红外测温系统资料
红外成像测温方法介绍

红外成像测温方法介绍随着科技的进步,红外成像测温技术在各行各业中得到了广泛的应用。
该技术通过检测物体所发出的红外辐射来测量其表面温度,具有非接触、快速、准确的优点。
本文将介绍几种常见的红外成像测温方法。
一、红外测温原理红外成像测温的基本原理是物体受热后会发出热辐射,其中包括了红外辐射。
红外相机能够将红外辐射转化为热图像,通过分析热图像的颜色和亮度来确定物体表面的温度分布情况。
二、热像仪法热像仪法是最常见的红外成像测温方法之一。
它利用红外相机捕捉物体发出的红外辐射,将其转化为热图像。
热图像以不同的颜色来表示物体的温度,通常采用热色谱图来显示。
热像仪可以快速扫描大面积,适用于工业生产线上的温度检测以及建筑结构的热损失分析等。
三、红外测温仪法红外测温仪是一种手持式温度测量设备,可以单点或多点测温。
它通常包括一个红外探测器和一个显示屏。
其原理是通过接收物体表面所发出的红外辐射,转化为温度数值并显示出来。
红外测温仪可以实时测温,非常适用于工业领域中的温度监测,如电力设备、管道、锅炉等的故障诊断。
四、红外测温系统红外测温系统是一种集成了红外成像和温度测量功能的设备。
它通常由红外相机、控制器和显示屏组成。
红外相机负责捕捉物体的红外辐射,并转化为热图像。
控制器负责对热图像进行分析处理,计算出物体表面的温度。
显示屏则显示热图像和温度数值。
红外测温系统可以用于大范围的温度监测,如火灾报警系统、医疗诊断等。
五、红外测温的应用领域红外成像测温技术在各个行业中都有广泛的应用。
在工业领域,它可以用于故障诊断、设备运行状态监测等;在医疗领域,它可以用于体温检测、疾病诊断等;在建筑领域,它可以用于检测建筑结构的热损失情况等。
此外,红外测温技术还可以应用于夜视、安防等领域。
总结:红外成像测温技术以其非接触、快速、准确的特点,被广泛应用于各个行业中。
热像仪法、红外测温仪法以及红外测温系统等几种常见的测温方法,能够满足不同领域对温度测量的需求。
经典:OTP-538红外测温系统

其 中 ,M 0(T)为 黑 体 在 温 度 T时 的 光 谱 辐 射 出 射 度 ; M (T)为 非 黑 体 在 温 度 T时 的 光 谱 辐 射 出 射 度 。
f(T)=M0(T)
基尔霍夫定律:在同样的温度下,各种不同物体对相同波 长的单色辐射出射度与单色吸收比之比值都相等,并等于 该温度下黑体对同一波长的单色辐射出射度。
红外测温系统
1
本章学习重点
1. 红外测温原理; 2. 红外测温系统传感器opt-538u介绍; 3. 红外测温系统的放大电路分析 4.红外测温系统的总体设计思路 5.红外测温系统的软硬件设计
2
1 红外测温原理
温度测量分为接触式和非接触式两大类。 1. 接触式测温 测温元件直接与被测对象相接触,两者之间进行充分 的热交换达到热平衡,这时感温元件的某一物理参数 的量值就代表了被测对象的温度值。 优点:直观可靠。 缺点: 感温元件影响被测温度场的分布; 接触不良等带来测量误差; 高温和腐蚀性介质影响感温元件的性能和寿命。
3
1 红外测温原理
2、非接触式测温 • 感温元件不与被测对象相接触,而通过热辐射进行热
交换; • 具有较高动物体的
温度和快速变化的温度。
4
红外测温原理
• 简介
1800 年,赫胥尔首先发现了红外辐射,经过几代科学家100 多年的探索、实验与研究,总结出了正确的辐射定律,为成功地 研制红外辐射测温仪奠定了理论基础。20 世纪60 年代以后, 由于各种高灵敏度红外探测器、干涉滤光片以及数字信号处 理技术的发展,大大促进了红外技术应用的进程。近几十年来, 比色测温仪、光纤测温仪、扫描测温仪等满足各种需要的红 外测温仪相继出现和不断改进,使红外技术的研究与应用有了 新的飞跃。虽然红外测温技术问世的时间并不很长,但是它安 全、可靠、非接触、快速、准确、方便、寿命长等不可替代 的优势,已被越来越多的企业与厂家所认识和接受,在冶金、石 化、电力、交通、水泥、橡胶等行业得到了广泛的应用,成为 企业故障检测、产品质量控制和提高经济效益的重要手段。
红外测温方法的工作原理及测温(自己总结的)..

红外测温方法的工作原理及测温仪在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm 的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。
传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。
目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。
表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。
1 红外测温仪的工作原理及特点1.1 黑体辐射与红外测温原理一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。
物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。
因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。
应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。
由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理:()1ex p 251-=-T c c T P b λλλ (1)其中,Pb(λΤ)—黑体的辐射出射度; ^λ—波长;T —绝对温度; c 1、c 2—辐射常数。
红外测温工作原理

红外测温工作原理
红外测温是利用物体发出的红外辐射来测量其温度的技术。
其工作原理基于斯特藩-玻尔兹曼定律,即物体的辐射功率与其
温度的四次方成正比。
根据该定律,物体的发射率越高,则其辐射功率也越大。
红外测温的测量设备通常包含一个红外探测器以及一个光学系统。
光学系统用于聚焦红外辐射到探测器上。
探测器可以是热电偶、半导体或热敏电阻等,它们能将红外辐射转化为电信号。
当物体的温度高于绝对零度时,它会发出热辐射,包括红外辐射。
光学系统使红外辐射聚集在探测器上,使其探测到物体发出的辐射并转化为电信号。
然后,测温设备通过对探测器输出信号进行放大和处理,将信号转化为温度值。
为了精确测量温度,测温设备还需要进行校准。
校准过程涉及将设备与已知温度的参考物体进行比较,以确保设备在不同温度下提供准确的测量结果。
根据不同的应用需求,红外测温设备可以具有不同的测量范围、分辨率和精度。
红外测温具有非接触性、迅速测量、测量范围广等优点,因此在许多领域得到广泛应用,如工业生产、医疗保健、环境监测等。
红外测温设备可以直接应用于各种物体的表面温度测量,包括液体、气体、固体以及生物体。
红外测温原理简介

红外测温原理简介红外测温仪分类红外测温仪通过物体发出的红外辐射能量大小来确定物体的温度。
理论上讲,任何高于绝对零度的物体都能发出红外辐射能量。
红外测温仪按测量波长的多少可分为单色测温仪、双色测温仪、多色测温仪。
单色红外测温仪原理目前市场上的单色测温仪,多为窄波段测温仪。
它的测温原理是通过物体某一狭窄波长范围内发生的辐射能量,来决定温度的大小。
测温仪测量的是一个区域内的平均温度,测量值受发射率、镜头的污染以及背景辐射的影响。
物体发出辐射能量的大小与发射率有一定关系。
发射率越大,物体发出的红外线能量越大。
物体的发射率与物体表面的状态有一定关系,表面的粗糙度、亮暗程度、不同材质都会影响发射率。
所以在使用单色测温仪时,常会有一张不同材质的发射率表。
(2)双色测温仪原理不同大气窗口下,选用的探测器类型 窗口1 Si (硅) 窗口2 Ge (锗)InGaAs (铟镓砷) 窗口3 PbS(硫化铅) ExInGaAs (扩展型铟镓砷) 窗口4 PbSe(硒化铅) Thermopile (热电堆)窗口5Thermopile (热电堆) 窗口6 发射率变化、镜头的污染以及背景辐射的影响,与波长的选择有关系。
选择特殊波长范围 的测温仪,能够使单色测温仪尽量克服传输介质的干扰。
比如水蒸汽、各种气体等其它物质的影响。
选择短波长测温,可以使红外测温仪受发射率的影响降到最低。
长波长测温仪通常用来测量低于200℃的目标或特殊介质的测量。
双色红外测温原理比色测温仪又称双色测温仪。
它是利用邻近通道两个波段红外辐射能量的比值来决定温度的大小。
比值与温度的关系是线性的,这是由探测器的性能决定的。
双色测温仪能够消除水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,双色测温仪测量绝大数灰体材料时不需要修正双色系数,双色测温仪测量一个区域内最高温度的平均值。
思捷光电的双色红外测温仪可以克服严重水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,即使检测信号衰减95%,也不会对测温结果有任何影响。
红外测温方法的工作原理及测温(自己总结的)..

红外测温方法的工作原理及测温(自己总结的)..-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII红外测温方法的工作原理及测温仪在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm 的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。
传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。
目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。
表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。
表1常用测温方法对比1红外测温仪的工作原理及特点1.1黑体辐射与红外测温原理一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。
物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。
因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。
应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。
红外测温系统

一.系统功能:监控机车车轮对的实时温度并自动记录在u盘或存储卡上,为技术人员根据历史数据分析判断出轮对工作状态是否正常。
技术人员可以根据历史数据设定出轮对正常工作温度范围,当轮对温度超出即可报警二.系统组成系统由P L C,人机界面,红外测温传感器组成。
系统框图如下:机车红外测温监控系统采用D E L T A P L C通过R S-485通讯方式采集各个红外测温传感器的状态,经过P L C对采集回来的数据判断和运算来对机车轮对的运行状态进行监控。
并将接收到的各检测量的数据保存在大容量存储介质中为技术人员科学系统的分析机车轮对的温度运行趋势提供帮助。
1.采用D e l t a S S系列P L C主机,其主要功能为(1)采用R S485通讯的方式来采集各红外温度传感器的检测值,通讯协议采用为通用的M O D B U S R T U模式。
(2)通过D e l t a S S P L C对各红外温度传感器的检测值进行运算和判断,当温度超出设定范围则报警输出至人机界面显示。
2.采用D e l t a D O P B系列人机界面与P L C通讯显示,(1)实时显示各轮对工作温度。
(2)在D e l t a D O P-B系列人机界面增加数据存储介质:U盘或S D卡,便于转储信息,可对检测到的数据进行保存,为实现轮对进行的运行趋势判断提供必要的历史数据。
现在系统设定为每个月在工作状态下自动存储一次,并形成E X C E L文件。
(3)技术人员可根据历史经验和轮对的具体工作环境对轮对的温度范围进行设定。
(4)当轮对的工作温度超出设定上限,人机界面根据P L C 的判断输出报警画面,显示温度异常的轮对位置。
3.采用H B I R系列在线式红外测温传感器。
(1)测试温度范围为-20°C--300°C,距离系数为5:1。
(2)测试精度为设定范围的±2%。
(3)输出形式为R S485,通讯协议为M O D B U S R T U.三.系统特点本系统特点有以下几方面1.采用通讯方式来采集检测值。
红外测温门禁机系统使用说明

红外测温门禁机系统使用说明
人脸正对设备,观察设备屏幕上的人脸图,人脸确保额头裸露的皮肤置于"测温区域"内,最佳温度采集距离0.5m 。
此测温仪温度阈值设定在37.3度,休温正常者则允许通行,并报告体温正常,体温异常者则拒绝通行,并发出警报。
注意事项:
1、人员从寒冷室外环境进入室内会影响测温精度,需在室内让额头无遮挡三分钟且温度稳定后再进行额温测试;
2、测温设备所读取的温度为额温区域所在的温度,当额头有水,汗渍,油渍或者妆容浓厚或者老年人有皱纹比较多的情况下,读取的温度会比实际温度低,确保这一处没有毛发或者是衣服遮挡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pb T T 4
根据斯特藩—玻耳兹曼定理黑体的辐出度 Pb(Τ)与温度Τ 的四次方成正比, 即:
Pb T T 4
式中,Pb(T)—温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能, 称为总辐射度; σ—斯特藩—玻耳兹曼常量; T—物体温度。 式(2)中黑体的热辐射定律正是红外测温技术的理论基础。如果在条件相同 情况下,物体在同一波长范围内辐射的功率总是小于黑体的功率,即物体的 单色辐出度 Pb(Τ)小于黑体的单色黑度ε(λ),即实际物体接近黑体的程度。
8/22/2019
3.红外测温仪工作原理
热
光
调
热释
辐
学
制
电红
电子放
射 体
系
盘
统
外探 测器
大器
显 示 器
调制盘
工作原理为辐射体发出的红外辐射,进入光学系统,经调制器 把红外辐射调制成交变辐射,由探测器转变成为相应的电信号。该 信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射 率校正后转变为被测目标的温度值,并显示在液晶屏上。
8/22/2019
8/22/2019
热释电探测器
热释电红外探测器的结构通常由热释电晶 体、氧化膜、滤光镜片、结型场效应管 FET和电阻等部分组成。 当交变的红外线照射到晶体表面时,晶体 温度迅速变化,这时才发生电荷的变化, 从而形成一个明显的外电场,这种现象称 为热释电效应。
采用双探测元热释电红外传感器,其结构 如图所示。该传感器将两个特性相同的热 释电晶体逆向串联,用来防止其他红外光 引起传感器误动作。另外,当环境温度改 变时,两个晶体的参数会同时发生变化, 这样可以相互抵消,避免出现检测误差。 该传感器使用时,D端(漏极)接电源正 极,G端(栅极)接电源负极,s端(源极) 为信号输出。
5. 红外测温仪的电路设计
热释电传感器与温度仪的连接框图:
D
被 测 物
RE
放大器
200
S
A1
B
滤光片
滤波器 A2滤光 片
积分器 A3
E
A/D 转换器
LCD 显示器
将传感器的D、S、E分别 与测量电路中标的D、S、 E连接起来即可。
8/22/2019
测量电路
D、S、E端分别对应了热释电探测器的D、S、G,其中D为场效应管漏极接 +12V的电源,S为经过热释电探测器转换后的电信号输出,E为场效应管的负极 接地。由S端输入的信号经过A1放大电路,A2滤波电路,A3积分电路,通过输 出端口输入后续的积分显示电路。
IN+ INCOS BUF INI VG2 C3 A3 G3 BP
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
10F
R15
C11 1M 0.02uF
R14 24K
IN+ IN+
+12
8/22/2019
积分显示电路
测量部分电路
R13
B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
V+ D1 C1 B1 A1 F1 G1 E1 D2 C2 B2 A2 F2 E2 D3 B3 F3 E3 AB4 POL
OSC1 OSC2 OSC3 IES1 UMF+ UMFCMF+ CMFCOM
8/22/2019
谢谢各位评委老师!
8/22/2019
• 传统的接触式测温仪表如热电偶、热电阻等,因 要与被测物质进行充分的热交换,需经过一定的 时间后才能达到热平衡,存在着测温的延迟现象, 故在使用过程中存在一定的使用局限 。红外测温 仪属于非接触的实时测温装置。
8/22/2019
8/22/2019
2. 红外测温仪的原理
• 一切温度高于绝对零度的 物体都在不停地向周围空 间发出红外辐射能量。物 体的红外辐射能量的大小 及其按波长的分布——与 它的表面温度有着十分密 切的关系。因此,通过对 物体自身辐射的红外能量 的测量,便能准确地测定 它的表面温度,这就是红 外辐射测温所依据的客观 基础。
8/22/2019
4.红外测温仪的光学系统
滤光片
• 红外测温仪的光学系统由菲涅 尔光学透镜和滤光片组成。将 该光学透镜置于红外热释电传 感器上。
• 菲涅尔透镜利用透镜的特殊光 学原理,在探测器前方产生一 个交替变化的“盲区”和“高 灵敏区”,以提高它的探测接 收灵敏度。当被测物从透镜前 经过时,发出的红外线就不断 地交替从“盲区”进入“高灵 敏区”,这样就使接收到的红 外信号以忽强忽弱的脉冲形式 输入,从而强其能量幅度。
C9 0.1uF
C10 10uF
C12 0.47uF
R16
220V
47K ICL7106
C13
0.22uF
A
显示部分由多位液晶显示驱LC动D显器示IC电L7路106和标准段式液晶显示屏EDS801及其他一些元
器件组成。经过测量电路处理过的信号,经过输入端口进入A/D转换电路,ICL7106进
行A/D转换,再与标准段的EDS801显示屏显示出被测物的温度。
A
Title
8/22/2019
Size
Num be r
B
Date: 23-Aug-2012
Revision Sheet of
6. 总结
红外测温技术随着现代技术的发展日 趋完善,以其非接触和快速测温的优点,在 工业、农业、医疗和科学研究方面都有着 广泛的用途。开发更新型的红外测温技术, 完善红外测温仪的性能是时代发展的要求。
• 1. 引言 • 2. 红外测温仪测温原理介绍 • 3.红外测温仪的工作原理 • 4.红外测温仪的光学系统 • 5.红外测温仪的电路设计 • 6.总结 • 致谢
8/22/2019
1. 引言
• 温度是工业生产中很普遍、很重要的一个热工参 数,许多生产工艺过程均要求对温度进行监视和 控制,特别是在化工、食品等行业生产过程中, 温度的测量和控制直接影响到产品的质量和性能 。
ε(λ)= P(T)/ Pb(T) 考虑到物体的单色黑度ε(λ)是不随波长变化的常数,即ε (λ)=ε,称此物体为灰 体。它是随不同物质而值不同,即使是同一种物质因其结构不同值也不同, 只有黑体ε=1,而一般灰体0<ε<1,由式(2)可得: 所测物体的温度为:
1
式(4)正是物体的热辐射测T 温的 P数学T 描 述4 。
1
2
3
8/22/2019
测量部分电路
T
220V~
TRANS1
电源电路
S +12
1
VD5
B
U
IN4001
4
2
2A/50V
C10
C11
470uF/25V 0.1uF
C9 47uF/16V E 12V
BRIDGE1
3
电源电路
该系统电源电路如图所示。该系统采用12V 直流电源供电。将220V交流电通过 变压器T 降压,全桥U 整流,C10 滤波,为系统提供12V直流电压。