EH⊥AB∴CE=EH,DE=EF,∴Rt△CDE≌△Rt△HFE(HL),∴CD=HF,∵CD=1,∴HF=1∵OH=3,∵OE2=OH2+HE2,∴OE2=(OE﹣1)2+32解得:0E=5,∴BH=9∴.22.(11分)如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E (3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?(3)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),∴抛物线的对称轴为x=1,∵点C与点A关于抛物线的对称轴对称,点A(0,﹣3),∴C(2,﹣3),抛物线表达式为y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线交AE于点H,由点A,E的坐标得直线AE的表达式为y=x﹣3,设点P(t,t2﹣2t﹣3),则点H(t,t﹣3),∴△PAE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t)=﹣,∴当t=时,S有最大值;(3)∵直线AE表达式中的k值为1,∴∠AEO=45°,①当∠PEA=90°时,∵PE⊥AE,∴直线PE与x轴的夹角为45°,∴设直线PE的表达式为y=﹣x+b,将点E的坐标代入并解得b=3,∴直线PE的表达式为y=﹣x+3,联立得,解得x=﹣2或3(不合题意,舍去)故点P的坐标为(﹣2,5),②当∠PAE=90°时,同理可得,点P(1,﹣4),综上,点P的坐标为(﹣2,5)或(1,﹣4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.点P(﹣2,4)关于坐标原点对称的点的坐标为( )
A.(4,﹣2)B.(﹣4,2)C.(2,4)D.(2,﹣4)
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
∴△AIF∽△EDB,
∴ ,∴ ②,
任务:(1)观察发现: , (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.
12.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为_________.
13.如图, 为 的直径,弦 于点 ,已知 , ,则 的半径为______.
14.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.
15.如图,直线 : ( )与 , 轴分别交于 , 两点,以 为边在直线 的上方作正方形 ,反比例函数 和 的图象分别过点 和点 .若 ,则 的值为______.
A. B.
C. D.
10.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
A.①③B.②④C.①②④D.②③④
二、填空题
11.若关于 的一元二次方程 有实数根,则 的值可以为________(写出一个即可).
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
【分析】
根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.
【详解】
点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4),
故选D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数.
2.A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
22.已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;
(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.
参考答案
1.D
【解析】
(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;
(Ⅱ)求两次取出的小球标号相同的概率;
(Ⅲ)求两次取出的小球标号的和大于6的概率.
19.如图, 的顶点坐标分别为 , , .
(1)画出 关于点 的中心对称图形 ;
(2)画出 绕点 逆时针旋转 的 ;直接写出点 的坐标为_____;
(3)求在 旋转到 的过程中,点 所经过的路径长.
20.如图,一次函数 的图象与反比例函数 在第一象限的图象交于 和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且 的面积为5,求点P的坐标.
21.阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .
三、解答题
16.如图,在△ABC中,点D在AB边,∠ABC=∠ACD,
(1)求证:△ABC∽△ACD
(2)若AD=2,AB=5.求AC的长.
17.已知关于x的一元二次方程x2+x+m﹣1=0.
(1)当m=0时,求方程的实数根.
(2)若方程有两个不相等的实数根,求实数m的取值范围.
18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴ ,
∴ ①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
8.下列说法错误的是( )
A.必然事件发生的概率是1
B.通过大量重复试验,可以用频率估计概率
C.概率很小的事件不可能发生
D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得
9.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克 元,连续两次上涨 后,售价上升到每千克 元,则下列方程中正确的是()
5.如图,AD,BC相交于点O,AB∥CD.若AB=1,CD=2,则△ABO与△DCO的面积之比为
A. B. C. D.
6.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是( )
A.﹣1B.0C.1D.2
7.反比例函数 的图象经过点 , ,当 时, 的取值范围是( )
A. B. C. D.
2.下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
3.抛物线y=2(x-1)2-6的对称轴是( ).
A.x=-6B.x=-1C.x= D.x=1
4.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于( )
A.25°B.20°C.40°D.50°