第二章金属材料性能及常用工程材料
工程材料知识

4.蠕墨铸铁
用途:制造复杂的大型铸件和大型机床零件,如立柱等。特别适用于制造受冲
击的铸件,如大型柴油机的气缸盖、制动盘和制动毂;也适用于制造耐压气密件,
如阀体等。
牌号:用符号“RuT”及其后数字表示,其中“RuT”是蠕铁两字汉语拼音的第
一字母,其后面的数字表示最低抗拉强度(σb)值。如RuT340表示抗拉强度 σb≥340MPa的蠕墨铸铁。
(1)化学成分的影响 2.影响石墨化的因素 (2)冷却速度的影响
常用铸铁件
1.灰铸铁 用途:制造承受压力和要求减振的床身、机架、箱体、壳体,经受摩擦的导
轨等,以及其他低负荷、不重要的零件。
牌号:用“灰铁”二字的汉语拼音字首“HT”与其后面一组数字表示。数字 表示铸铁最小抗拉强度σb值。例如HT150表示最小抗拉强度σb为150MPa的灰铸 铁。
➢锻造性能:
用锻压成形方法获得优良锻件的难易程度称为锻造性 能。 铸铁不能锻压 。
➢焊接性能:
焊接接性能是指能否将金属用一定的焊接方法焊成 优良接头的性能。没有裂缝、气孔等缺陷,并且具 有一定的力学性能。
➢切削加性能:切削加工(性能)金属材料的难易
程度称为切削加工性能。
第二节 碳素钢
铁碳合金的基本知识
工业纯铁 钢(碳钢) 铸铁
一、杂质元素对钢的影响
1.锰和硅 2.硫和磷
2023大学_精密机械设计(庞振基黄其圣著)课后答案

2023精密机械设计(庞振基黄其圣著)课后答案精密机械设计(庞振基黄其圣著)内容简介前言基本物理量符号表绪论第一章精密机械设计的基础知识第一节概述第二节零件的工作能力及其计算第三节零件与机构的误差估算和精度第四节工艺性第五节标准化、系列化、通用化第六节零件的设计方法及其发展思考题及习题第二章工程材料和热处理第一节概述第二节金属材料的力学性能第三节常用的工程材料第四节钢的热处理第五节表面精饰第六节材料的选用原则思考题及习题第三章零件的几何精度第一节概述第二节极限与配合的基本术语和定义第三节光滑圆柱件的极限与配合及其选择第四节形状与位置公差及其选择第五节表面粗糙度及其选择思考题及习题第四章平面机构的结构分析第一节概述第二节运动副及其分类第三节平面机构的运动简图第四节平面机构的自由度第五节平面机构的组成原理和结构分析思考题及习题第五章平面连杆机构第一节概述第二节铰链四杆机构的基本型式及其演化第三节平面四杆机构曲柄存在的条件和几个基本概念第四节平面四杆机构的设计思考题及习题第六章凸轮机构第一节概述第二节从动件常用运动规律第三节图解法设计平面凸轮轮廓第四节解析法设计平面凸轮轮廓第五节凸轮机构基本尺寸的确定思考题及习题第七章摩擦轮传动和带传动第一节概述第二节磨擦轮传动第三节磨擦无级变速器第四节带传动第五节同步带传动第六节其它带传动简介思考题及习题第八章齿轮传动第一节概述第二节齿廓啮合基本定律第三节渐开线齿廓曲线第四节渐开线齿轮各部分的名称、符号和几何尺寸的计算第五节渐开线直齿圆柱齿轮传动第六节渐开线齿廓的切制原理、根切和最少齿数第七节变位齿轮第八节斜齿圆柱齿轮传动第九节齿轮传动的失效形式和材料第十节圆柱齿轮传动的强度计算第十一节圆锥齿轮传动第十二节蜗杆传动第十三节轮系第十四节齿轮传动精度第十五节齿轮传动的空回第十六节齿轮传动链的设计思考题及习题第九章螺旋传动第一节概述第二节滑动螺旋传动第三节滚珠螺旋传动第四节静压螺旋传动简介思考题及习题第十章轴、联轴器、离合器第一节概述第二节轴第三节联轴器第四节离合器思考题及习题第十一章支承第一节概述第二节滑动摩擦支承第三节滚动摩擦支承第四节弹性摩擦支承第五节流体摩擦支承及其它形式支承第六节精密轴承思考题及习题第十二章直线运动导轨第一节概述第二节滑动摩擦导轨第三节滚动摩擦导轨第四节弹性摩擦导轨第五节静压导轨简介思考题及习题第十三章弹性元件第一节概述第二节弹性元件的基本特性第三节螺旋弹簧第四节游丝第五节片簧第六节热双金属弹簧第七节其它弹性元件简介思考题及习题第十四章联接第一节概述第二节机械零件的联接第三节机械零件与光学零件的联接思考题及习题第十五章仪器常用装置第一节概述第二节微动装置第三节锁紧装置第四节示数装置第五节隔振器思考题及习题第十六章机械的计算机辅助设计第一节概述第二节计算机辅助设计系统的原理与构成第三节表格和线图的处理第四节机械优化设计第五节设计举例思考题及习题参考文献精密机械设计(庞振基黄其圣著)目录本书对精密机械及仪器仪表中常用机构和零部件的工作原理、适用范围、结构、设计计算方法,以及工程材料、零件几何精度的基础知识等诸方面均作了较为详细的阐述。
工程材料教学大纲

《工程材料》课程教学大纲总 学 时:12考核形式:考试教学目的:《工程材料》是一门综合性、应用性较强的专业基础必修课。
学习本课程的目的在于使学生获得有关工程材料及热处理的基本理论、基础知识;了解常用工程材料的成分、组织和性能之间的关系;具有根据零件的使用性能要求,合理选用材料,正确选定热处理方法,妥善安排工艺路线的初步能力。
主要教学内容及要求:绪论: 讲明本课程的目的、内容、特点与学习方法。
第一章材料结构与性能: 了解晶格概念、常见晶格类型、晶面、晶间指数、晶界特点及应用;掌握金属材料性能、了解刃型位错、固溶体及金属化合物、高分子聚合物构型和构像及如何改变其构型和构像;陶瓷材料的结构、性能。
第二章金属材料组织与性能的控制: 熟悉过冷、过冷度及细化晶粒的基本途径;掌握匀晶相图和二元共晶相图;能利用杠杆定理计算组织组成物和相组成物的质量分数;了解其它相图,掌握Fe — Fe3C 相图,及 Wc 对组织性能的影响;掌握加工硬化、回复、再结晶、冷变形、热变形的概念及应用;掌握钢在加热时的冷却时组织转变,及退火、正火、淬火、回火及表面热处理的目的、工艺及应用。
掌握合金元素在钢中的作用,了解表面技术。
第三章金属材料: 掌握钢的分类、钢中常存杂质对钢性能影响,掌握常用合金结构钢、合金工具钢、特殊性能钢的成分、热处理、性能、组织特点及应用;熟悉灰口铁、可锻铸铁、球墨铸铁成分、组织、性能及用途,特殊性能铸铁一般性介绍;掌握铝及铝合金组织、性能之间关系及应用,了解铜及铜合金、钛及钛合金、轴承合金组织、性能之间关系及应用。
第四章高分子材料: 熟悉高分子材料(工程塑料、橡胶、合成纤维)的性能和用途。
第五章陶瓷材料: 了解陶瓷的分类,常用工程结构陶瓷性能、用途。
第六章复合材料: 了解复合材料分类、增强机制及性能,常用复合材料。
第七章其它工程材料: 了解其它工程材料。
第八章机械零件的失效与强化: 掌握零件的失效形式与分析方法及工程材料的强韧化方法。
工程材料02(金属与合金的晶体结构)

金属材料的性能特点一般地,金属材料与非金属材料相比,金属材料具有良好的力学性能,而且工艺性能也较好。
即使都是金属材料,不同成分和不同状态下的性能也会有很大的差异。
造成这些性能差异的主要原因是材料内部结构不同,因此掌握金属与合金的内部结构特点,对于合理选材具有重要意义。
金属材料是靠原子间金属键结合起来的。
金属键——金属材料内部,呈一定规律排列的正离子与公有化的自由电子靠库仑力结合起来,这种结合力即为金属键。
(正离子+公有电子云、无方向性、非饱和性)金属材料的性能特点:1、良好的导电、导热性。
2、正的电阻温度系数3、良好的塑性4、不透明、有金属光泽第一节晶体的基本知识金属材料一般都是晶体,具有晶体的特性。
一、晶体——内部原子呈规则排列的物质。
晶体材料(单晶体)的特性:①具有固定的熔点。
②具有规则的几何外形。
③具有“各向异性”。
二、晶格、晶胞和晶格常数1、晶格——描述晶体中原子排列规律的空间点阵。
将原子的振动中心抽象为一几何点,再用直线的连接表示原子之间的相互作用。
2、晶胞——由于晶格排列具有周期性,研究晶格时,取出能代表晶格特征的最小基本单元即称为晶胞。
3、晶格常数——用来描述晶胞大小与形状的几何参数。
三条棱长:a、b、c三条棱的夹角:α、β、γ对于简单立方晶胞:棱长a=b=c 夹角α= β= γ= 90°第二节纯金属的晶体结构一、典型的晶格类型各种晶体由于其晶格类型和晶格常数不同,往往呈现出不同的物理、化学及力学性能。
除少数金属具有复杂晶格外,大多数晶体结构比较简单,典型的晶格结构主要有以下三种:1、体心立方晶格(bcc)2、面心立方晶格(fcc)3、密排六方晶格(hcp)1、体心立方晶格(bcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向(原子排列最紧密的方向):立方体的对角线方向原子半径:属于bcc 晶格的金属主要有:α-Fe 、Cr 、W 、Mo 、V 等ar 432、面心立方晶格(fcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向:立方体表面的对角线方向原子半径:属于fcc 晶格的金属主要有:γ-Fe 、Cu 、Al 、Au 、Ag 等。
金属材料的力学性能

第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。
使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。
工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。
所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。
这些性能指标是通过试验测定的。
第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。
将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。
将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。
低碳钢的力一伸长曲线如图1—2所示。
从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。
超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。
当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。
屈服以后,试样又随拉力增加而逐渐均匀伸长。
达到B 点,试样的某一局部开始变细,出现缩颈现象。
由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。
当达到K 点时,试样在缩颈处断裂。
低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。
F —ΔL 曲线与试样尺寸有关。
为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。
常用金属材料的种类、性能特点及应用

金属材料与其他材料的复合应用
总结词
金属材料与其他材料如塑料、陶瓷等的复合 应用,可以发挥各自的优势,拓展了金属材 料的应用领域。
详细描述
金属材料与其他材料如塑料、陶瓷等的复合 应用已经成为一种新的发展趋势。通过将金 属材料与不同材料进行复合,可以发挥各自 的优势,弥补单一材料的不足,拓展金属材 料的应用领域。这种复合材料在汽车、电子 、建筑等领域具有广泛的应用前景,为金属
汽车工业
汽车车身材料
钢铁、铝等金属材料是汽车车身的主 要材料,它们具有高强度和良好的成 型性,能够满足汽车设计的各种需求 。
汽车零部件材料
金属材料还广泛应用于汽车零部件的 制造,如发动机、变速器、底盘等。 它们需要具有良好的力学性能、耐腐 蚀性和耐磨性。
航空航天
航空航天结构材料
铝、钛、钢等金属材料因其高强度、轻质和良好的耐腐蚀性而被广泛应用于航 空航天领域。它们能够满足航空器在高速、高海拔和极端环境下的性能要求。
塑性
金属材料在受力后发生屈服, 产生永久变形而不破坏的能力 。
高强度材料
如钢铁、钛合金等,常用于结 构件和承重部件。
塑性好的材料
如纯铜、铝等,易于加工成型 。
硬度与耐磨性
硬度
金属抵抗其他物质压入 其表面的能力。
耐磨性
高硬度材料
耐磨材料
金属抵抗磨损的能力。
如硬质合金、碳化钨等, 用于制造切削工具和耐
磁性材料
铁、钴、镍等金属及其合金具有磁性,是制造各种磁性器件的主要原料,如电磁 铁、发电机和变压器等。
04 金属材料发展趋势
高性能金属材料
总结词
高性能金属材料具有高强度、高韧性、耐腐蚀等特性,广泛应用于航空航天、汽车、能 源等领域。
金属材料知识
金属材料知识概述承压设备制造是国民经济的基础产业,各种生产工艺的要求各不尽相同,如:压力从真空到高压甚至超高压、温度从低温到高温以及腐蚀性、易燃、易爆物料等,使得设备处在极其复杂的操作条件下运行。
由于不同的生产条件对设备材料有不同的要求,因此,合理的选用材料是设计承压设备的关键环节。
例如:对于高温容器,由于钢材在高温的长期作用下,材料的力学性能和金属组织都会发生明显的变化,加之承受一定的工作压力,因此在选材时必须考虑到材料的强度及高温条件下组织的稳定性。
容器内部盛装的介质大多具有一定的腐蚀性,因此需要考虑材料的耐腐蚀情况。
对于频繁开、停车的设备或可能受到冲击载荷作用的设备,还要考虑材料的疲劳等。
而低温条件下操作的设备,则需要考虑材料低温下的脆性断裂问题。
一、金属材料的分类二、金属材料的性能三、影响材料性能的因素四、特种设备对材料的要求五、特种设备常用材料标准一、金属材料分类黑色金属:铁和铁的合金均称为黑色金属纯铁:化学纯铁含碳量几乎为零,工业纯铁含碳量<0.05%。
纯铁是很软的,一般不应用到实际中。
铁碳合金:以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。
生铁:把铁矿石放到高炉中冶炼而成的,含碳量2%~4.3%(也有资料称3.5%—5.5%、2.11%-6.67%)的铁碳合金称为生铁。
生铁质硬而脆,缺乏韧性,几乎没有塑性变形能力,因此不能通过锻造、轧制、拉拔等方法加工成形,主要用来炼钢和制造铸件,如白口铁、灰口铁和球墨铸铁。
也有习惯上把炼钢生铁叫做生铁,把铸造生铁简称为铸铁。
钢:含碳量在0.04%-2.3%之间(也有资料称0.03%-1.2%)的铁碳合金称为钢。
为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等。
有色金属:除黑色金属外的金属和合金,如铜、锡、铅、锌、铝等。
金属材料分类(钢材)1、按化学成分分类:①碳素钢:简称碳钢。
除铁、碳外主要含有少量Si、Mn及P、S等杂质,这些总含量不超过2%,按含碳量不同分为:低碳钢——含碳量小于0.25%中碳钢——含碳量等于0.25%~0.6%高碳钢——含碳量大于0.6%②合金钢:除碳钢所含元素外,还含有其它一些合金元素:如Cr、Ni、Mo、W、V、B等,按合金元素含量不同分类:低合金钢——合金元素含量小于5%中合金钢——合金元素含量等于5%~10%高合金钢——合金元素含量大于10%金属材料分类(钢材)2、按用途分类:①建筑工程用钢或构件用钢①普通碳素结构钢②低合金结构钢③钢筋用钢等②结构钢机器零件用钢调质结构钢表面硬化结构钢:包括渗碳钢、渗氨钢、表面淬火用钢易切削结构钢冷塑性成形用钢:包括冷冲压用钢、冷镦用钢。
第二章金属材料力学性能基本知识及钢材的脆化
金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。
通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。
使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。
2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。
工艺性能对制造成本、生成效率、产品质量有重要影响。
1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。
材料在外力作用下所表现的一些性能称为材料的力学性能。
锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。
1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。
材料强度指标可以通过拉伸试验测出。
把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。
根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。
在拉伸曲线上可以得到该材料强度性能的一些数据。
图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。
所以曲线称为P—AL曲线或一一s曲线。
图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。
常用金属材料的特性
常用金属材料的特性
1.强度高:金属材料通常具有较高的强度,能够经受外部荷载和变形
而不发生破坏。
这使得金属材料被广泛应用于工程结构中,如建筑、桥梁、飞机和汽车等。
2.韧性好:金属材料具有良好的韧性,能够在应力作用下发生塑性变
形而不发生破裂。
这种特性使得金属材料具有较高的吸能能力,能够吸收
冲击和振动,保护其他结构或设备免受损坏。
3.导电性好:金属材料是优良的导电体,电子在金属中能够自由移动。
这使得金属材料广泛应用于电子设备、电力输送和通信等领域。
4.导热性好:金属材料对热能的传导具有良好的特性,可以快速将热
能传递出去。
这使得金属材料可用作散热器和热交换器等设备,以提高能
量效率和保护其他组件。
5.可塑性好:金属材料能够经受外力作用发生塑性变形,可以通过压力、拉伸和弯曲等加工方法进行成型。
这使得金属材料成为制造工业常用
的选材。
6.耐腐蚀性好:许多金属材料具有良好的抗腐蚀性能,能够抵抗大气、水、酸、碱等化学介质和腐蚀性气体的侵蚀。
这使得金属材料在各种恶劣
环境下都有广泛的应用,如海洋、化工和食品加工等行业。
7.成本低:相对于其他材料,金属材料价格相对较低,且易于获取和
加工。
这使得金属材料成为经济实惠的选材,并得到广泛应用。
总而言之,常用金属材料具有高强度、良好的韧性、导电性、导热性和可塑性等优良特性,且耐腐蚀性好、成本低廉。
这些特性使得金属材料在各个领域都有广泛的应用,是现代工业发展不可或缺的重要材料。
常用金属材料及其性能
常用金属材料及其性能1. 引言金属材料是工程和制造行业中最为常用的材料之一。
它们具有优良的导电性、导热性、机械性能和耐腐蚀性能,被广泛应用于建筑、航空航天、汽车、电子等领域。
本文将介绍一些常用的金属材料及其主要性能。
2. 铁及其合金铁是地球上最常见的金属之一,其合金可以增加强度和耐腐蚀性能。
以下是一些常见的铁及其合金:2.1 纯铁纯铁具有良好的延展性和可塑性,通常用于制造铁器。
然而,纯铁的机械强度较低,容易生锈。
2.2 碳钢碳钢是一种含有较高碳含量的铁合金。
它具有优异的强度和硬度,常用于制造工具和机械零件。
2.3 不锈钢不锈钢是含有铬元素的铁合金,具有良好的耐腐蚀性能。
不锈钢分为多种类型,如奥氏体不锈钢、马氏体不锈钢等,应用广泛于食品加工、医疗器械等领域。
3. 铝及其合金铝是一种轻便耐用的金属,具有良好的导热性和导电性,以下是一些常见的铝及其合金:3.1 纯铝纯铝具有良好的可塑性和耐腐蚀性。
它常用于制造铝箔、飞机部件和汽车零件。
3.2 铝合金铝合金通过添加其他元素来提高强度和硬度。
常见的铝合金包括铝铜合金、铝锌合金等。
铝合金具有轻便、抗腐蚀和良好的导热性,被广泛应用于航空航天、建筑和汽车制造等领域。
4. 铜及其合金铜具有优良的导电性和导热性,以下是一些常见的铜及其合金:4.1 纯铜纯铜具有良好的导电性和可塑性,常用于制造电线、电缆和导体。
4.2 黄铜黄铜是铜和锌的合金,具有良好的可铸性和耐腐蚀性,被广泛应用于制造电器、管道和五金制品。
4.3 青铜青铜是铜和锡的合金,具有优异的耐磨性和抗腐蚀性。
青铜广泛应用于制造雕塑、钟表和器乐。
5. 钛及其合金钛是一种轻质而强度高的金属,具有良好的耐腐蚀性,以下是一些常见的钛及其合金:5.1 纯钛纯钛具有轻质和高强度的特点,常用于航空航天、医疗器械和化工等领域。
5.2 钛合金钛合金通过添加其他元素来改善强度和耐腐蚀性能。
常见的钛合金包括钛铝合金、钛镍合金等。
钛合金具有轻质、高强度和抗腐蚀的特点,被广泛应用于航空航天、汽车和医疗器械等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 疲劳强度
1)交变应力(周期性应力)。 应力的大小、方向周期性变化。有对称周期性应力和非对称周 期性应力。
2)疲劳。 构件在低于屈服强度的交变应力作用下,经过较长时间工作而发生突然断裂,而无 明显的塑性变形的现象。
3)疲劳曲线。 反映承受的交变应力与断裂前的应力周期次数间的关系曲线,如图2-4所示。
第二章 金属材料性能及 常用工程材料
2.1 金属材料的性能 2.2 常用工程材料-钢铁材料 2.3 非铁材料及非金属材料
返回
材料是人类用来制作各种产品的物质。机械工程中使用的材料常按化学组成分为金属材料、 高分子材料、陶瓷材料三大类。
目前在机械工业中应用最广的仍是金属材料,因为金属材料来源丰富,而且具有优良的力 学性能、物理性能、化学性能和工艺性能。
工艺性能:指金属材料在冷、热加工过程中应具备的性能,它决定了金属材料的加工方 法。包括铸造性能、锻造性能、焊接性能、切削加工性能和热处理性能。
返回
一、 金属材料的力学性能 力学性能(机械性能):指金属材料具有的抵抗一定外力作用而不被破坏的性能。金属材料的
力学性能主要有:刚度、强度、弹性、塑性、硬度、冲击韧度、断裂韧度和疲劳强度等。
b
b
Pb A0
式中
Pb
A0
试样被拉断前所承受的最大载荷(N); 试样的原始横截面积(mm2 )。
3)屈服点 。 开始产生屈服现象时的应力称为屈服点,其含义指在外力作用下开始产生明显塑性变
形的最小应力,也即材s 料抵抗微量塑性变形的能力。
s
Ps A0
式中
Ps
试样发生屈服时的载荷(N);
A0
试样的原始横截面积(mm2 )。
Pe
A0
e
Pe A0
试样发生完全弹性变形的最大载荷(N);
ห้องสมุดไป่ตู้
试样的原始横截面积(mm2 )。
2)抗拉强度。 当负荷继续增加超过s点后,变形量随着负荷的增加而急剧增加,当负荷超过b点,变 形集中在试样的某一部位上,试样在该部位出现缩颈现象,拉伸变形集中在缩颈处。继续施加负荷, 试样在k点断裂。材料断裂前所承受的最大应力,即为抗拉强度(强度极限),它也是试样能够保持 均匀塑性变形的最大应力 。
1.强度
拉伸曲线oe段是直线,金属材料处在弹 性变形阶段,应力与应变成正比例关系,服 从虎克定律,其比值称弹性模量,是衡量材 料抵抗弹性变形能力的指标。
P Pb Ps s Pe e
b k
0
l
图2-2 低碳钢拉伸曲线 1)弹性极限。 金属材料产生完全弹性变形时所能承受的最大应力值,单位MPa 。即
式中
有延伸率 和断面收缩率 。
1)延伸率。 指试样拉断后其标距长度的相对伸长值。即
lk l0 100%
l0
式中 l k
试样断裂后的标距长度;
l0
试样的原始标距长度;
2)断面收缩率。 指试样拉断后缩颈处横截面积的最大相对收缩值。
式中
Ak
A0
A0 Ak 10% 0
A0
试样断裂出的最小横截面积;
试样的原始横截面积;
3.硬度 硬度指金属材料抵抗外物压入其表面的能力,也是衡量金属材料软硬程度的一种力学性能指标。
工程上常用的有布氏硬度、洛氏硬度和维氏硬度。
1)布氏硬度HBW。 布氏硬度是在布氏硬度计上进行测量的,用硬质合金球为压头,以相应的实验力压 入试样表面,保持规定的时间后,卸除实验力,在试样表面形成压痕,以压痕球形表面所承受的平均 负荷作为布氏硬度值,如图2-3示。
金属材料的特性有:强度较高、塑性较好、导电性高、导热性好、有金属光泽等。
2.1 金属材料的性能 金属材料的性能概述
为了合理地使用和加工金属材料,必须了解其使用性能和工艺性能。 使用性能:指各个零件或构件在正常工作时金属材料应具备的性能,它决定了金属材料的 应用范围、使用的可靠性和寿命。包括力学性能、物理性能、化学性能。
HB W 2F DD D2d2
式中 F D d
实验力(kgf); 球体直径(mm); 压痕平均直径(mm)。
图2-3 布氏硬度实验原理图
在做布氏试验时,只需测量出d值即可从有关表格上查出相应的布氏硬度值。压头为硬质合金球 时,为HBW,适用于布氏硬度650以下的材料。优点:测量结果准确,缺点:压痕大,不适合成 品或者薄壁件检验。
条件屈服极限:有些塑性较低的材料没有明显的屈服点,难于确定产生塑性变形的最小应力。故 规定当试样产生0.2%的塑性变形时所对应的应力作为材料开始产生明显塑性变形时的屈服强度,称为 条件屈服极限 。
零件设计时对塑性材料采用屈服强度;脆性材料采用抗拉强度。
0.2
2.塑性 塑性指金属材料在静载荷作用时,在断裂前产生塑性变形的能力,反映材料塑性的力学性能指标
符号表示方法举例:350HBW5/750。含义:
① 压头:硬质合金,直径5mm ② 实验力:750kgf (1kgf=9.8N) ③ 保持时间:10-15秒 ④ 硬度值:350
2)洛氏硬度。 洛氏硬度是用压头压入的压痕深度作为测量硬度值的依据。可以直接从洛氏硬度计的 表盘上读出,它是一个相对值,人们规定每0.002mm压痕深度为一个洛氏硬度单位。洛氏硬度用HRA、 HRB和HRC来表示。HRC采用顶角为120°的金刚石圆锥体为压头,施加150kgf的外力,主要用于淬火钢 等较硬材料的测定,常用硬度值为20-67HRC; HRA采用外加载荷为60kgf,用于测量高硬度薄层,常 用硬度值为70-85HRA;HRB采用直径1.588mm的钢球,100kgf的外加载荷,用于硬度较低的材料,常用 硬度值为25-100HRB。优点:测量迅速简便,压痕小,可在成品零件上检测 。(注:最常用的是HRC)
4)疲劳极限。 由图2-4可见,应力愈高,循环次数愈少, 反之亦然。 当应力低到一定值时,循环次数无穷大,表 示材料可经无限次应力循环而不失效;此应力即为疲劳 强度(疲劳极限)。对称弯曲疲劳极限用 表示 ;无 限次当然不是数学上的无穷大,只是一个很大的数而已, 对于钢铁材料为107,有色金属材料为108 。
金属材料的刚度、强度、弹性、塑性是通过拉伸实验来测定的,标准试样如图2-1所示, 把试样安装在拉伸试验机上,并对试样施加一个缓慢增加的轴向拉力,试样产生变形,直至断 裂。
图2-1 圆形拉伸试样
1、低碳钢拉伸时的力学性能
拉伸曲线:以低碳钢为例,其拉伸曲线如图2-2所示,负荷为纵坐标,绝对伸长量为横坐标。