两圆相切——过切点作公切线
几何的顺口溜

特殊点坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线平行轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行Y轴,点的横坐标仍照旧。
对称点坐标对称点坐标要记牢,相反数位置莫混淆, X轴对称y相反, Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
平行线、相交线顺口溜互余两角和为直互补两角和为平余角补角要记清同角等角余补等两线交出对顶角对顶两角同大小三线交,成八角同位角,F状内错角,Z模样同旁内角和U像同位内错分别等必会产生两线平U互补,两线平两线平出三特征同旁内角和周分作线段,画射线射线上面截线段作一角,画射线先在原角画弧线弧线交出两个点重复作法到射线连两点,成线段以此长度画弧线交于前弧于一点过两点,作射线作出射线成角边用尺规,要规范作图痕迹要显现平行四边形的判定要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”对角相等也有用,“两组对角”才能成。
梯形问题的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
巧记三角函数定义正对鱼磷(余邻)直刀切。
一正二正弦,三切四余弦正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
有关圆的证明添辅助线圆的证明多变换,常常要加辅助线。
证弦相等多留意,作出两条弦心距。
九年级:数学教案-两圆的公切线

初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 九年级数学教案编订:XX文讯教育机构数学教案-两圆的公切线教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
第一课时两圆的公切线(一)教学目标:(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;(2)培养学生的归纳、总结能力;(3)通过两圆外公切线长的求法向学生渗透“转化”思想.教学重点:理解两圆相切长等有关概念,两圆外公切线的求法.教学难点:两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.教学活动设计(一)实际问题(引入)很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)(二)两圆的公切线概念1、概念:教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:和两圆都相切的直线,叫做两圆的公切线.(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.(3)公切线的长:公切线上两个切点的距离叫做公切线的长.2、理解概念:(1)公切线的长与切线的长有何区别与联系?(2)公切线的长与公切线又有何区别与联系?(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.(三)两圆的位置与公切线条数的关系组织学生观察、概念、概括,培养学生的学习能力.添写教材p143练习第2题表.(四)应用、反思、总结例1、已知:⊙o₁、⊙o₂的半径分别为2cm和7cm,圆心距o₁o₂=13cm,ab是⊙o₁、⊙o₂的外公切线,切点分别是a、b.求:公切线的长ab.分析:首先想到切线性质,故连结o₁a、o₂b,得直角梯形ao₁o₂b.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)解:连结o₁a、o₂b,作o₁a⊥ab,o₂b⊥ab.过 o₁作o₁c⊥o₂b,垂足为c,则四边形o₁abc为矩形,于是有o₁c⊥c o₂,o₁c=ab,o₁a=cb.在rt△o₂co₁和.o₁o₂=13,o₂c=o₂b- o₁a=5ab=o₁c= (cm).反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.例2*、如图,已知⊙o₁、⊙o₂外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长.分析:因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解.证△pab是直角三角形,只需证△apb 中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap.因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解.解:过点p作两圆的公切线cd∵ ab是⊙o₁和⊙o₂的切线,a、b为切点∴∠cpa=∠bap ∠cpb=∠abp又∵∠bap+∠cpa+∠cpb+∠abp=180°∴ 2∠cpa+2∠cpb=180°∴∠cpa+∠cpb=90°即∠apb=90°在 rt△apb中,ab²=ap²+bp²说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.(五)巩固练习1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )(a)直角三角形 (b)等腰三角形 (c)等边三角形 (d)以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(d)2、外公切线是指(a)和两圆都祖切的直线 (b)两切点间的距离(c)两圆在公切线两旁时的公切线 (d)两圆在公切线同旁时的公切线直接运用外公切线的定义判断.答案:(d)3、教材p141练习(略)(六)小结(组织学生进行)知识:两圆的公切线、外公切线、内公切线及公切线的长概念;能力:归纳、概括能力和求外公切线长的能力;思想:“转化”思想.(七)作业:p151习题10,11.第二课时两圆的公切线(二)教学目标:(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;(2)培养的迁移能力,进一步培养学生的归纳、总结能力;(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.教学重点:两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.教学难点:两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.教学活动设计(一)复习基础知识(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)(二)应用、反思例1、(教材例2)已知:⊙o₁和⊙o₂的半径分别为4厘米和2厘米,圆心距为10厘米,ab是⊙o₁和⊙o₂的一条内公切线,切点分别是a,b.求:公切线的长ab。
两圆的公切线方程

两圆的公切线方程全文共四篇示例,供读者参考第一篇示例:两圆的公切线是指能同时切到两个圆的直线或射线。
在解析几何中,我们常常需要研究圆与圆之间的关系,其中两圆的公切线就是一个重要的问题。
本文将讨论两个圆的公切线方程的推导过程和应用实例。
一、两个圆的公切线分类在二维平面上,两个圆可能存在以下几种情况:1. 内含关系:一个圆完全包含在另一个圆内部,此时两圆没有公共切线。
2. 相交关系:两个圆相交于两个点,此时存在两条外公切线和两条内公切线。
3. 外切关系:两个圆相切于外部,此时存在一条外公切线。
4. 内切关系:一个圆完全包含在另一个圆内部且二者相切,此时存在一条内公切线。
下面我们以相交关系为例,推导两个圆的公切线方程。
二、两个圆的公切线方程的推导设两个圆的方程分别为:圆1:(x - a1)² + (y - b1)² = r1²圆2:(x - a2)² + (y - b2)² = r2²(a1, b1)和(a2, b2)分别为两个圆的圆心坐标,r1和r2分别为两个圆的半径。
圆1和圆2相交于两个点P1(x1, y1)和P2(x2, y2),则有:(x1 - a1)² + (y1 - b1)² = r1²(x2 - a1)² + (y2 - b1)² = r1²(x1 - a2)² + (y1 - b2)² = r2²(x2 - a2)² + (y2 - b2)² = r2²由上述四个方程可得到两个未知数x1和y1的线性方程组,通过求解线性方程组即可得到两个公切点P1和P2的坐标。
进一步,我们可以根据两点式求得直线P1P2的方程,即为两个圆的公切线方程。
计算两个圆的圆心坐标和半径:圆1:圆心坐标(2, 3),半径4圆2:圆心坐标(-1, -1),半径3根据上述推导方法,可以求得两个公切点P1(1, 2)和P2(-0.5, -0.5)的坐标,进而求得公切线P1P2的方程。
《两圆的公切线》课件

CHAPTER 02
两圆公切线的求法
切线的定义与判定
切线的定义
切线与圆只有一个交点,即切点。
判定方法
利用切线和半径垂直的性质,通过圆心到直线的距离为0来判断直线是否为圆的 切线。
切线的性质定理
切线与半径垂直
切线与过切点的半径垂直。
切线与过切点的直径垂直
若切线与过切点的直径垂直,则切线与半径也垂直。
两圆公切线的分类
内公切线
中间公切线
与两圆都相切且位于两圆内部的直线 。
介于内、外公切线之间的直线,与两 圆都相切。
外公切线
与两圆都相切且位于两圆外部的直线 。
两圆公切线的性质
01
02
03
性质1
两圆公切线与两圆的切点 连线与公切线垂直。
性质2
两圆心到公切线的距离相 等。
性质3
两圆公切线的长度与两圆 心之间的距离成正比。
图形的分类
通过两圆的公切线,可以对某些图 形进行分类和识别。
在实际问题中的应用
机械设计
在机械设计中,两圆的公切线可 以用于确定某些零件的尺寸和位
置。
建筑设计
在建筑设计中,两圆的公切线可 以用于确定窗户、门或其他结构
的位置。Βιβλιοθήκη 物理学应用在物理学中,两圆的公切线可以 用于描述某些物理现象或规律,
例如物体运动轨迹等。
通过两圆的公切线,可以 确定某些未知点的位置。
简化复杂图形
对于一些复杂的几何图形 ,通过引入两圆的公切线 ,可以简化图形,从而更 容易找到解题思路。
在解析几何中的应用
方程的求解
在解析几何中,两圆的公切线可 以用于求解某些方程。
参数的确定
在涉及圆和直线的解析几何问题中 ,两圆的公切线可以帮助确定某些 参数的值。
圆与圆的公切线求法

圆与圆的公切线求法
求两个圆的公切线,可以根据两圆的位置关系分为三种情况:外离、相交、内切或内含。
以下是各种情况下的公切线求法:
外离的两圆:
有四条公切线,每两条公切线都互相垂直。
先找到两圆心连线的中点,再找到其中一个圆上的切点,则该切点与中点的连线与两圆心连线垂直。
通过解方程组(包括圆的方程和切线的斜率条件)可以求出具体的公切线方程。
相交的两圆:
有两条公切线,它们分别是两个圆在交点处的公共切线。
可以通过联立两个圆的方程求出交点,然后利用切线的定义求出公切线的方程。
内切或内含的两圆(一个圆在另一个圆内部,且仅有一个交点或无交点):
只有一条公切线,若两圆内切,则在切点处有一条公切线;若两圆内含,则没有公切线。
对于内切的情况,公切线可以通过解圆的方程和切线的斜率条件来求出。
需要注意的是,以上方法都需要利用到圆的方程、切线的定义(切线与半径垂直)以及解方程组的技巧。
然而,更一般和实用的方法是使用几何性质和构造:
对于外离的两圆,可以通过找到一个圆上的切点,然后作该切点与另一个圆心的连线,再通过该连线作垂线得到公切线。
对于相交的两圆,直接利用交点和切线的定义即可找到公切线。
对于内切或内含的两圆,根据定义判断是否存在公切线,并利用切点和圆心连线来找到它(如果存在)。
在实际操作中,通常使用绘图工具(如圆规、直尺)或者几何软件来辅助构造和验证公切线的正确性。
在数学题目中,可能需要通过证明来展示公切线的存在性和性质。
两圆的公切线教案

两圆的公切线教案两圆的公切线教案「篇一」教学目标:(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;(2)培养的迁移能力,进一步培养学生的归纳、总结能力;(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.教学重点:两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.教学难点:两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.教学活动设计(一)复习基础知识(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)(二)应用、反思例1、(教材例2)已知:⊙o1和⊙o2的半径分别为4厘米和2厘米,圆心距为10厘米,ab是⊙o1和⊙o2的一条内公切线,切点分别是a,b.求:公切线的长ab。
组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.解:连结o1a、o2b,作o1a⊥ab,o2b⊥ab.过 o1作o1c⊥o2b,交o2b的延长线于c。
则o1c=ab,o1a=bc.在rt△o2co1和.o1o2=10,o2c=o2b+ o1a=6∴o1c=(cm).∴ab=8(cm)反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在rt△o2co1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.例2 (教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求v形角α的度数.解:(略)反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.组织学生进行,教师引导.归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和r+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.(2)上述问题可以通过相似三角形和解三角形的知识解决.(三)巩固训练教材p142练习第1题,教材p145练习第1题.学生独立完成,教师巡视,发现问题及时纠正.(四)小结(1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;(2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;(3)求两圆两外(或内)公切线的夹角.(五)作业教材p153中12、13、14.第三课时两圆的公切线(三)教学目标:(1)理解两圆公切线在解决有关两圆相切的问题中的作用, 辅助线规律,并会应用;(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.教学重点:会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.教学难点:综合知识的灵活应用和综合能力培养.教学活动设计(一)复习基础知识(1)两圆的公切线概念.(2)切线的性质,弦切角等有关概念.(二)公切线在解题中的应用例1、如图,⊙o1和⊙o2外切于点a,bc是⊙o1和⊙o2的公切线,b,c为切点.若连结ab、ac会构成一个怎样的三角形呢?观察、度量实验(组织学生进行)猜想:(学生猜想)∠bac=90°证明:过点a作⊙o1和⊙o2的内切线交bc于点o.∵oa、ob是⊙o1的切线。
两圆的公切线(2)

1.两圆半径分别为8和5,若两圆共有三条公切线,那么圆心距 d为( ) A.d=3 B.3<d<13 C.d=13 D.d>13 2.⊙O1与⊙O2的半径分别为 7 cm和 5 cm,O1O2=2 6 cm,则( ) A.两圆有两条外公切线,有且只有一条内公切线。 B.两圆既有两条外公切线,又有两条内公切线。 C.两圆只有两条外公切线,没有内公切线。 D.两圆既无外公切线,又无内公切线。 3.若⊙O1和⊙O2的半径分别为3cm和1cm,其内公切线长为 4cm,则O1O2 长为 ______ 。
C
O1
A
B
O2
D
E
P
例2 已知⊙O1与⊙O2的半径之和等于8cm,两圆的一条 内公切线长为6cm,求这两圆的圆心距。(如图)
解: 连结O1O2、O1A、O2B,过O1作O1C∥AB交O2B延长 线于C,则O1A⊥AB,O2B⊥AB,四边形AO1CB为矩形。 ∴O1C=AB=6cm,O1A=BC ∴O2C=O2B+BC=O2B+O1A=8cm
A.一条外公切线长的二倍。 B.两条内公切线长的和。 C.一条外公切线长和一条内公切线长的和。 D.两条内公切线长和一条外公切长的和的一半。
9.设相离的半径分别为4cm和2cm,且它们的两条内公切线 互相垂直,则内公切线的长为_______cm。
10.若两外切,内公切线和一条外公切线相交成60°的角, 则小圆半径与大圆半径之比为_______ 。
6.若两圆外离且外公切线长m与内公切线长n的大小关系 是( ) A.m>n B.m=n C.m<n D.不能确定 7.如果两圆的半径和它们的圆心距分别等于一个三角 形的三条边,那么 这两圆的公切线的条数是( )
A.4
B.3
C.2
两圆的公切线

两圆的公切线简介在几何学中,当两个圆相交或者相离时,我们可以找到连接两个圆的一条或多条切线。
当两个圆相交时,称为内公切线;当两个圆相离时,称为外公切线。
公切线是指切线同时接触两个圆的一条线段。
本文将介绍两个圆的公切线的性质和求解方法。
公切线的性质内公切线内公切线有以下几个性质:1.内公切线的切点在两个圆的连线上。
2.内公切线垂直于两个圆的连线。
3.两个圆心与内公切线的交点三者共线。
外公切线外公切线有以下几个性质:1.外公切线的切点不在两个圆的内部。
2.外公切线垂直于两个圆的连线。
3.两个圆心与外公切线的交点三者共线。
求解两圆的公切线内公切线的求解求解两个圆的内公切线的步骤如下:1.根据两个圆的半径和圆心之间的距离,判断两个圆的位置关系。
如果两个圆相离,则不存在内公切线;如果两个圆相交,可以继续下一步求解。
2.连接两个圆心,得到两个圆心连线。
3.在圆心连线上选择一个点,作为内公切线的切点。
4.通过切点,作出与两个圆相切的切线。
5.内公切线即为连接两个切点的线段。
外公切线的求解求解两个圆的外公切线的步骤如下:1.根据两个圆的半径和圆心之间的距离,判断两个圆的位置关系。
如果两个圆相交,则不存在外公切线;如果两个圆相离,可以继续下一步求解。
2.连接两个圆心,得到两个圆心连线。
3.在圆心连线上选择一个点,作为外公切线的切点。
4.通过切点,作出与两个圆相切的切线。
5.外公切线即为连接两个切点的线段。
总结两个圆的公切线是连接两个圆的一条线段,且同时接触两个圆。
内公切线和外公切线有着不同的性质和求解方法。
通过本文的介绍,我们了解到了两个圆的公切线的性质和求解方法,这对于几何学的学习和应用都具有重要意义。
希望本文能为读者提供清晰的思路和方法,帮助读者更好地理解和应用两个圆的公切线的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两圆相切——过切点作公切线
1、如图,⊙O 1和⊙O 2外切于点A ,直线BD 切⊙O 1点B ,交⊙O 2于点C 、D ,直线DA 交⊙O 1于E.
(1)求证:∠BAC=∠ABC+∠D; (2)求证:AB 2=AC ·AE.
2、如图,⊙O 1和⊙O 2外切于点A ,直线BC 切⊙O 1于点B ,切⊙O 2于点C. 求证:△ABC 是直角三角形.
3、如图,两圆内切于P 点,大圆的弦AB 切小圆于C ,PC 的延长线交大圆于D 点,求证: (1)∠APD=∠BPD ;
(2)PA ·PB=PC 2
+AC ·CB.
4、如图,已知⊙O 1和⊙O 2外切于点P ,AB 是两圆的外公切线,A 、B 为切点,过点P 的直线交⊙O 1于点C ,交⊙O 2于点D ,分别延长CA 、DB 相交于E 点。
求证:CE ⊥DE.
5、如图,⊙O 1和⊙O 2外切于点P ,过点P 的直线交⊙O 1于点A,交⊙O 2于点B ,AE 是⊙O 1的直径,BF 是⊙O 2的直径. 求证:AE ∥BF
6、如图,⊙O 1和⊙O 2内切于点P ,⊙O 2的弦AB 切⊙O 1于点C ,连接PC 交⊙O 2于D. 求证:AD=BD
7、如图,已知⊙O 1和⊙O 2外切于点P ,外公切线AB 分别切两圆于A 、B ,交O 1O 2的延长线于点C ,连接AP 、BP.求证: (1)∠APB=90° (2)PC 2=AC ·BC.。