江达县民族中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析

西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析

西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .32. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2B .﹣2C.﹣D.3. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L 2h 相当于将圆锥体积公式中的π近似取为( )A.B.C.D.4. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 5. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 7. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.8. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .9. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件10.设a 是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定11.对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]12.已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .58二、填空题13.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .14.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

江油市民族中学2018-2019学年上学期高二数学12月月考试题含解析

江油市民族中学2018-2019学年上学期高二数学12月月考试题含解析

江油市民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A. B. C. D.2. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .43. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,4. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1125. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④ 6.设函数,则有( )A .f (x)是奇函数,B .f (x)是奇函数, y=b xC .f (x)是偶函数D .f (x)是偶函数,7. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .48. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A .B .C . +D . ++19. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣210.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .11.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .12.已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+4二、填空题13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 14.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .15.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .16.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.17.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .18.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .三、解答题19.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.20.已知f (x )=x 2﹣(a+b )x+3a .(1)若不等式f (x )≤0的解集为[1,3],求实数a ,b 的值; (2)若b=3,求不等式f (x )>0的解集.21.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?22.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.23.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.24.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.江油市民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.2. 【答案】A 【解析】1111]试题分析:199515539()9215()52a a S a a a S a +===+.故选A .111] 考点:等差数列的前项和. 3. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 4. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 5. 【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ), 又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.6.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.7.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.8.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.△PAC故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.9. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.10.【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 11.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A .12.【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1 故答案是:A【点评】考察复合函数的转化,属于基础题.二、填空题13.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 14.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差. 15.【答案】 546 .【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16) =(1+2+...+8)+(2+22+ (28)=+=36+29﹣2 =546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,∴四边形P ACB 的周长为2(P A +AC ) =2PC 2-AC 2+2AC =2PC 2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1),由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:9217.【答案】.【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.18.【答案】.【解析】解:∵数列{a n}为等差数列,且a3=,∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,∴cos(a1+a2+a6)=cos=.故答案是:.三、解答题19.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.20.【答案】【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,当不等式f(x)≤0的解集为[1,3]时,方程x2﹣(a+b)x+3a=0的两根为1和3,由根与系数的关系得,解得a=1,b=3;(2)当b=3时,不等式f(x)>0可化为x2﹣(a+3)x+3a>0,即(x﹣a)(x﹣3)>0;∴当a>3时,原不等式的解集为:{x|x<3或x>a};当a<3时,原不等式的解集为:{x|x<a或x>3};当a=3时,原不等式的解集为:{x|x≠3,x∈R}.【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.21.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.22.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分所以2(n 1)22n a n =+-⨯=,即2n a n =,(1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分23.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.24.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2). 【解析】试题分析:(1)由公式cos sin xy ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.。

大名县民族中学2018-2019学年上学期高二数学12月月考试题含解析

大名县民族中学2018-2019学年上学期高二数学12月月考试题含解析

大名县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 2.以的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.3. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 4. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A. B. C. D.5. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A.﹣ B .﹣5 C .5D.6. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .7. 函数f (x﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .108. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞- B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-9. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) A .48B .±48C .96D .±9610.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .11.设D 为△ABC 所在平面内一点,,则( )A .B .C .D .12.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)二、填空题13.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .14.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 15.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号) 16.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.本小题满分12分 已知数列{}n a 中,123,5a a ==,其前n 项和n S 满足)3(22112≥+=+---n S S S n n n n . Ⅰ求数列{}n a 的通项公式n a ; Ⅱ 若22256log ()1n n b a =-N *n ∈,设数列{}n b 的前n 的和为n S ,当n 为何值时,n S 有最大值,并求最大值.21.本小题满分10分选修44-:坐标系与参数方程选讲在直角坐标系xoy中,直线的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;Ⅱ设圆C 与直线交于点A B 、,若点P的坐标为(3,,求PA PB +.22.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.23.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.24.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]大名县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 2. 【答案】D 【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4). ∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.3. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.4. 【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B5.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.6.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题7.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.8.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 9.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.10.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.11.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.12.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.二、填空题13.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.14.【答案】[,1].【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].15.【答案】③⑤【解析】解:①函数y=|x|,(x∈R)与函数,(x≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域由0≤2x≤2,⇒0≤x≤1,它的定义域为:[0,1];故错;⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.故正确;故答案为:③⑤16.【答案】m≥2.【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.故答案为m≥2.17.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.18.【答案】2 2,3⎛⎫-⎪⎝⎭【解析】三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C 1在第一象限时,过C 1作C 1D 垂直于x 轴,C 1B 垂直于y 轴,连接AC 1,由C 1在直线y=x 上,得到C 1B=C 1D ,则四边形OBC 1D 为正方形, ∵与y 轴截取的弦OA=4,∴OB=C 1D=OD=C 1B=2,即圆心C 1(2,2),在直角三角形ABC 1中,根据勾股定理得:AC 1=2,则圆C 1方程为:(x ﹣2)2+(y ﹣2)2=8;当圆心C 2在第三象限时,过C 2作C 2D 垂直于x 轴,C 2B 垂直于y 轴,连接AC 2,由C 2在直线y=x 上,得到C 2B=C 2D ,则四边形OB ′C 2D ′为正方形,∵与y 轴截取的弦OA ′=4,∴OB ′=C 2D ′, =OD ′=C 2B ′=2,即圆心C 2(﹣2,﹣2), 在直角三角形A ′B ′C 2中,根据勾股定理得:A ′C 2=2, 则圆C 1方程为:(x+2)2+(y+2)2=8,∴圆C 的方程为:(x ﹣2)2+(y ﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】【解析】Ⅰ由题意知()321211≥+-=-----n S S S S n n n n n , 即()3211≥+=--n a a n n n22311)(......)()(a a a a a a a a n n n n n +-++-+-=--()3122122...2252...22221221≥+=++++++=++++=----n n n n n n检验知n =1, 2时,结论也成立,故a n =2n +1.Ⅱ 由882222222562log ()log log 28212n n n n b n a -====-- N *n ∈法一: 当13n ≤≤时,820n b n =->;当4n =时,820n b n =-=;当5n ≥时,820n b n =-< 故43==n n 或时,n S 达最大值,1243==S S .法二:可利用等差数列的求和公式求解 21.【答案】【解析】Ⅰ∵:C ρθ=∴2:sin C ρθ=∴22:0C x y +-=,即圆C的标准方程为22(5x y +=.直线的普通方程为30x y +=. 所以,圆C2=.Ⅱ由22(53x y y x ⎧+=⎪⎨=-+⎪⎩,解得12x y =⎧⎪⎨=⎪⎩或21x y =⎧⎪⎨=⎪⎩所以 22.【答案】【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+由题意得2042a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分(Ⅱ)03a ≤≤,∴112a -≤-≤,∴12a -≤,()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤()()()2222f x a f x a x a x x a x a a -++=-+≥--==,∴()()()()f x a f x a f ax af x -++≥-.…… 10分23.. 【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.设正方体棱长为,则1CC x =,11C D , 作SO EF ⊥于O,则SO =1OE =,∵1ECC EOS ∆∆,∴11CC EC SO EO =121x =,∴2x =cm,即内接正方体棱长为2.||||PA PB +==考点:简单组合体的结构特征.24.【答案】(1)最大值为,最小值为32-;(2)14. 【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-= ∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin 14A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.。

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()A.(1,4]B.(0,1]C.[﹣1,1]D.(4,+∞)2.给出下列两个结论:①若命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x∈R,x2+x+1≥0;②命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题为:“若方程x2+x﹣m=0没有实数根,则m≤0”;则判断正确的是()A.①对②错B.①错②对C.①②都对D.①②都错3.设函数f(x)=,f(﹣2)+f(log210)=()A.11B.8C.5D.24.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.5.下列4个命题:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”;②若“¬p或q”是假命题,则“p且¬q”是真命题;③若p:x(x﹣2)≤0,q:log2x≤1,则p是q的充要条件;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2;其中正确命题的个数是()A.1个B.2个C.3个D.4个6.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)7.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使m∥β,应选择下面四个选项中的()A.①④B.①⑤C.②⑤D.③⑤8. (﹣6≤a ≤3)的最大值为( )A .9B .C .3D .9. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a 的值为( )A .2B .C .D .310.已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大,A B O 60AOB ∠=︒C O ABC -值为,则球的体积为()O A . B . C . D .81π128π144π288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.11.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能12.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 2二、填空题13.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点;③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是 (把所有正确命题的序号都写上). 14.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+15.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).16. 设函数,.有下列四个命题:()xf x e =()lng x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22em <-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .18.已知x 、y 之间的一组数据如下:x 0123y 8264则线性回归方程所表示的直线必经过点 .三、解答题19.设集合A={x|0<x ﹣m <3},B={x|x ≤0或x ≥3},分别求满足下列条件的实数m 的取值范围.(1)A ∩B=∅;(2)A ∪B=B .20.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).21.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y 数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()(()niii nii u u v v u u β==--=-∑∑^^a v u β=-22.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.23.(本小题满分10分)选修4—5:不等式选讲已知函数,.()f x x a =-()a R ∈(Ⅰ)若当时,恒成立,求实数的取值;04x ≤≤()2f x ≤a (Ⅱ)当时,求证:.03a ≤≤()()()()f x a f x a f ax af x ++-≥-24.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.2.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.3.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键 5.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.6.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.【点评】本题综合考查奇函数定义与它的单调性.7.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 8.【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.9.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax﹣y(a>0)得y=ax﹣z,∵a>0,∴目标函数的斜率k=a>0.平移直线y=ax﹣z,由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B.10.【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径.设球的半径为OC ⊥AOB O ABC -OC,则由题意,得,解得,所以球的体积为,故选D .R 211sin 6032R R ⨯⨯︒⋅=6R =342883R π=π11.【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.12.【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A . 二、填空题13.【答案】 ②③④⑤ 【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,∴=5(a 6+a 5)>0,=11a 6<0,∴a 5+a 6>0,a 6<0,∴a 5>0.因此S n 最大值为S 5,正确;④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是 ②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题. 14.【答案】②④【解析】试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角sin sin a A b B =A B =2A B π+=形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正sin sin a B b A =sin sin sin sin A B B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知是正确,故选选②④.1sin sin sin a b cA B C+=+考点:正弦定理;三角恒等变换.15.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。

江达县二中2018-2019学年高二上学期第二次月考试卷数学

江达县二中2018-2019学年高二上学期第二次月考试卷数学

江达县二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()A.8 B.1 C.5 D.﹣12.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为()A.B.C.D.3.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.4.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能5.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.46.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?7.若集合A={x|1<x<3},B={x|x>2},则A∩B=()A.{x|2<x<3} B.{x|1<x<3} C.{x|1<x<2} D.{x|x>1}8. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .569. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 10.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5411.已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x12.已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .14.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .15.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .18.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题19.已知函数f (x )=2x 2﹣4x+a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[﹣1,3m]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1)①求实数a 的值;②设t 1=f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.20.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.21.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.22.已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)﹣f (x 2).(1)求f (1)的值;(2)若当x >1时,有f (x )<0.求证:f (x )为单调递减函数;(3)在(2)的条件下,若f (5)=﹣1,求f (x )在[3,25]上的最小值.23.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.24.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.江达县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.2.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.3.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.4.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.5.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2, 设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质.6. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7. 【答案】A【解析】解:∵A={x|1<x <3},B={x|x >2}, ∴A ∩B={x|2<x <3}, 故选:A .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8. 【答案】C【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.9. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.10.【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解. ∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.11.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.12.【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 二、填空题13.【答案】 ①④ .【解析】解:由所给的正方体知, △PAC 在该正方体上下面上的射影是①, △PAC 在该正方体左右面上的射影是④, △PAC 在该正方体前后面上的射影是④ 故答案为:①④14.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高 由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.15.【答案】乙,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析(1)

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析(1)

市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有()A .2个B .4个C .6个D .8个2. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =可以为()A .B . C.D .3. 在曲线y=x 2上切线倾斜角为的点是()A .(0,0)B .(2,4)C .(,)D .(,)4. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A5. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1B .﹣=1C .﹣=1D .﹣=16. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CCA B D .347. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .44958. 如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .09. 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆C 22221x y a b-=0a >0b >C 被双曲线截得劣弧长为,则双曲线的离心率为( )C 23a πCA .BCD 6510.函数的定义域为()A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}11.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数12.已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( )A .{0,1,2,4}B .{0,1,3,4}C .{2,4}D .{4}二、填空题13.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有 种(用数字作答).A B C D 17.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,M N 、24y x =F MN ,则直线的方程为_________.||||10MF NF +=MN 18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-三、解答题19.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:x ①ππf (x )1﹣10(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣,]上的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f(A+)=1,b+c=4,a=,求△ABC 的面积. 20.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)21.设函数,.()xf x e =()lng x x =(Ⅰ)证明:;()2e g x x≥-(Ⅱ)若对所有的,都有,求实数的取值范围.0x ≥()()f x f x ax --≥a22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.23.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0(1)若a=1,且q∧p为真,求实数x的取值范围;(2)若p是q必要不充分条件,求实数a的取值范围.24.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=,=﹣x.市中区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ;∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B . 2. 【答案】A 【解析】试题分析:,为奇函()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=AA ()cos y g x x ∴=数,排除B ,D ,令时,故选A. 10.1x =0y >考点:1、函数的图象及性质;2、选择题“特殊值”法.3. 【答案】D【解析】解:y'=2x ,设切点为(a ,a 2)∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,在曲线y=x 2上切线倾斜角为的点是(,).故选D .【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4. 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A .故选D . 5. 【答案】B【解析】解:由双曲线的一条渐近线方程为y=x ,可设双曲线的方程为x 2﹣y 2=λ(λ≠0),代入点P (2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.6.【答案】D【解析】考点:异面直线所成的角.7.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.8.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.9.【答案】B考点:双曲线的性质.10.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B11.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.12.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.二、填空题13.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.14.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决. 15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。

双湖县民族中学2018-2019学年上学期高二数学12月月考试题含解析

双湖县民族中学2018-2019学年上学期高二数学12月月考试题含解析

双湖县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .2. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣13. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为( )A .B .C .D .4. 某程序框图如图所示,该程序运行输出的k 值是( )A .4B .5C .6D .75. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1}6. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2 C.﹣ D.7. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 8. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( ) A.() B.(,]C.() D.(]9. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A.B.C .2D .310.如果执行如图所示的程序框图,那么输出的a=( )A .2 B. C .﹣1 D .以上都不正确11.已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a 12.三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.5二、填空题13.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= . 15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .17.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .18.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题19.已知直角梯形ABCD 中,AB ∥CD ,,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.20.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.21.记函数f (x )=log 2(2x ﹣3)的定义域为集合M ,函数g (x )=的定义域为集合N .求:(Ⅰ)集合M ,N ;(Ⅱ)集合M ∩N ,∁R (M ∪N ).22.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.23X(I )求该运动员两次都命中7环的概率; (Ⅱ)求ξ的数学期望E ξ.24.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:1m≤双湖县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.2.【答案】B【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.3.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.4.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7. 故选C .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .6. 【答案】B【解析】解:因为f (x+3)=f (x ),函数f (x )的周期是3, 所以f (2015)=f (3×672﹣1)=f (﹣1);又因为函数f (x )是定义R 上的奇函数,当0<x ≤1时,f (x )=2x,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2. 故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1).7. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.8.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.9.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B.【点评】题考查类比推理和归纳推理,属基础题.10.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.11.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c <a <b . 故选C12.【答案】A【解析】解:∵60.5>60=1, 0<0.56<0.50=1, log 0.56<log 0.51=0. ∴log 0.56<0.56<60.5. 故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.二、填空题13.【答案】2,21+. 【解析】∵22212112221012a a a a a a +=+⋅+=++=,∴122a a +=,而222123121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,∴12321a a a ++≤,当且仅当12a a +与3a 1.14.【答案】 1 .【解析】解:∵f (x )是定义在R 上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.15.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x ,y )则{x ,y )|﹣1≤x ≤0,﹣≤y ≤0或0≤x ≤2,0≤y ≤1}={(x ,y )|xy >0且﹣1≤x ≤2,﹣≤y ≤1}故答案为:{(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1}.16.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】﹣12.【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,∴==,解得x=﹣6,y=6,x﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.18.【答案】﹣.【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.三、解答题19.【答案】【解析】解:(1)证明:取AB 中点H ,连接GH ,FH , ∴GH ∥BD ,FH ∥BC , ∴GH ∥面BCD ,FH ∥面BCD ∴面FHG ∥面BCD , ∴GF ∥面BCD(2)V=又外接球半径R=∴V ′=π∴V :V ′=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E 点三条棱互相垂直,故棱锥的外接球半径与以AE ,CD ,DE 为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.20.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.21.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.22.【答案】【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数∴x=≤1∴m≤2∴实数m的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.23.【答案】【解析】解:(1)设A=“该运动员两次都命中7环”,则P (A )=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10 且P (ξ=7)=0.04,P (ξ=8)=2×0.2×0.3+0.32=0.21,P (ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P (ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ 7 8 9 10 P 0.04 0.21 0.39 0.36 ξ的期望为E ξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.24.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211x xf x e x x e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f>,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。

江达县三中2018-2019学年高二上学期第二次月考试卷数学

江达县三中2018-2019学年高二上学期第二次月考试卷数学

江达县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b 为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .22. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .3. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣24. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )A .B .1﹣C .D .1﹣6. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直7. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .8. 在△ABC 中,已知D 是AB 边上一点,若=2, =,则λ=( )A .B .C .﹣D .﹣9. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π10.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 11.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 12.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)二、填空题13.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .14.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)15.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .16.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .17.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .18.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题19.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n+1﹣a n =2,数列{b n }的前n 项和S n =n 2+a n . (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .20.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h (x )图象上时,公式变为,请参考该公式求出函数ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值.21.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.22.设定义在(0,+∞)上的函数f (x )=,g (x )=,其中n ∈N *(Ⅰ)求函数f (x )的最大值及函数g (x )的单调区间;(Ⅱ)若存在直线l :y=c (c ∈R ),使得曲线y=f (x )与曲线y=g (x )分别位于直线l 的两侧,求n 的最大值.(参考数据:ln4≈1.386,ln5≈1.609)23.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.24.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.江达县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .2. 【答案】A【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.∵当x >0时,t==在x=e 时,t 有最小值为∴函数y=f (x )=x 2﹣,当x >0时满足y=f (x )≥e 2﹣>0,因此,当x >0时,函数图象恒在x 轴上方,排除D 选项 故选A3. 【答案】A【解析】解:设幂函数y=f (x )=x α,把点(,)代入可得=α,∴α=,即f (x )=,故f (2)==,故选:A .4. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 5. 【答案】B【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型公式可得该点取自阴影部分的概率是;故选:B .【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.6.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.7.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.8.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.9.【答案】A【解析】考点:三角函数的图象性质.10.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差+=(D点是AB的中点),另外,要选好基底OA OB OD-=,这是一个易错点,两个向量的和2OA OB BAAB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.11.【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 12.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .二、填空题13.【答案】1【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.14.【答案】 15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.15.【答案】 14 .【解析】解:有框图知S=a⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.16.【答案】[,1].【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.17.【答案】.【解析】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))=,f3(x)=f(f2(x))==,…f n+1(x )=f (f n (x ))=,故f 2015(x )=故答案为:.18.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(. 三、解答题19.【答案】【解析】解:(Ⅰ)由题意知数列{a n }是公差为2的等差数列, 又∵a 1=3,∴a n =3+2(n ﹣1)=2n+1.列{b n }的前n 项和S n =n 2+a n =n 2+2n+1=(n+1)2当n=1时,b 1=S 1=4;当n ≥2时,.上式对b 1=4不成立.∴数列{b n }的通项公式:;(Ⅱ)n=1时,;n ≥2时,,∴.n=1仍然适合上式.综上,.【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.20.【答案】【解析】解:(1)因为点P ,Q 关于直线y=x ﹣1对称,所以.解得.又n=e m ﹣1,所以x=1﹣e (y+1)﹣1,即y=ln (x ﹣1).(2)ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)﹣1|=,令u (s )=.则u (s ),v (t )分别表示函数y=e x ﹣1,y=ln (t ﹣1)图象上点到直线x ﹣y ﹣1=0的距离.由(1)知,u min (s )=v min (t ).而f ′(x )=e x ﹣1,令f ′(s )=1得s=1,所以u min (s )=.故.【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.21.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】试题解析: (1)()2af'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;(2)22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=,因为函数()f x 的定义域为0x >,令(23)(2)3'()02x x f x x x +-==⇒=-或2x =,当(0,2)x ∈时,'()0f x <,()f x 单调递减,当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,(3)当1a =时,函数2()ln f x x bx x =+-,21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=,两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202x x x +=,所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设211xt x =>,2(1)()ln 1t h t t t -=-+,∴2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,∴()0h t >,又2110x x >-,所以0'()0f x >.考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 22.【答案】【解析】解:(Ⅰ)函数f (x )在区间(0,+∞)上不是单调函数.证明如下,,令 f ′(x )=0,解得.x fx fx所以函数f (x )在区间上为单调递增,区间上为单调递减. 所以函数f (x )在区间(0,+∞)上的最大值为f ()==.g ′(x )=,令g ′(x )=0,解得x=n .(Ⅱ)由(Ⅰ)知g (x )的最小值为g (n )=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0,则n的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.23.【答案】【解析】解:(1)由圆C与直线l1:y=﹣x的一个交点的横坐标为2,可知交点坐标为(2,﹣2),∴(2﹣a)2+(﹣2)2=a2,解得:a=2,所以圆的标准方程为:(x﹣2)2+y2=4,(2)由(1)可知圆C的圆心C的坐标为(2,0)由直线l2与直线l1垂直,直线l1:y=﹣x可设直线l2:y=x+m,则圆心C到AB的距离d=,|AB|=2=2所以S△ABC=|AB|•d=•2•=2令t=(m+2)2,化简可得﹣2t2+16t﹣32=﹣2(t﹣4)2=0,解得t=(m+2)2=4,所以m=0,或m=﹣4∴直线l2的方程为y=x或y=x﹣4.24.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选高中模拟试卷 第 1 页,共 15 页 江达县民族中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________ 一、选择题

1. 已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )

A. B. C.2 D.

2. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该

几何体的表面积为( )

A.54 B.162 C.54+18 D.162+18 3. 已知函数2()2ln2fxaxxx(aR)在定义域上为单调递增函数,则的最小值是( )

A.14 B.12 C. D. 4. 若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象

重合,则ω的最小值为( ) A. B. C. D. 5. 已知向量=(﹣1,3),=(x,2),且,则x=( ) A. B. C. D.

6. 下列函数中,为偶函数的是( ) A.y=x+1 B.y= C.y=x4 D.y=x5

7. 数列{}na中,11a,对所有的2n,都有2123naaaan,则35aa等于( ) A.259 B.2516 C.6116 D.3115 精选高中模拟试卷 第 2 页,共 15 页 8. 函数2-21yxx,[0,3]x的值域为( ) A. B. C. D. 9. 设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是( )

A.M=P B.P⊊M C.M⊊P D.M∪P=R 10.函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则实数a的取值范围是( )

A.R B.[1,+∞) C.(﹣∞,1] D.[2,+∞) 11.如图所示,函数y=|2x﹣2|的图象是( )

A. B. C. D. 12.设函数21xfxexaxa,其中1a,若存在唯一的整数,使得0ft,则的 取值范围是( )

A.3,12e B.33,24e C.33,24e D.3,12e1111] 二、填空题 13.若执行如图3所示的框图,输入,则输出的数等于 。

14.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .

15.在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且

BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是 . 精选高中模拟试卷 第 3 页,共 15 页 16.已知函数()fx23(2)5x,且12|2||2|xx,则1()fx,2()fx的大小关系 是 . 17.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为 .

18.已知x,y为实数,代数式2222)3(9)2(1yxxy的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 三、解答题

19.(本小题满分12分) 成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从 某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试 成绩(百分制)的茎叶图如图所示. (1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩; (2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)

20.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:

(I)AB∥平面EFG;

(II)平面EFG⊥平面ABC. 精选高中模拟试卷 第 4 页,共 15 页 21.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表: 推销员编号 1 2 3 4 5

工作年限x/年 3 5 6 7 9 推销金额y/万元 2 3 3 4 5 (1)以工作年限为自变量x,推销金额为因变量y,作出散点图; (2)求年推销金额y关于工作年限x的线性回归方程; (3)若第6名推销员的工作年限为11年,试估计他的年推销金额.

22.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴

交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围. 精选高中模拟试卷

第 5 页,共 15 页 23.已知圆的极坐标方程为ρ

2﹣4ρcos(θ﹣)+6=0.

(1)将极坐标方程化为普通方程; (2)若点P在该圆上,求线段OP的最大值和最小值.

24.已知正项等差{an},lga1,lga2,lga4成等差数列,又bn= (1)求证{bn}为等比数列.

(2)若{bn}前3项的和等于,求{an}的首项a1和公差d. 精选高中模拟试卷

第 6 页,共 15 页 江达县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题 1. 【答案】D 【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,

双曲线的渐近线方程为y=±x,所以A(﹣c, c)B(﹣c,﹣ c)

∵AB为直径的圆恰过点F2 ∴F1是这个圆的圆心 ∴AF1=F1F2=2c

∴c=2c,解得b=2a

∴离心率为

==

故选D. 【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.

2. 【答案】D 【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,

故表面积S=3×6×6+3××6×6+×=162+18, 故选:D

3. 【答案】A 【解析】

试题分析:由题意知函数定义域为),0(,2'222()xxafxx

,因为函数

2()2ln2fxaxxx

(aR)在定义域上为单调递增函数0)('xf在定义域上恒成立,转化为2()222hxxxa在),0(恒

成立,10,4a,故选A. 1

考点:导数与函数的单调性. 4. 【答案】D 【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)

∴﹣ω+kπ= 精选高中模拟试卷 第 7 页,共 15 页 ∴ω=k+(k∈Z), 又∵ω>0 ∴ωmin=.

故选D.

5. 【答案】C 【解析】解:∵, ∴3x+2=0, 解得x=﹣. 故选:C. 【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.

6. 【答案】C 【解析】解:对于A,既不是奇函数,也不是偶函数, 对于B,满足f(﹣x)=﹣f(x),是奇函数, 对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数, 对于D,满足f(﹣x)=﹣f(x),是奇函数, 故选:C. 【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.

7. 【答案】C 【解析】

试题分析:由2123naaaan,则21231(1)naaaan,两式作商,可得22(1)nnan,所以223522

35612416aa,故选C.

考点:数列的通项公式. 8. 【答案】A 【解析】

试题分析:函数222112yxxx

在区间0,1上递减,在区间1,3上递增,所以当x=1时,

min12fxf,当x=3时,max32fxf,所以值域为2,2。故选A。

考点:二次函数的图象及性质。 精选高中模拟试卷 第 8 页,共 15 页 9. 【答案】B 【解析】解:P={x|x=3},M={x|x>1}; ∴P⊊M. 故选B.

10.【答案】C 【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上, 故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数, 又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1. 故答案为:C

11.【答案】B 【解析】解:∵y=|2x﹣2|=, ∴x=1时,y=0, x≠1时,y>0. 故选B. 【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.

12.【答案】D 【解析】

考点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令0fx将函数变为两个函数21,xgxexhxaxa,将题意中的“存在唯一整数,使得gt在直线hx

的下方”,转化为

存在唯一的整数,使得gt在直线hxaxa的下方.利用导数可求得函数的极值,由此可求得m的取值范围.

相关文档
最新文档