四年级奥数详细讲解答案第5讲图形的切拼分解

合集下载

小学四年级奥数配套课件 图形的分割与剪拼

小学四年级奥数配套课件 图形的分割与剪拼

例题(九)(★★★★★)
然后把乙剪成三块(如右下图所示)拼成的正方形,即可。
本讲重点知识
重要入手点:规则图形的中心 等底等高的两个三角形面积相等 注:特殊三角形——正三角形和等腰直角三角形的面积都相同,所以六边形面积等于13平方米。
例题(七)(★ ★ ★ )
用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、 一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图。
例题(八)(★ ★ ★ )
试将一个4×9的长方形分割成两个大小相等、形状相同的 图形,然后拼成一个正方形。
知识链接
桌子上放着m根火柴,甲、乙二人轮流每次取走1—n根。规定谁 取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜? (1)若m÷(1+n)=P
则乙有必胜策略。甲取几根,乙就取(n+1)减几根。 (2)若m÷(1+n)=P …r
则甲先取r根,然后乙取几根,甲就取(n+1)减几根。
例题(四)(★ ★ ★ ★)
怎样把一个等边三角形分别分成8块和9块形状、大 小都一样的三角形。
(2)分成9块的方法:先把每边三等分,然后再把分点连接起来
知识链接
等边三角形的等分方法 ——各边等分再连线
例题(五)(★ ★ ★ ★)
下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成 大小形状完全一样的两部分。如果分三部分呢?如果分成四部分呢?
知识链接
层层倒推,步步必胜。
例题一(★★)
用一条线段把一个长方形分成形状大小都相同的两块,一共有多少种不同的分 割法?
长方形的最重要之处是哪里呢? (1)做长方形的两条对甬线,设交点为O

小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习—图形的分割与拼接知识定位本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.【授课批注】本讲中很多类型的题目还要求学生去动手尝试.通过本讲知识点的学习,让学生了解不同图形的分割、拼合、剪拼的方法,锻炼学生的平面想象能力以及增强学生的动手操作能力知识梳理图形的分割与拼接的概念把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.【授课批注】该知识点可从七巧板引入,举几个由七巧板组成的图形的剪拼的例子。

【重点难点解析】1.根据题目需要找合适的方法进行剪拼2.如何根据相等的量来剪拼图形【竞赛考点挖掘】1.方格纸的分割与拼接2.简单平面基本图形(长方形、三角形等)的分割与拼接例题精讲【题目】右图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】右图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】请把右面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?【题目】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将右图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?【题目】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【题目】如何把图a中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角形进行分割).【题目】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.习题演练【题目】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【题目】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【题目】下面哪些图形自身用4次就能拼成一个正方形?【题目】将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种可以拼成面积是16的正方形?【题目】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【题目】将右图分成4个形状、大小都相同的图形,然后拼成一个正方形.【题目】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【题目】试将任意一个三角形分成三块,然后拼成一个长方形.【题目】试将任意一个矩形分成三块,然后拼成一个三角形【题目】将右图分成两块,然后拼成一个正方形.【题目】如图所示,四个等腰直角三角形和一个正方形,已知正方形的面积是4平方厘米,长方形ABCD的面积是多少平方厘米?【题目】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.【题目】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【题目】一个正三角形形状的土地上有四棵大树(如右图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【题目】右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【题目】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【题目】用下面左边的3个图形,拼成右边的大正方形.【题目】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?柏拉图古希腊哲学家,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之一,他和老师苏格拉底,学生亚里士多德并称为古希腊三大哲学家。

四年级下册数学试题-奥数专题讲练:5 图形的分割与拼接 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:5 图形的分割与拼接 精英篇(解析版)全国通用

第五讲图形的分割与拼接教学目标本章内容比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.本章中很多类型的题目还要求同学们去动手尝试.通过本章知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.有8个相等的直角三角形,你能拼成下图中的空心正八角星吗?想挑战吗分析:把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成如右图所示的空心正八角星.专题精讲把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?→→分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图所示.[拓展]把如右图这样由五个正方形组成的图形,分成四块大小、形状都相同的图形→→分析:从面积考虑,把整个图形的面积分成四份,分割后的每一部分占一份.正方形,则可把每个正方形分成四个面积相等的小正方形,每块图形应有五个这样的小正方形,如右上图所示.[巩固]右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?分析:如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.【例2】(★★★★)把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左上图所示的三种分法.又因为4=l×4=2×2,所以,如果我们把每一个小三角形的面积看做1,那么1×4就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而2×2可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右上图的另两种分法.[前铺] 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出4种不同的分法.分析:根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如下图所示的三种分法.[拓展]怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→分析:(1)分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如左上图所示的图形.(2)分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例3】(★★★★)如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.→图1 图2分析:图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180°必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.[拓展] 如右图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?分析:首先在相同颜色的棋子之间划出切分线,以中心旋转90°、180°、270°之后,得一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是36÷4=9,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90°、180°、270°便得到其他三块,如右上图.(二)图形的拼合【例4】(★★★)将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种自身可以拼成面积是16的正方形?分析:面积是16的正方形,其边长等于4,用图形(5)和(7)显然能拼成边长是4的正方形(如左上图所示).用图形(1)、(2)和(6)也能拼成边长为4的正方形(如右上图所示).通过观察与试验,无法用所给图中的(3)和(4)拼成题目要求的正方形.因此,用所给图中的七种图形,共可以拼成5种面积是16的正方形.[巩固]下面哪些图形自身用4次就能拼成一个正方形?分析:用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见右上图.【例5】(★★★★)用6个完全一样的等腰直角三角形拼图,要求边与边完全重合.你能拼出几种图形?把它们画出来.分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图[前铺]用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析:这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 223 453 2 4341249 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割. 例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢? 例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少?D G324 34 1242 3 33 3第五讲 割补法巧算面积1. 例题1答案:32平方厘米详解:对这个图形进行简单分割后,分别求面积再相加. 32243632⨯+⨯+⨯=平方厘米.也可对图形进行添补.(如右图)2.例题2答案:16平方厘米详解:正方形面积是36平方厘米,三角形AEH 、FCG 的面积是2平方厘米,三角形EBF 、GDH 的面积是8平方厘米.长方形EFGH 的面积是36228216-⨯-⨯=平方厘米.3. 例题3答案:50平方厘米详解:首先可把小正方形中间的阴影部分添补到相对应的空白处,中间小正方形的面积等于四个角上的阴影三角形的面积和.可连接正方形对边的中点,也可以把四个三角形向中间对折都可以说明阴影部分的面积是正方形面积的一半,即为1010250⨯÷=平方厘米. 4. 例题4答案:27平方厘米详解:图1中大三角形被分成9块,阴影部分面积占3块,面积是48平方分米,那么每个小三角面积是16平方分米,大三角形面积是169144⨯=平方分米. 图2中大三角形被分成了16块,那么每个小三角形的面积是144169÷=平方分米,阴影部分面积是9327⨯=平方分米. 5. 例题5答案:32平方厘米详解:对图形进行如左图的分割,通过第一个图,我们知道等腰直角三角形的面积8平方厘米,正方形B 的面1 2 2 3 4 5 1 22 3 45积是32平方厘米.6. 例题6答案:20平方厘米详解:如图所示,把原图添补成一个大的等腰直角三角形.需要将多余的小直角三角形去掉才是原图.大等腰直角三角形的底是7厘米,高是7厘米,所以面积是77224.5⨯÷=平方厘米;小等腰直角三角形的底是3厘米,高是3厘米,所以面积是332 4.5⨯÷=平方厘米.所以四边形的面积是24.5 4.520-=平方厘米.7. 练习1答案:78平方厘米详解:492331278⨯+⨯+⨯=平方厘米.8. 练习2答案:10平方厘米详解:正方形面积是36平方厘米,三角形AEF 的面积是2平方厘米,三角形BEC 、DFC 的面积都是12平方厘米.三角形EFC 的面积是362121210---=平方厘米.9. 练习3答案:5简答:大正三角形被分成12块,阴影部分占6块,占总个数的一半,面积为5平方厘米.10. 练习4答案:1503 243 4124 9简答:图1中大正方形被分成25块,阴影部分面积占18块,面积是162,那么每个小正方形面积是9,大正方形面积是259225⨯=.图2中大正方形被分成了9块,那么每个小正方形的面积是225925÷=,阴影部分面积是256150⨯=.11. 作业1答案:84简答:()312433332284⨯+⨯+++⨯⨯=平方厘米.12. 作业2答案:18简答:首先求出大正方形的面积,再求出各个角上的小三角形的边长和面积.然后把大正方形的面积减去四个小三角形的面积就得梯形的面积. 13. 作业3答案:6简答:将右上两个阴影三角形切下来添到左侧空白处,使其拼成一个大的三角形.阴影面积是平行四边形面积的一半.所以阴影部分的面积是6. 14. 作业4答案:80简答:对三角形进行分割,能知道每个小三角形的面积是100520÷=,阴影正方形的面积是80.15. 作业5答案:9简答:把大六边形划分为24个小正三角形,其中阴影部分可以分成6个小正三角形,所以大六边形是阴影部分面积的4倍,正六边形面积是36,阴影部分的面积是3649÷=.。

小学奥数讲义4年级-5- 图形的剪拼-难版

小学奥数讲义4年级-5- 图形的剪拼-难版

第5讲图形的剪拼知识梳理把一个几何图形按某种要求分成几个图形,就叫做图形的分割.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.典型例题【例1】★请将一个任意三角形分成四个面积相等的三角形。

【解析】本题要求分成面积相等的三角形,因此可以利用“同底等高的三角形面积相等”这一性质来分割。

方法一:将某一边等分成四份,连结各分点与顶点(见左下图)。

方法二:画出某一边的中线,然后将中线二等分,连结分点与另两个顶点(见右上图)。

【小试牛刀】试将一个等边三角形分割成8个全等的直角三角形。

【解析】如图【例2】★将右图分割成五个大小相等的图形。

【解析】因为图中共有15个小正方形,所以分割成的图形的面积应该等于15÷5=3(个)小正方形的面积。

3个小正方形有和两种形式,于是可得到很多种分割方法,下图是其中的三种。

【小试牛刀】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321D C B A 1FE221D C BA【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例3】★★右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。

四年级下同步奥数第五讲 解决问题的策略(图形面积的计算)

四年级下同步奥数第五讲  解决问题的策略(图形面积的计算)

第五讲解决问题的策略(图形面积的计算)[知识概述]解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解答。

2.从整体上观察图形特征.掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例题精学例1有一块长方形地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪。

如图,草坪的总面积是多少平方米?[思路分析]要求草坪的面积,就要用长方形土地的面积减去正方形雕塑的面积。

要求长方形土地的面积,就要知道它的长与宽。

现在已知长20米是宽的2倍,可以先求出宽,再求出长方形土地的面积。

1. 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?2.下图是由6个相同的三角形拼成的图形,求这个图形的面积。

(单位:分米)3.用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?例2、红山小学操场长90米,宽45米,改造后,长增加10米,宽增加5米,现在操场面积比原来增加多少平方米?[思路分析]用操场现在的面积减去操场原来的面积,就得到增加的面积,操场的长增加10米,宽增加5米,操场现在的面积是(90+10)X(45+5)= 5000(平方米),操场原来的面积是:90X45=4050(平方米),从而可求出增加的面积。

1.有一块长方形菜地,长18米,宽10米,如果长和宽都减少了4米,面积比原来减少了多少平方米?2.一块长方形木板,长24分米,宽16分米,如果长减少4分米,宽减少2分米,面积比原来减少多少平方分米?3、一块长方形果园,长是90米,宽是60米,如果把长增加2米,宽增加3米,面积增加多少平方米?例3一个长方形,如果长不变,宽增加6米,面积就增加72平方米:如果宽不变,长增加4米,面积就增加了32平方米。

这个长方形原来的面积是多少平方米?[思路分析]由长不变,宽增加6 米,面积就增加72平方米,可求出它的长为:72+6=12(米);又由宽不变,长增加4米,面积就增加32平方米,可求出它的宽为:32+4=8(米),从而可求出这个长方形原来的面积。

第5讲 图形的分割

第5讲 图形的分割

第5讲 图形的分割【专题精华】在研究用直线、圆等图形分割平面时,我们一般从简单的情况入手分析。

在研究怎样将一个图形分割成满足某种条件的若干块的问题时,要注意到图形的对称性。

【教材深化】[题1] 5条直线最多将平面分成多少个部分?<敏捷思维> 首先考虑5条直线不太简单,我们先研究一些简单的情况,不难知道: 一条直线最多将平面分为2个部分;二条直线最多将平面分为4个部分;三条直线最多将平面分为7个部分;四条直线最多将平面分为11个部分;五条直线最多将平面分为16个部分。

<全解> 5条直线最多将平面分成16个部分。

<拓展探究> 针对上面一组数据,我们不难发现二条直线分平面的4部分是在一条直线分平面的2部分的基础上增添了2部分;三条直线分平面的7部分恰好是在二条直线分平面的4部分的基础上增添了3部分;类似地,四条直线分平面的11部分是在三条直线分平面的7部分的基础上增添了4部分……仿照此分析法可以得出,n 条直线最多分平面的部分数为:2+2+3+……+(n-1)+n=22++n n 。

[能力冲浪]1、10条直线最多可以把平面分成多少部分?2、20个三角形最多把平面分成多少部分?3、在平面内画六条直线和一个圆,最多能把平面分成几个部分?[题2] 把一个正方形分成形状相同,面积相等的四个图形。

<敏捷思维> 本题是均分图形,答案有多种,既可以用线段分割,也可以用曲线分割,无论是用线段分割,还是用曲线分割,经过旋转,每一种又可以得到很多种分法。

<全解>1、分割线是线段的22、分割线是曲线的。

3、如果选择其中一种,把它的分割线想象成风车的叶轮,让它们旋转起来,还可以得到更多的方法。

如:旋转图⑤可得到下面的图。

如:旋转图⑨,可得到下面的图<拓展探究> 像这类题目,可以凭直觉,先找出部分分法,然后借出想象,“旋”出无数分法。

[能力冲浪]1、将如下图所示的三角形,分成面积相等的4块,你有几种分法?请把各种分法画出来(每种不同的分法思路,用一个图表示)。

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)专题10平面图形的切割与拼接图形的拼切就是把一个图形分成若干块,然后再讲成一个规则的图形。

拼切前后的图形面积大小不变。

利用图形的对称性进行拼切是一种常用的方法,还要学会选择分割的方法和技巧。

1.用一张长方形纸剪同样的三角形(如下图),最多能剪多少个这样的三角形?2.一个三角形的底是12分米,高是8分米,用两个这样的三角形拼成一个平行四边形,这个平行四边形的面积是多少平方分米?3.一块装饰玻璃形状如下图所示,这块玻璃的面积是多少平方分米?4.王村有一个宽20米的长方形鱼塘。

因修路,鱼塘的宽减少了6米,这样鱼塘的面积就减少了180平方米。

现在鱼塘的面积是多少平方米?(先画出减少的部分,再解答)5.长方形纸长24厘米、宽14厘米,先剪下一个最大的正方形,再从剩下的长方形中剪下一个最大的正方形。

最后剩下的小长方形的面积是多少?6.欣欣和乐乐想用一张长8分米、宽5.5分米的长方形纸剪边长是2分米的正方形。

乐乐说:“我最多能剪出11个正方形”,欣欣说:“不可能,你吹牛”。

你认为乐乐是在吹牛吗?请你用画示意图的方式说明你的想法。

7.在一张长30厘米、宽18厘米的长方形纸的一端剪掉一个最大的正方形,在剩下的长方形纸的一端再剪掉一个最大的正方形.最后剩下部分是什么图形?它的面积是多少平方厘米?8.一块正方形的玻璃边长8分米,在它一角切下一个长4分米、宽3分米的长方形,这块玻璃剩下部分的周长多少分米?(先画图,再计算)9.李阿姨在一块长为80分米,宽为50分米的长方形花布上剪下一块最大的正方形花布,这块正方形花布的周长是多少分米?剩下的花布的周长是多少分米?10.一张长方形桌布长120厘米、宽90厘米。

这张桌布有了一个洞,为了不浪费,小明想剪下一块最大的正方形桌布。

剪下的这块正方形桌布的面积是多少平方厘米?11.在下图的长方形中,截取一个最大的正方形,剩下的小长方形的周长是多少厘米?12.一块长方形花圃,如果把它的长减少4米,面积就减少64平方米;如果把它的宽增加4米,面积就增加80平方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数详解答案第5讲
第五章图形的切拼
一、知识概要
1.图形的切拼就是按照所给的条件把一个图形切分成若干个小图形,然后再把这些小图
形拼会成一个指定的新图形。

2. 图形的切拼,有的单凭直觉判断,有的靠数字计算,有的则要求充分发挥想象力,特
别是空间想象力。

3. 图形的切拼是一种科学的技巧,它可以帮助我们简化解题的思路,是解题的一种良好
方法。

二、典型题目精讲
1. 右图是由两个正方形组成的长方形,请你剪两刀,把它拼成一个正方形。

解法一:如图所示,先划两条线对角线,然按对角线,2刀可以切成3块,3块拼成一个正方形。

解法二:(如图将长方形的一半,即其中一个正方形按对角线2刀剪开成4块,然后把4块拼成一块
2. 把下面的图形分割成三块,再把拼成一个正方形。

解:如图所示,图形底部是个梯形,在梯形下底取一中点,然后分别连接上面两个顶点,沿这两条连线2刀剪下两个三角线(全等),旋转贴于中部的两侧即成。

3. 下图是由三个正三角形组成的梯形,请你把它分割成四块形状相同,大小相等的图
形。

解:①把下底四等分②取梯形中们线(高的一半),且把中位三等分,③连接顶点和中
位线的两个等分点④连接中位线的两个等分点和下底的1、3等分点。

(如图所示)
4. 沿格子线把下面的图形分成形状相同,大小相等的两块.
解:这六个图形,大小一样,意思是用六各不同的方法分切同一样图形,方法一(见
图A):从底边左端数三格处一线剪开;方法二(见图B):从左上顶点向右数三格,然后再向下折一格,再向右折三格直顶角。

方法三(见图C):从底边右端点向上一格,然后向左折一格,再向上折一格,接着又向左折一格,最后向上一格至顶点。

方法四(见图D):从左端那条竖边的中点向右数三格,然后向上折一格,再向右折三格至边。

方法五(见图E):从底边的左端向右数二格,然后向上折一格,再向右折一格,再向上折一格,又向右折一格,最后向上折一格至边。

方法六(见图F):从底边左端向右数一格,然后向上折一格,接着向右折二格,再向上折一格,再向右折二格,最后向上折一格至边。

5. 把右图分切成形状相同,大小相等的四块。

解:分析: 整个图形由相等的6个小正方形所成,其中有一格已平分成两个半格。

6÷4=1.5,即平均每块一格半。

具体切法如图所示:
6. 把左下图(一)切分成形状相同,大小相等的三块,并且每一块恰好有一个“0”在其
中。

解:分析:(图一)是由21个小正方形组成的,而且有3格中各有一个“0”,现在要把切分成三块,则每块21÷3=7(个)小方格,其中有“0”的占一格,具体切分方
法,如图二所示。

三、练习巩固与拓展
1. 把下面的图形(由五个小正方形组成)切拼成一个正方形。

2. 下面的两个图形都是由八个小正方形组成,只用两刀,把每个图形切分成四块,然
后拼合成一个正方形。

3. 下图是一个三角形(任意),请你把它两刀分切成三块,然后再拼合成一个长方形。

4. 如右图所示,有一个边长是1厘米的正方形和两个长都2厘米的,宽都是1厘米的
长方形,请你把它们分割成几块后,再拼成一个正方形。

5. 把一个正方形分成8块,再把它拼成一个正方形和一个长方形,使这个正方形和长
方形的大小相等。

6. 把右下图剪两刀,然后拼成一个正方形。

7. 将下图分成四个形状相同大小相等的图形,然后拼成一个正方形。

8. 先把下图切分成2块,然后再把它们拼合成一个6×5的长方形。

9. 试用下面的五个图形拼合成一个正方形。

10. 把下图切分成四块形状相同,大小相等,并且每块都有一个“ ”的图形。

11. 把下面的图形切分成形状相同,大小相等的两块。

12. 把下面图形切分成形状相同,大小相等的四块。

13. 把下面图形切分成两块,然后拼成一个正方形。

14. 把下图分割成2块,然后拼成一个6×5的长方形。

第五讲 <练习巩固与拓展>答案
1. (1)
(2)
2. (1)
(2)
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13. (1) (2)
14.。

相关文档
最新文档