山东省淄博市部分学校2019届高三数学第三次模拟考试试题理(无答案)
2019届高三第三次模拟考试卷理科数学(三)Word版含答案

仅有四个不同的点 C ,使得 △ ABC 的面积为 5,则实数 a 的取值范围是 ____ .
三、解答题:本大题共
6 个大题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.( 12 分) [2019 ·江南十校 ] 已知数列 an 与 bn 满足: a1 a2 a3
an 2bn n N * ,且 an
3 ,则 cos2
(
)
2
3
1 A.
2
1 B.
3
1 C.
3
6. [2019 ·临川一中 ]函数 f x
1 2x 1 2x
sin x 的图象大致为(
1 D.
2 )
A.
B.
C.
D.
7. [2019 ·南昌一模 ]如图所示算法框图,当输入的 x 为 1 时,输出的结果为(
)
A.3
B. 4
C.5
D. 6
8.[2019 ·宜宾二诊 ] 已知 △ ABC 中, A , B ,C 的对边分别是 a ,b ,c ,且 b 3 , c 3 3 , B 30 ,
D. 16 8 2 4 5
10. [2019 ·汕尾质检 ] 已知 A , B , C , D 是球 O 的球面上四个不同的点,若
AB AC DB DC BC 2 ,且平面 DBC 平面 ABC ,则球 O 的表面积为(
)
A . 20π 3
B. 15π 2
C. 6π
x2 y2 11. [2019 ·临川一中 ]如图所示, A1 , A2 是椭圆 C :
2
4
15.[2019 ·赣州期末 ]若曲线 y x ln x 在 x 1 处的切线 l 与直线 l : ax y 1 0 垂直,则切线 l 、直线 l 与 y 轴围成的三角形的面积为 _______. 16. [2019 南·通期末 ] 在平面直角坐标系 xOy 中,已知 A 0, a , B 3, a 4 ,若圆 x 2 y2 9 上有且
山东省淄博市2018-2019学年度高三模拟考试试题数学理(word版)

山东省淄博市2018-2019学年度高三模拟考试试题数学试题(理)一、选择题: 1.i 是虚数单位,复数1ii+=A .1i -B .1i +C .1i -+D .i2.若全集U =R,集合A ={2|430x x x ++>},B ={3|log (2)1x x -≤}, 则()UC A B =A .{x |1-<x 或2>x }B .{x |1-<x 或2≥x }C .{x |1-≤x 或2>x }D .{x |1-≤x 或2≥x }3. 已知直线l m 、,平面αβ、,且l m αβ⊥⊂,,给出四个命题:① 若//αβ,则l m ⊥; ② 若l m ⊥,则//αβ; ③ 若αβ⊥,则//l m ; ④ 若//l m ,则αβ⊥其中真命题的个数是A .4B .3C .2D .1 4.二项式18(9x 展开式中的常数项是第几项A .11B .12C .13D .145. 若0a <,则下列不等式成立的是A .()120.22aa a ⎛⎫>> ⎪⎝⎭ B .()10.222aa a ⎛⎫>> ⎪⎝⎭C .()10.222aa a ⎛⎫>> ⎪⎝⎭ D .()120.22aa a ⎛⎫>> ⎪⎝⎭6. “b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知24sin 225α=-, (,0)4πα∈-,则sin cos αα+= A .15- B .51 C .75-D .578.在ABC ∆中,90C =,且3C A C B ==,点M 满足2,BM MA CM CB =⋅则等于A .2B .3C .4D .69.已知等差数列{n a }的前n 项和为n S ,且3100(12)S x dx =+⎰,2017S =,则30S 为A .15B .20C .25D .30 10.设动直线x m =与函数3()f x x =,()ln g x x =的图象分别交于点M 、N ,则||MN 的最小值为A .1(1ln 3)3+B .1ln 33C .1(1ln 3)3- D .ln31-11.程序框图如图所示,该程序运行后输出的S 的值是A .2B .12-C .3-D .1312.设奇函数()f x 的定义域为R,最小正周期3T =,若23(1)1,(2)1a f f a -≥=+,则a 的取值范围是 A .213a a <-≥或 B .1a <- C .213a -<≤ D .23a ≤ 二、填空题:13.若双曲线221x ky +=的离心率是2,则实数k 的值是 .14.为了解某校今年准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12,则报考飞行员的总人数是 .15.已知某几何体的三视图如图所示,则该几何体的表面积为 .16.设,x y 满足约束条件3123x y x y x y +⎧⎪--⎨⎪-⎩≥≥≤,若目标函数(0,0)x yz a b a b=+>>的最大值为10, 则54a b +的最小值为 .三、解答题:(本大题共6小题,共74分) 17.(本题满分12分)已知函数21()cos cos ,2f x x x x x R =--∈.(Ⅰ) 求函数)(x f 的最小值和最小正周期;(Ⅱ)已知ABC ∆内角A B C 、、的对边分别为a b c 、、,且3,()0c f C ==,若向量(1,sin )m A =与(2,sin )n B =共线,求a b 、的值.18.(本题满分12分)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且13a +,23a ,34a +构成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和n T .19.(本题满分12分)已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2AD =,1AB =,PA ⊥平面ABCD ,E 、F 分别是线段AB 、BC 的中点. (Ⅰ)证明:PF FD ⊥;(Ⅱ)判断并说明PA 上是否存在点G ,使得EG ∥平面PFD ;(Ⅲ)若PB 与平面ABCD 所成的角为45,求二面角A PD F --的余弦值.20.(本题满分12分)甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23.(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.21.(本题满分12分)已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:12(Ⅱ)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.22.(本题满分14分)已知函数ax x e x f x -+=22)(.(Ⅰ)函数)(x f 在区间[0,1]上存在唯一的极值点,求a 的取值范围. (Ⅱ)若3=a ,当12x ≥时,关于x 的不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.淄博市2018-2019学年度高三模拟数学试题参考答案一、选择题:ADCCB ABBAA DC二、填空题:13.13-. 14.48 . 15.316. 8 .三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)211()cos cos 2cos 2122f x x x x x x =--=-- sin(2)16x π=-- ……………………………………………………3分∴ ()f x 的最小值为2-,最小正周期为π. ………………………………5分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<,∴ 262C ππ-=,∴ 3C π=. ……7分∵ m n 与共线,∴ sin 2sin 0B A -=. 由正弦定理sin sin a bA B=, 得2,b a = ①…………………………………9分 ∵ 3c =,由余弦定理,得2292cos3a b ab π=+-, ②……………………10分解方程组①②,得a b ⎧=⎨=⎩…………………………………………12分18.解:(Ⅰ)设数列{}n a 的公比为(1)q q >,由已知,得 1231327(3)(4)32a a a a a a ++=⎧⎪⎨+++=⎪⎩,, ……………………………………2分即123123767a a a a a a ++=⎧⎨-+=-⎩, 也即 2121(1)7(16)7a q q a q q ⎧++=⎪⎨-+=-⎪⎩解得 112a q =⎧⎨=⎩ 故数列{}n a 的通项为12n n a -=. ………………………………………………6分 (Ⅱ)由(Ⅰ)得3312n n a +=, ∴ 331ln ln 23ln 2nn n b a n +===, …………8分又2ln 31=-+n n b b ,∴ {}n b 是以13ln 2b =为首项,以3ln 2为公差的等差数列 ……………10分 ∴ 12n n T b b b =+++12n n b b ⎛⎫ ⎪⎝⎭+=()22ln 32ln 3n n +=()22ln 13+=n n即3(1)ln 22n n n T +=. ……………………………………………………………12分 19.解:(Ⅰ)证明:连接AF,则AF =,DF =又2AD =,∴ 222DF AF AD +=,∴ DF AF ⊥ ………………………………2分 又PA ABCD ⊥平面,∴ DF PA ⊥,又PA AF A =,∴}DF PAF DF PF PF PAF⊥⇒⊥⊂平面平面……4分(Ⅱ)过点E 作//EH FD 交AD 于点H ,则EH ∥平面PFD ,且有14AH AD =………………………5分 再过点H 作HG ∥DP 交PA 于点G ,则HG ∥平面PFD 且14AG AP =,∴ 平面EHG ∥平面PFD ………7分 ∴ EG ∥平面PFD . 从而满足14AG AP =的点G 即为所求. ……………………………………………8分 (Ⅲ)∵PA ⊥平面ABCD ,∴PBA ∠是PB 与平面ABCD 所成的角,且45PBA ∠=. ∴ 1PA AB == ………………………………………………………………9分 取AD 的中点M ,则FM ⊥AD ,FM ⊥平面PAD , 在平面PAD 中,过M 作MN PD N ⊥于,连接FN ,则PD FMN ⊥平面,则MNF ∠即为二面角A PD F --的平面角 ∵Rt MND ∆∽Rt PAD ∆,∴ MN MDPA PD=,∵1,1,PA MD PD ===,且90o FMN ∠=∴MN =,5FN ==,∴cos MN MNF FN ∠==……12分 20. 解:(Ⅰ)设甲、乙闯关成功分别为事件A B 、,则51204)(362214==⋅=C C C A P ,………………………………………………………2分 3223222127()(1)(1)33327927P B C =-+-=+=, ………………………………4分所以,甲、乙至少有一人闯关成功的概率是:.135128277511)()(1)(1=⨯-=⋅-=⋅-B P A P B A P ………………………………6分(Ⅱ)由题意,知ξ的可能取值是1、2.1242361(1)5C C P C ξ===,312213642424336644(2)(2)55C C C C C C P P C C ξξ-+======(或) 则ξ的分布列为∴ 14912555E ξ=⨯+⨯=.………………………………………………………12分 21.解:(Ⅰ)设抛物线)0(2:22≠=p px y C ,则有)0(22≠=x p xy ,据此验证4个点知(3,32-)、(4,-4)在抛物线上,易求x y C 4:22= ………………2分设1C :)0(:22222>>=+b a by a x C ,把点(-2,0)(2,22)代入得: ⎪⎪⎩⎪⎪⎨⎧=+=121214222b a a解得⎪⎩⎪⎨⎧==1422b a ∴1C 方程为1422=+y x ……5分 (Ⅱ)假设存在这样的直线l 过抛物线焦点(1,0)F ,设直线l 的方程为,1my x =-两交点坐标为),(),,(2211y x N y x M ,由⎪⎩⎪⎨⎧=+=-14122y x my x 消去x ,得,032)4(22=-++my y m …………………………7分∴43,42221221+-=+-=+m y y m m y y ① 212121212(1)(1)1()x x my my m y y m y y =++=+++4444342122222+-=+-⋅++-⋅+=m m m m m m m ② ………………………9分由OM ON ⊥,即0=⋅ON OM ,得(*)02121=+y y x x将①②代入(*)式,得043444222=+-++-m m m , 解得21±=m ………11分 所以假设成立,即存在直线l 满足条件,且l 的方程为:22y x =-或22y x =-+………………………12分 22.解:(Ⅰ)a x e x f x-+=4)(/,∵a f -=1)0(/,a e f -+=4)1(/,又∵函数)(x f 在区间[0,1]上存在唯一的极值点 ∴ (0)(1)0f f ''⋅<.∴ 41+<<e a …………………………………6 (Ⅱ)由25()(3)12f x x a x ≥+-+,得22523(3)12x e x x x a x +-≥+-+, 即 2112xax e x ≤--,∵ 12x ≥, ∴ 2112x e x a x--≤, ……………………………………8分 令 2112()x e x g x x--=, 则221(1)12()x e x x g x x --+'=. ………………10分 令 21()(1)12xx e x x ϕ=--+,则()(1)x x x e ϕ'=-.∵12x ≥,∴()0x ϕ'>,∴()x ϕ在1[,)2+∞上单调递增,∴17()()028x ϕϕ≥=>,因此()0g x '>,故()g x 在1[,)2+∞上单调递增, ……………………………12分则1211198()()1242e g x g --≥==,∴ a的取值范围是94a ≤.…14分。
淄博市2018-2019学年度高三模拟考试试题数学答案(理科阅卷)

淄博市2018-2019学年度高三模拟考试试题 理科数学试题参考答案及评分说明 2019.03第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. CDCBA DADCA BD二、填空题:本大题共4小题,每小题5分,共20分.13.8-.14.111(1)(21)n n n ++++;1516.三、解答题:17.(理科 12分)解:(Ⅰ)因为(2)cos cos b c A a C -=, 所以(2sin sin )cos sin cos B C A A C -=,………………………………………2分 即2sin cos sin cos sin cos sin()B A A C C A A C =+=+ ……………………4分 由πA B C ++=,得2sin cos sin B A B =, 得1cos 2A =,π0π3A A <<∴= ………………………6分 (Ⅱ)由余弦定理:2222cos a b c bc A =+-⋅,得2211322b c bc =+-⋅. 得()2313b c bc +-=…………………………8分1sin 2S bc A =⋅==12bc = ………………………………10分 所以()23613b c +-=,得7b c +=所以ABC △周长为7a b c ++= ……………………………12分 18.(理科 12分)解:(Ⅰ)因为AB ⊥平面PAD ,所以AB DP ⊥, ………………………1分又因为DP =2AP =,60PAD ∠=, 由sin sin PD PA PAD PDA =∠∠,可得1sin 2PDA ∠=,所以30PDA ∠=,所以90APD ∠=,即DP AP ⊥, ……………………3分 因为ABAP A =,所以DP ⊥平面PAB , ………………………4分因为DP ⊂平面PCD ,所以平面PAB ⊥平面PCD ………………………5分(Ⅱ)由AB ⊥平面PAD ,以点A 为坐标原点,AD 所在的直线为y 轴,AB 所在的直线为z 轴, 如图所示建立空间直角坐标系. …………………………………6分其中(0,0,0)A ,(0,0,1)B ,C(0,4,3),(0,4,0)D ,,0)P .从而(0,4,1)BD =-,(3,1,0)AP =,(PC =,设PM PC λ=,从而得),31,3)M λλλ-+,(3(1),31,31)BM λλλ=-+-, …………………………………7分设平面MBD 的法向量为(,,)n x y z =,若直线//PA 平面MBD ,满足000n BM n BD n AP ⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩,即)(31)(31)0400x y z y z y λλλ-+++-=-=⎨+=, 得14λ=,取(3,3,12)n =--, …………………………………10分 且(3,1,1)BP =-,直线BP 与平面MBD 所成角的正弦值等于:||sin ||||156n BP n BP θ⋅===⋅ ……………………12分19.(理科 12分)解:(Ⅰ)设点M 的坐标为(,)x y ,因为点A 的坐标是(2,0)-, 所以,直线AM 的斜率(2)2AM yk x x =≠-+ 同理,直线BM 的斜率(2)2BM y k x x =≠- 由已知又3224y y x x ⋅=-+- …………………………3分 化简,得点M 的轨迹方程221(2)43x y x +=≠± …………………………5分 (漏掉2x ≠±扣1分)(Ⅱ)解:直线AM 的方程为2(0)x my m =-≠,与直线l 的方程2x =联立,可得点4(2,)P m ,故4(2,)Q m-. ………………………6分 将2x my =-与22143x y +=联立,消去x ,整理得22(34)120m y my +-=,解得0y =,或21234my m =+. …………………………………………7分由题设,可得点2226812(,)3434m mM m m -++.由4(2,)Q m -, 可得直线MQ 的方程为222124684(+)(2)(2)()03434m m x y m m m m----+=++, 令0y =,解得226432m x m -=+,故2264(,0)32m D m -+. 所以22226412||23232m m AD m m -=+=++. …………………………9分所以APD △的面积为222241124=232||32m m m m m ⨯⨯++ …………………………10分又因为APD △的面积为22432mm +整理得23|20m m -+=,解得||m =,所以m =. …………………………………………………12分 20.(理科 12分)解析:(Ⅰ)由于礼盒的需求量为x ,进货量为a ,商店的日利润y 关于需求量x 的函数表达式为:5030(),30,5010(),11,a x a a x x Zy x a x x a x Z +-≤≤∈⎧=⎨--≤<∈⎩………………………………2分 化简得:3020,30,6010,11,x a a x x Zy x a x a x Z +≤≤∈⎧=⎨-≤<∈⎩………………………………4分 (Ⅱ)日利润y 的分布列为:………………………………7分日利润y 的数学期望为: 21{(601110)(601210)[60(1)10]}201{(3020)[30(1)20](303020)}201(111)(11)(30)(31){[6010(11)][3020(31)]}202231431065=442Ey a a a a a a a a a a a a a a a a a a a =⋅⨯-+⨯-++⨯--+⋅++++++⨯++--+-=⋅⨯--+⨯+--++…… ………………………………10分结合二次函数的知识,当24a =时,日利润y 的数学期望最大,最大值为958.5元.……………12分 21.(理科 12分)解:(Ⅰ)()()21xf x e a x '=-+ . …………………………………1分因为0x =是()f x 的极大值点,所以(0)10f a '=-=,解得1a =. ……2分当1a =时,()()21x f x e x '=-+,()2xf x e ''=-.令()0f x ''=,解得ln 2x =.当(),ln 2x ∈-∞时,()0f x ''<,()f x '在(),ln 2-∞上单调递减,又()00f '=,所以当(),0x ∈-∞时,()(0)0f x f ''>=;当()0,ln 2x ∈时,()(0)0f x f ''<=,故0x =是()f x 的极大值点. ………………………………………4分(Ⅱ)令()21xe g x a x x =-++,()f x 在()0,+∞上只有一个零点当且仅当()g x 在()0,+∞上只有一个零点. …………………………………5分()()221()1xx x e g x xx -'=++, ………………………………………6分当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以min ()g(1)3eg x a ==-. ………………………………7分 (1)当min ()g(1)0g x ==,即3ea =时,()g x 在()0,+∞上只有一个零点,即()f x 在()0,+∞上只有一个零点. ………………………………8分(2)当min ()g(1)0g x =<,即3ea >时. 取(,181)x n n N n a =∈>>,()22221+1=133n n ne g n a a a n n n n =->--++()0123332225603181818n n n n C C C C n n n n a a a a n n n +++++>-=->-=->. ……10分 ①若(0)10g a =->,即1a <时,()g x 在()0,1和()1,n 上各有一个零点,即()f x 在()0,+∞上有2个零点,不符合题意; ………………………11分②当(0)10g a =-≤即1a ≥时,()g x 只有在()1,+∞上有一个零点,即()f x 在()0,+∞上只有一个零点. ……………………………………………12分综上得,当a ∈{}[1,)3e +∞时,()f x 在()0,+∞上只有一个零点.……12分22.(10分)解:(Ⅰ)将cos sin x y ρθρθ=⎧⎨=⎩ 代入曲线C 极坐标方程得:曲线C 的直角坐标方程为:22442x y x y +-=-即22(2)(1)9x y -++= …………………………3分 (Ⅱ)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++= …………………………5分整理得24cos 2sin 40t t t αα-+-= 设点A B ,对应的参数为12t t ,,解得124cos 2sin t t αα+=-, 124t t ⋅=- …………………………6分则12AB t t =-===…………………………8分23cos 4sin cos 0ααα-=,因为0απ≤<得2πα=和3tan 4α=,直线l 的普通方程为34y x =和0x = ………………10分23.(10分)解:(Ⅰ)当3m =-时,()123f x x x =++-, 原不等式等价于1236x x ++-≤故有11236x x x ≤-⎧⎨---+≤⎩ 或3121236x x x ⎧-<<⎪⎨⎪+-+≤⎩ 或321236x x x ⎧≥⎪⎨⎪++-≤⎩ ………………………3分解得413x -≤≤-或312x -<<或3823x ≤≤ …………………………4分综上,原不等式的解集48|33x x ⎧⎫-≤≤⎨⎬⎩⎭…………………………5分 (Ⅱ)由题意知()24f x x ≤-在11,2⎡⎤-⎢⎥⎣⎦上恒成立,即1224x x m x +++≤-在11,2⎡⎤-⎢⎥⎣⎦上恒成立所以1242x x m x +++≤- …………………………6分 即233x m x +≤- 在11,2⎡⎤-⎢⎥⎣⎦上恒成立所以33233x x m x -≤+≤- …………………………8分 即335x m x -≤≤-在11,2⎡⎤-⎢⎥⎣⎦上恒成立由于5432x -≤-≤-,13582x ≤-≤ 所以5122m -≤≤,即的取值范围是51,22⎡⎤-⎢⎥⎣⎦…………………………10分。
2019年淄博实验中学高三年级第三次模拟考试试题答案及评分细则

淄博实验中学高三年级第三次模拟考试试题 2019.05数 学(人文)答案1.C2.D3.C4.A5.B6.D7.D8.C9.C 10.B 11.B 12.D3.C 【解析】 “ , ”的否定是“ ,”,A 错误;B 中的命题的逆否命题为:若 ,且 ,则 为真命题,B 错误; 为幂函数时, ,可判断C 正确;在 方向上的投影为,D 错误,故选C . 7.【答案】D 【解析】()1sin112sin110f =+-=-<,排除B ,C , 当0x =时,sin 0x x ==,则0x →时,sin 1xx→,()101f x →+=,排除A ,故选D . 8.9.【答案】C. 解析 ∵FP →=4FQ →,∴|FP →|=4|FQ →|,∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A , 则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34,∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.10.【答案】B【解析】抛物线24y cx =的准线x c =-,它正好经过双曲线()2222:10,0x y C a b a b-=>>的左焦点,∴准线被双曲线C 截得的弦长为22b a,22223b ae a ∴=,22222223c b a c a b a∴=⋅==+,222b a ∴=,b a ∴=,∴则双曲线C 的渐近线方程为y =,故选B .11.【解答】如图所示,连接OB ,OC .∵△ABC 、△BCD 都是边长为1的等边三角形,∴OB ⊥AD ,OC ⊥AD ,,∴OB 2+OC 2=BC 2,∴∠BOC=90°,∴三棱锥A-BCD 的体积. 故选B.12. 【答案】D【解析】()()sin sin3sin sin 2sin sin cos 2cos sin 2f x x x x x x x x x x x =-=-+=--()()3222sin 1cos2cos sin 22sin 2sin cos 2sin sin cos x x x x x x x x x x =--=-=-2sin cos2x x =-,由()0f x =得到sin 0x =或者cos20x =.当sin 0x =时,0x =,π,2π; 当cos20x =时,π4x =,3π4,5π4,7π4;∴()f x 的所有零点之和等于7π,选D . 另解:可以将零点问题转化为函数图像的交点问题,令()0f x =,则sin sin3x x =,在同一坐标系中画出函数sin y x =和sin 3y x =的图像, 如图所示,两个函数图像在区间[]0,2π有7个交点,∴()f x 有7个零点,其中3个零点是0,π,2π,另外四个零点为图中的1x ,2x ,3x ,4x ,由对称性可知,12πx x +=,343πx x +=, ∴()f x 的所有零点之和等于7π,故选D .13. 【答案】 【解析】由题得 ∴∴ .故答案为:14.【答案】 8 【解析】线性约束条件对应的可行域为直线 围成的三角形区域,设 ,当 过直线 交点 时 取得最小值 ,此时 最大为815. 【答案】2053 【解析】由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,是第 行第 个数,由图知,第 行都是奇数,设奇数为 , 它是第 个,因此 为 .16. 【答案】 ,【解析】若函数 与 的图象上存在关于 轴对称的点, 则方程 在区间 上有解,令 , 由 的图象是开口朝上,且以直线为对称轴的抛物线 故当 时, 取最小值 当 时, 取最大值 . 故 的范围为 ,17. 【解析】(1)由ABC △的面积为23sin AD B 且D 为BC 的中点可知:ABD △的面积为26sin AD B ,由三角形的面积公式可知21sin 26sin AD AB BD B B⋅⋅=,由正弦定理可得3sin sin 1BAD BDA ∠⋅∠=,所以1sin sin 3BAD BDA ∠⋅∠=.(2)6BC AB =,又因为D 为BC 的中点,所以26BC BD AB ==,即3BD AB =, 在ABD △中,由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠, 由(1)可知1sin sin 3BAD BDA ∠⋅∠=,所以1sin 3BDA ∠=,sin 1BAD ∠=,()0,πBAD ∠∈,2πBAD ∴∠=,在直角ABD △中AD =1sin 3BDA ∠=,所以1AB =,3BD =.2BC BD =,6BC ∴=,在ABC △中用余弦定理,可得22212cos 136216333b ac ac B =+-=+-⨯⨯⨯=,b ∴.18. 证明:(Ⅰ)∵E ,F 分别是A 1 B 1和B 1C 1的中点,∴EF ∥A 1C 1,∵EF ⊄平面DA 1C 1,A 1C 1⊂平面DA 1C 1,∴EF ∥平面DA 1C 1, ∵D ,E 分别是AB 和A 1B 1的中点,∴, ∴四边形BDA 1E 是平行四边形,∴BE ∥A 1D ,∵BE ⊄平面DA 1C 1,A 1D ⊂平面DA 1C 1,∴BE ∥平面DA 1C 1, ∵BE ∩EF =E ,∴平面BEF ∥平面DA 1C 1.(Ⅱ)由图可知,三棱柱ABC ﹣A 1B 1C 1夹在平面BEF 和平面DA 1C 1之间的部分, 可看作三棱台DBG ﹣A 1B 1C 1减掉三棱锥B ﹣B 1EF 剩余部分,∵三棱柱ABC ﹣A 1B 1C 1夹在平面BEF 和平面DA 1C 1之间的部分的体积. △,∴三棱台DBG ﹣A 1B 1C 1的体积为:, 三棱锥B ﹣B 1EF 体积, ∴三棱柱ABC ﹣A 1B 1C 1夹在平面BEF 和平面DA 1C 1之间的部分的体积:.19. 【解析】(1)依题意得8x =,25y =,0.25z =.···········3分 (2)22⨯列联表:···········5分()221004030201016.66710.82860405050K ⨯-⨯==>⨯⨯⨯,···········7分故有99.9%的把握认为是否为“管理学意向”与性别有关.···········8分(3)将得分在[)0,20中3名男生分别记为a ,b ,c ,得分在[)0,20中2名女生记为M ,N ,则从得分在[)0,20的学生中随机选取两人所有可能的结果有:(),a b ,(),a c ,(),a M ,(),a N ,(),b c ,(),b M ,(),b N ,(),c M ,(),c N ,(),M N 共10种.···········10分设“恰好有1名男生,1名女生被选中”为事件A ,则事件A 所有可能的结果有:(),a M ,(),a N ,(),b M ,(),b N ,(),c M ,(),c N 共6种,···········11分 ∴恰好有1名男生,1名女生被选中的概率为63105=.···········12分20. 【解析】(1)因为P 到点F 的距离比它到y 轴的距离大1,由题意和抛物线定义12p=, 所以抛物线C 的方程为24y x =. (2)由题意0MN k ≠,设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,()22221,4y N y y y ⎛⎫> ⎪ ⎪⎝⎭,由OM ON ⊥,得1216y y =-,直线124:MN k y y =+, 2111244y y y x y y ⎛⎫-=- ⎪ ⎪+⎝⎭,整理可得()1244y x y y =-+, 直线:AB ①若斜率存在,设斜率为k ,()1y k x =-,与C 联立得2440ky y k --=,324141AB y k ⎛⎫=-=+ ⎪⎝⎭, 若点E 存在,设点E 坐标为()00,x y ,)0120EM EN y y y y ⋅=-- ()2120120211y y y y y y k ⎛⎫⎡⎤=+--++ ⎪⎣⎦⎝⎭200241116y y k k ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭, 4EM EN AB⋅=时,2041616y y k-+=, 解得00y =或04y k=(不是定点,舍去) 则点E 为()4,0经检验,此点满足24y x <,所以在线段MN 上,②若斜率不存在,则4⋅=⨯=,EM ENAB=,4416此时点()E满足题意,4,0综合上述,定点E为()4,0.21.【解析】(Ⅰ)当时,,所以所以所以曲线在处的切线方程为,即(Ⅱ)的定义域是,令,得①当时,,所以函数的单调增区间是②当时,变化如下:所以函数的单调增区间是,单调减区间是③当时,变化如下:所以函数的单调增区间是,单调减区间是(Ⅲ)因为,所以当时,所以在上恒成立,所以在上单调递增所以在上的最小值是,最大值是即当时,的取值范围为由(Ⅱ)知,当时,,在上单调递减,在上单调递增因为,所以不合题意当时,,在上单调递减所以在上的最大值为,最小值为所以当时,的取值范围为“对于任意,总存在,使得成立”等价于即,解得所以的取值范围为22.解:(Ⅰ)直线l经过定点,---------------------------------2分由得,得曲线的普通方程为,化简得;---5分(Ⅱ)若,得,的普通方程为,-----------6分则直线的极坐标方程为,----------------------8分联立曲线:.得,取,得,所以直线l与曲线的交点为.--10分方法二:由和解得x=0,y=2 即交点坐标是(0,2),所以它的极坐标是.23.【详解】(Ⅰ)当时,,由,得或或………2分解得或……………………………………………………….4分∴的解集为{x| 或}………………………………….1分(Ⅱ)…………………….7分………………………………………………………………………9分,当且仅当时等号成立…………………………………10分【点睛】本题主要考查含绝对值不等式,解含绝对值不等式,只需用分类讨论的思想处理即可;证明不等式的问题,只需熟记含绝对值不等式的性质即可,属于常考题型.。
2019年淄博实验中学高三年级第三次模拟考试试题

淄博实验中学高三年级第三次模拟考试试题 2019.05数 学(人文)一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合()(){}012|<-+∈=x x Z x A ,{}1,2--=B ,那么=⋃B A ( ) A .{﹣1}B .{﹣2,﹣1}C .{﹣2,﹣1,0}D .{﹣2,﹣1,0,1}2.在复平面内,复数ii+-12(i 是虚数单位)的共轭复数对应的点位于( ). A .第四象限B .第三象限C .第二象限D .第一象限3.下列说法正确的是A .“ ”的否定是“”.B .命题“设 ,若 ,则 或 ”是一个假命题.C . “m =1”是“函数 为幂函数”的充分不必要条件.D .向量 ,则 在 方向上的投影为5. 4.若()()21sin 2sin =-=+βαβα,则βαcos sin 的值为( ) A .83 B .83- C .81 D .81- 5.执行如图所示的算法,则输出的结果是( )A .B .1C .D .26.曲线xe y =在点),2(2e 处的切线与坐标轴所围三角形的面积为 ( )A.249e B.2e C.22e D. 22e7. 函数()2sin 2xf x x x x=+-的大致图象为()A B C D8.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何. 刍甍:底面为矩形的屋脊状的几何体(网络纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为( )A .4立方丈 B. 6立方丈 C. 5立方丈 D .12立方丈9.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72B.52C.3D.210.已知双曲线()2222:10,0x y C a b a b-=>>,其中,双曲线半焦距为c ,若抛物线24y cx =的准线被双曲线C 截得的弦长为223ae (e 为双曲线C 的离心率),则双曲线C 的渐近线方程为()A .12y x =± B.y = C .32y x =± D.y x =11.三棱锥A -BCD 的外接球为球O ,球O 的直径是AD ,且△ABC ,△BCD 都是边长为1的等边三角形,则三棱锥A -BCD 的体积是( )A.B.C.D.。
山东省淄博市2019-2020学年度高三模拟考试数学试题含答案

1 山东省淄博市2019~2020学年度高三模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
l .已知集合{}{}220,2A x x x B x Z x =−−==∈≤,则A B ⋂=A .{1,2}B .{1,-2}C .{-1,2}D .{-1,-2}2.复数()()2a i i −−的实部与虚部相等,其中i 为虚数单位,则实数a =A .3B .13−C. 12−D .1−3.设m R ∈,命题“存在m>0,使方程20x x m +−=有实根”的否定是A .任意m>0,使方程20x x m +−=无实根B .任意m ≤0,使方程2x x m +−=有实根C .存在m>0,使方程20x x m +−=无实根D .存在m ≤0,使方程20x x m +−=有实根4. 521mx x⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是10−,则实数m=A .2B .1C .1−D .2−5.函数()()[]sin 0f x x θπ=+在,上为增函数,则θ的值可以是A .0B. 2πC.πD .32π6.若圆锥轴截面面积为23,母线与底面所成角为60°,则体积为2 A.33π B.63π C.233π D.263π7.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有 A.18种B.20种C.22种D.24种8.在ABC ∆中,0,2,OA OB OC AE EB AB AC λ++===,若9AB AC AO EC ⋅=⋅,则实数=λ A.33B.32C.63D.62二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
淄博市2018-2019学年度高三模拟考试试题(理)

淄博市2018-2019学年度高三模拟考试试题理 科 数 学本试卷,分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时120分钟。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}|21x A x =>,{}|15B x x =-≤≤,则()U A B =I ð A .[)1,0- B .(]0,5 C .[]1,0- D .[]0,5 2.若复数z 满足i zi 21+=,则z 的共轭复数的虚部为A .iB .i -C .1-D .1 3.命题“3210x x x ∀∈-+≤R ,”的否定是 A .不存在3200010x x x ∈-+≤R ,B .3200010x x x ∃∈-+≥R ,C .3200010x x x ∃∈-+>R ,D .3210x x x ∀∈-+>R , 4.设n S 为等差数列{}n a 的前n 项和,且4654a a a +=+,则=9S A .72 B .36 C .18 D .9 5.已知直线l 和两个不同的平面βα,,则下列结论正确的是 A .若//l α,l β⊥,则βα⊥ B .若αβα⊥⊥l ,,则β⊥l C .若//l α,//l β,则βα// D .若αβα//l ,⊥,则β⊥l6.在某项测量中,测得变量2(1,)(0)N ξσσ>:.若ξ在)(2,0内取值的概率为8.0,则ξ在),(21内取值的概率为 A .2.0 B .1.0 C .8.0 D .4.07.一个底面是正三角形,侧棱和底面垂直的三棱柱,其三视图如图所示.若该三棱柱的外接球的表面积为124π,则侧视图中的x 的值为 A .239 B .9 C .33 D .3 8.已知直线)0(≠=k kx y 与双曲线22221(0,0)x y a b a b -=>>交于B A ,两点,以AB 为直径的圆恰好经过双曲线的右焦点F .若ABF ∆的面积为24a ,则双曲线的离心率是A .2B .3C .2D .59.已知(4,0)(0,4)M N -,,点),(y x P 的坐标y x ,满足⎪⎩⎪⎨⎧≥+-≥≤0124300y x y x ,则NP MP ⋅的最小值为 A .52 B .254 C .25196- D .5- 10.已知,)(sin )(xx f θ=)(2π0,∈θ,设)7log 21(2f a =,)3(log 4f b =,)5(log 16f c =,则c b a ,,的大小关系是A .b a c >>B .b c a >>C .c a b >>D .a b c >> 11.已知直线l :)0(2>--=m m x y 与圆,02322:22=---+y x y x C 直线l 与圆C 相交于不同两点N M ,.若CN CM MN +≤2,则m 的取值范围是A .)5,5[B .)355,2[-C .)(55,5D .)(2,312.函数x x x f 2cos )2sin()(++=θ,若)(x f 最大值为()G θ,最小值为)(θg ,则 A .R ∈∃0θ,使00()()πG g θθ+= B .R ∈∃0θ,使π)()(00=-θθg G C .R ∈∃0θ,使π)()(00=⋅θθg G D .R ∈∃0θ,使π)()(00=θθg G第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.()52121x x ⎛⎫-- ⎪⎝⎭展开式的常数项是 . 14.古代埃及数学中发现有一个独特现象:除23用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如2115315=+,可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得11315+.形如()22,3,4,21n n =+…的分数的分解:2115315=+,2117428=+, 2119545=+,按此规律,221n =+ ()2,3,4,n =….15.如图所示,平面11BCC B ⊥平面ABC , 120ABC ∠=︒,四边形11BCC B 为正方形, 且2AB BC ==,则异面直线1BC AC 与所 成角的余弦值为 .16.已知抛物线2C y x =:上一点(1,1)M -,点A B ,是抛物线C 上的两动点,且0MA MB ⋅=u u u r u u u r,则点M 到直线AB 的距离的最大值是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12分)在ABC ∆中,角A B C ,,的对边分别为a b c ,,,且满足(2)cos cos b c A a C -=. (Ⅰ)求角A (Ⅱ)若13a =,ABC ∆的面积为33,求ABC ∆的周长.18.(12分)如图,在四棱锥P ABCD -中,//AB CD ,1AB =,3CD =,2AP =,23DP =,60PAD ∠=o ,AB ⊥平面PAD ,点M 在棱PC 上. (Ⅰ)求证:平面PAB ⊥平面PCD ;(Ⅱ)若直线//PA 平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值. 19.(12分)已知点A ,B 的坐标分别为(2,0)-,(2,0).三角形ABM 的两条边AM , BM 所在直线的斜率之积是34-.(I )求点M 的轨迹方程; (II )设直线AM 方程为2(0)x my m =-≠,直线l 方程为2x =,直线AM 交l 于P ,点P Q ,关于x 轴对称,直线MQ 与x 轴相交于点D .若APD △面积为,求m的值.20.(12分)春节期间某商店出售某种海鲜礼盒,假设每天该礼盒的需求量在{}111230,,…,范围内等可能取值,该礼盒的进货量也在{}111230,,…,范围内取值(每天进1次货).商店每销售1盒礼盒可获利50元;若供大于求,剩余的削价处理,每处理1盒礼盒亏损10元;若供不应求,可从其它商店调拨,销售1盒礼盒可获利30元.设该礼盒每天的需求量为x 盒,进货量为a 盒,商店的日利润为y 元. (Ⅰ)求商店的日利润y 关于需求量x 的函数表达式;(Ⅱ)试计算进货量a 为多少时,商店日利润的期望值最大?并求出日利润期望值的最大值.21.(12分)已知函数()()21x f x e a x x =-++. (Ⅰ)若0x =是()f x 的极大值点,求a 的值;(Ⅱ)若()f x 在()0,+∞上只有一个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
山东省淄博市部分学校2019届高三数学阶段性诊断考试试题理(含解析)

山东省淄博市部分学校2019届高三数学阶段性诊断考试试题 理(含解析)一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数1a iz i-=-(i 是虚数单位)是纯虚数,则实数=a ( ) A. 1- B. 1C. 2D. 2-【答案】A 【解析】 【分析】 化简复数1a iz i-=-,根据纯虚数的定义即可求出实数a 的值。
【详解】()(1)1(1)1(1)=1(1)(1)222a i a i i a a i a a z i i i i --+++-+-===+--+ ∴要使复数1a iz i -=-(i 是虚数单位)是纯虚数,则10,1022a a -+≠=,解得:1a =-, 故答案选A 。
【点睛】本题主要考查复数的化简以及纯虚数的定义,属于基础题。
2.已知集合{}2|20A x x x =∈--≥Z ,则z C A =( ) A. {0}B. {1}C. {0,1}D.{-1,0,1,2}【答案】C 【解析】 【分析】利用一元二次不等式解出集合A ,利用补集的运算即可求出z C A 。
【详解】由集合{}2|20A x x x =∈--≥Z ,解得:{}|21A x x x =∈≥≤-Z 或∴}{z 0,1C A =,故答案选C 。
【点睛】本题考查一元二次不等式的求解以及集合补集的运算,属于基础题。
3.已知非零向量6π,→b ,若(3)0a a b →→→⋅+=,2a b →→=,则向量6π和→b 夹角的余弦值为( ) A.23B. 32-C.23 D. 32-【答案】B 【解析】 【分析】直接利用平面向量的数量积的运算律即可求解。
【详解】设向量6π与向量→b 的夹角为θ,||2||a b =,∴由(3)0a a b ⋅+=可得:2222()33cos 46cos 0a a b a a b b b θθ→→→→→→→→+⋅=+⋅=+=,化简即可得到:2cos 3θ=- , 故答案选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
山东省淄博市部分学校2019届高三数学第三次模拟考试试题 理(无
答案)
本试卷,分第Ⅰ卷和第Ⅱ卷两部分。共4页,满分150分。考试用时120分钟。
考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡
上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需
改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
第Ⅰ卷(60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.已知集合2|1Axx,2|log0Bxx,则ABI
A.(,1) B.(0,1) C.(1,0) D.(1,1)
2.在复平面内,已知复数z对应的点与复数1+i对应的点关于实轴对称,则zi
A.1i B.1+i C.1i D.1i
3.已知等差数列na的前n项和为nS,454,15aS,则数列11nnaa的前2019项和
为
A.20182019 B.20182020 C.20192020 D.20172019
4.已知函数()cos()(00fxAxA,,π||)2的图象如图所示,令
()()()gxfxfx
,则下列关于函数()gx的说法中正确的是
A.若函数()()+2hxgx的两个不同零点分别为12,xx,则12||xx的
最小值为π2
B.函数()gx的最大值为2
C.函数()gx的图象上存在点P,使得在P点处的切线与直线
- 2 -
3+1yx
平行
D.函数()gx图象的对称轴方程为5ππ()12xkkZ
5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、
90
后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事运营岗位的人数90后比80后多
6.某几何体的三视图如图所示,则该几何体的表面积为
A.3π+4 B.9π+42
C.4π+2 D.11π+42
7.已知双曲线22221(0,0)xyabab的左焦点为F,
右顶点为A,直线xa与双曲线的一条渐近线的交点为B.若30BFAo,则双曲线的离
心率e为
A.2 B.3 C.2 D.3
- 3 -
8.已知实数,xy满足线性约束条件1020xxyxy,则1yx的取值范围是
A.2,1](- B.1,4](- C.[2,4) D.[0,4]
9.若||()2xfxx,331(log5),(log),(ln3)2afbfcf,则,,abc的大小关系为
A.cba B.bca C.abc D.cab
10.数列na是各项均为正数的等比数列,数列bn是等差数列,且56ab,则
A.3748aabb B.3748aabb
C.3748aabb D.3748=aabb
11.如图,已知等腰梯形ABCD中,=24,5,ABDCADBCE是DC的中点, P是线
段
BC
上的动点,则EPBP的最小值是
A.95 B.0
C.45 D.1
12.如图,在正方体1111ABCDABCD中,点F是线段1BC上的动点,则下列说法错误..的是
A.当点F移动至1BC中点时,直线1AF与平面1BDC所成角最大且为60
B.无论点F在1BC上怎么移动,都有11AFBD
C.当点F移动至1BC中点时,才有1AF与1BD相交于一点,
记为点E,且12AEEF
D.无论点F在1BC上怎么移动,异面直线1AF与CD所成角都不可能是30
第Ⅱ卷(共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.在平面直角坐标系xOy中,角的始边与x轴的非负半轴重合,终边与单位圆的
交点横坐标为13,则cos2的值是________________.
14.某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配
1
名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为________.
15.过点1(1)2P,的直线l与圆22(1)4Cxy:交于,AB两点,C为圆心,当ACB
最小时,直线l的方程为____________________.
- 4 -
16.已知函数24,0,()1log|1|,0,axaxfxxx(0a且1)a在R上单调递增,且关于
x的方程|()|3fxx恰有两个不相等的实数解,则a
的取值范围是___________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,
每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:60分.
17.(12分)在ABC中,角CBA,,所对的边分别为cba,,,
满足BABACcossin22coscoscos.
(1)求Bcos的值;(2)若2ca,求b的取值范围.
18.(12分)已知正方形的边长为4,,EF分别为,ADBC的中点,
以EF为棱将正方形ABCD折成如图所示的60的二面角,点M在
线段AB上.
(1)若M为AB的中点,且直线MF与由,,ADE三点所确定平面的交点为O,试确定点
O
的位置,并证明直线//OD平面EMC;
(2)是否存在点M,使得直线DE与平面EMC所成的角为60;若存在,求此时二面角
MECF
的余弦值,若不存在,说明理由.
19.(12分)某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了
统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2).
(1)补充完整22列联表中的数据,并判断是否有99%的把握认为甲、乙两套治疗方案对
患者白血病复发有影响;
- 5 -
(2)从复发的患者中抽取3人进行分析,求其中接受“乙方案”治疗的人数X的数学期望.
附:nabcd,22()()()()()nadbcKabcdacbd.
20.(12分)已知圆22:4Oxy,抛物线2:2(0)Cxpyp.
(1)若抛物线C的焦点F在圆O上,且A为抛物线C和圆O的一个交点,求AF;
(2)若直线l与抛物线C和圆O分别相切于,MN两点,设00(,)Mxy,当03,4y
时,求MN的最大值.
21.(12分)已知函数()lnfxxx,21()2gxmx.
(1)若函数()fx与()gx的图象上存在关于原点对称的点,求实数m的取值范围;
(2)设()()()Fxfxgx,已知()Fx在(0,)上存在两个极值点12,xx,
且12xx,求证:2122xxe(其中e为自然对数的底数).
(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第
一题计分.
22.(10分)选修4―4:坐标系与参数方程
在平面直角坐标系xOy中,设倾斜角为的直线l的参数方程为3cos,2sin,xtyt (t为参
数).在以坐标原点O为极点,以x轴正半轴为极轴建立的极坐标系中,曲线
C的极坐标方程为2213cos,直线l与曲线C
相交于不同的两点,AB.
(1)若π6,求直线l的普通方程和曲线C的直角坐标方程;
- 6 -
(2)若OP为PA与PB的等比中项,其中(3,2)P,求直线l的斜率.
23.(10分)选修4―5:不等式选讲
已知函数12afxxa,aR.
(1)若将函数fx图象向左平移m个单位后,得到函数gx,要使1gxfx恒成
立,求实数m的最大值;
(2)当12a时,函数()()21hxfxx存在零点,求实数a的取值范围.