第21届“华杯赛”决赛小高组B组试题答案
18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16
第21届华杯赛决赛试卷_小高C(1)(1)

海边直播教研组整理
更多学习资料请加海边五年级学习①群 526327386
1.
答
2. 3.
某月里, 星期五、 星期六和星期日各有 5 天, 那么该月的第 1 日是星期______. 大于
1 1 且小于 的真分数有_____________ 姓名_________ 参赛证号
勿
4.
哥哥和弟弟各买了若干个苹果, 哥哥对弟弟说:“若我给你一个苹果, 咱俩的 苹果个数一样多”,弟弟想了想,对哥哥说:“若我给你一个苹果, 你的苹果数 将是我的 2 倍”, 则哥哥与弟弟共买了______个苹果.
总分
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 C(小学高年级组)
(时间: 2016 年 3 月 12 日 10:00~11:30)
一、填空题(每小题 10 分, 共 80 分)
1 2 0.25 2 0.5 4 . 计算: 3 1 1 2 =______ 2 2 4 2 5 5
题
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的 6 个, 并在这串数的最后再写上擦去的 6 个数的和,得到新的一串数,再做同样 的操作,直到黑板上剩下的数不足 6 个. 问:(1) 最后黑板上剩下的这些数 的和是多少?(2) 最后所写的那个数是多少? 14. 数学竞赛,填空题 8 道,答对 1 题,得 4 分,未答对,得 0 分;问答题 6 道,答对 1 道,得 7 分,未答对,得 0 分. 参赛人数 400 人,至少有多少 人的总分相同?
图3
12. 三台车床 A,B,C 各以一定的工作效率加工同一种标准件,A 车床比 C 车 床早开机 10 分钟, C 车床比 B 车床早开机 5 分钟, B 车床开机 10 分钟后, B,C 车床加工的标准件的数量相同. C 车床开机 30 分钟后, A,C 两车床 加工的标准件个数相同. B 车床开机多少分钟后就能与 A 车床加工的标准件 的个数相同?
华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
历届华杯赛初赛小高真题

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是华庚金 杯其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999 的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. (A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ). (A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ).(A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
第21届“华杯赛”决赛小高组C组试题和参考答案

- 1 -
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C 参考答案(小学高年级组)
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 C 参考答案 (小学高年级组) 一、填空题(每小题 10 分, 共 80 分)
题号 答案 1 2 五 3 0 4 12 5 81 6 23 7 1 8 24
1
2 3
二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程) 9. 答案:525 米 10.答案:156 个 11.答案:24 种 12.答案:15 分钟 三 解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程) 13.答案:5050,2394 14.答案:8 人
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的 6 个, 并在这串数的最后再写上擦去的 6 个数的和,得到新的一串数,再做同样 的操作,直到黑板上剩下的数不足 6 个. 问:(1) 最后黑板上剩下的这些数 的和是多少?(2) 最后所写的那个数是多少? 14. 数学竞赛,填空题 8 道,答对 1 题,得 4 分,未答对,得 0 分;问答题 6 道,答对 1 道,得 7 分,未答对,得 0 分. 参赛人数 400 人,至少有多少 人的总分相同?
-1-
图2
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C (小学高年级组)
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 甲、乙两人,在一圆形跑道上同时同地出发,反向跑步. 已知甲的速度是每 分钟 180m,乙的速度是每分钟 240m,在 30 分钟内,它们相遇了 24 次, 问跑道的长度最多是多少米? 10. 一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是 27:25,甲多乙少, 若从甲中至少取出 4 个,加入乙中,则乙多甲少,问这筐苹果有多少个? 11. 图 3 是一个等边三角形,等分为 4 个小的等边三角形,用红和 黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能 涂一种颜色. 涂完后, 如果经过旋转, 等边三角形的涂色相同, 则认为是相同的涂色,则共有多少种不同的涂法?
第21届华杯赛决赛答案_初一

第二十一届华罗庚金杯少年数学邀请赛决赛试题参考答案 (初一组)一、填空题(每小题 10 分, 共80分)二、解答下列各题(每小题 10 分, 共40分, 要求写出简要过程)9. 【答案】︒135, ︒45【解答】在恰有三条边相等的四边形中, 三条相等的边相邻, 不妨设为AD BC AB ==. 若直角顶点引出的对角线恰好把四边形分成两个等腰三角形,则有两种情况.图9-1 图9-2(1) 如图9-1所示, 直角顶点A 引出的对角线AC 分成的两个等腰三角形中,BC AB =, AC AD =.在等腰三角形ABC 中, 因为AC BC AB ==, 所以三角形ABC 为等边三角形. 进而︒=∠=∠60CAB BCA , ︒=∠30DAC .在等腰三角形ACD 中,()︒=∠-︒=∠7518021DAC ACD , 所以︒=∠135BCD .(2) 如图9-2所示, 直角顶点A 引出的对角线AC 分成的两个等腰三角形中,BC AB =, CD AC =.取AD 的中点E , 连接CE , 则AD CE ⊥. 所以CE AB //.过B 作CE BF ⊥于F , 则四边形ABFE 为矩形. 所以BC AD BF 2121==. 在直角三角形BCF 中, 因为BF BC 2=, 所以︒=∠30BCE . 因为BC AB =, 所以ACE BCA ∠=∠. 得︒=∠=∠15ACE BCA . 最终, ︒=∠45BCD .10. 【答案】1260【解答】按照题目的设定, 第一次转︒45, 从第二次开始, 每次转动比上一次多转︒45, 所以从第1次到第k 次共转了︒⨯+⨯45)1(21k k . 要想保证每个人都拿到自己的名片, 则需要每个人至少与桌子上的卡片位置对上一次.从某个人名片开始顺时针记每张名片对应的椅子位置为第0, 1, 2, 3, 4, 5, 6, 7号. 第k 次转动后, 0位置的名片对应的椅子位置的号数为)1(214545)1(21+⨯=⨯+⨯k k k k除以8的余数.可以看出, 前7次旋转, 第0号名片所处的位置各不相同, 并且都不在0卡片的起始位置, 因此由抽屉原则, 0卡片的主人一定可以拿到自己的卡片.由对称性,旋转七次, 所有的人都拿到了卡片.当旋转次数小于7时, 第0号名片在第4号位置上没有停留过, 如果第0号的名片上的人正好坐在第4号位置上, 则这个人就拿不到自己的名片.所以旋转的度数为12604528=⨯.11. 【答案】54【解答】如右图将重叠部分标上字母, 连接AC . 由于12=AD , 178=-=CD , 所以ACD ∆的面积6=, 145112222=+=AC .又8=AB , 所以81641458222=-=-=AC BC , 9=BC .因此ABC ∆的面积369821=⨯⨯.所以四边形ABCD 的面积42366=+=.因此阴影部分面积5442128=-⨯.12. 【证明】首先,有().1)12)(1(2111)1(2211)132(211)32(211212322323-++=-+++=-++=-++=-++n n n n n n n n n n n n n n n n 因为 )1(+n n 是偶数, 所以1212323-++n n n 是整数. 又 238)22)(12(218)22)(12(21)12)(1(21+-++=-++=-++n n n n n n n n n ,而)22)(12(2++n n n 是三个相继的整数的乘积, 是3的倍数, 是3和8的公倍数. 所以, 1212323-++n n n 被3除余2. 三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)13. 【答案】40【解答】设正方形ABCD 的面积是a , 连接EF, 见右图, 则三角形BCF 的面积=三角形DFC 的面积4a =, 三角形BEF 的面积12214aa =⨯=, 三角形ECF 的面积6a =, 三角形BED 的面积6a =, 三角形FED 面积=三角形BED 的面积-三角形BEF 的面积12a =. 由共边定理,GF CFDFG DFC EGF ECF =∆∆=∆∆的面积的面积的面积的面积, 242126aa a =-, 得到: 40=a . 14. 【答案】125, 4【解答】设原来有N 人, 原来的队伍从左到右编号, 1, 2, , N , 则第一次报1的有132+-N 人, 他们的编号是, 132,,2,1,0,13+-=+N k k ; 第二次报1的有11+-mN 人, 他们的编号是 11,,2,1,0,1+-=+mN l ml .两次都报1的人满足条件: 113+=+ml k .因为1),3(=m , 所以t l 3=, ⎥⎦⎤⎢⎣⎡-=m N t 31,,2,1,0 . 两次都报1的人的编号是 ⎥⎦⎤⎢⎣⎡-=+m N t mt 31,,2,1,0,13 , 共计有131+⎥⎦⎤⎢⎣⎡-m N 人. 首先让第一次报1的人出列, 出列132+-N 人, 留下的人成2人相邻一组共有32-N 组和最右边一个一人组; 让第二次报1而第一次不报1的人出列, 出来 ⎥⎦⎤⎢⎣⎡---=-⎥⎦⎤⎢⎣⎡--+-m N m N m N m N 31113111 (人). 另一方面, 第二次出列的除了最右边一人外, 都是由一部分第一次留下的二人组中出来一人, 所以, 最后留下的一人组数就是第二次出列的人数减1, 即1311-⎥⎦⎤⎢⎣⎡---m N m N . 由题设得201311=-⎥⎦⎤⎢⎣⎡---m N m N . ① 第一次留下的32-N 个二人组中有⎥⎦⎤⎢⎣⎡---m N m N 311个组在第二次每组出列一人变成了一人组, 所以留下二人组的个数212032=--N , 即125=N .代入①得213124124=⎥⎦⎤⎢⎣⎡-m m . 所以213124324831243124124=⎭⎬⎫⎩⎨⎧+=⎭⎬⎫⎩⎨⎧+-m m m m m . 因为21324820≤<m, 所以134.49.3>≤m .所以4=m .。
最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)

第二十一届华杯赛决赛小高组模拟试题B 答案1、637【解答】原式=910891078910678910106372!3!4!5!⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++=。
2、32【解答】她爷爷正常是60岁退休,应该是1939年出生的兔,1945年是鸡年,1957年又是鸡年,这一年她爷爷才18岁,不到结婚年龄,因而1969年的鸡年,应该是她爸爸的出生年,否则,下一个鸡年是1981年,到2000年才19岁,也不能当父亲,故2001年,小琴的爸爸32岁。
3、23【解答】乙已经开了9小时,甲再开9小时,此时15-9=6小时,两个一起放水还需要6小时注满。
由已知,要达到乙开6小时的注水量,甲还需要开6×43=8小时,故甲还需要9+6+8=23小时注满水池。
4、51【解答】10个数中有5个奇数,5个偶数,从5个偶数中取出3个,共有10种不同的取法;从5个偶数中取1个,从5个奇数中取2个,共有50种不同的取法,所以和为偶数的不同取法共有60种,其中{}0,1,3,{}0,1,5,{}0,1,7,{}0,2,4,{}0,2,6,{}0,3,5,{}1,2,3,{}1,2,5,{}1,3,49种取法的和小于10.综上,满足条件的不同取法共有51种。
5、2【解答】将棋子放中间行的白色方格中,就可以唯一地确定一种放法,其中棋子放左边方格和右边方格是相同放法,故不同放法只有2种。
6、201【解答】连接EF ,三角形BCF 的面积=41,三角形BEF 的面积=41×31=121,三角形ECF 的面积=61,三角形BED 的面积=61,三角形FED 的面积=三角形BED 的面积-三角形BEF 的面积=121。
由共边定理,面积面积EGF ECF ∆∆=面积面积DFG DFC ∆∆=GF CF ,面积DFG -12161∆=面积DFG 41∆=GF CF ,解得DFG ∆的面积=201。
7、14从表中可以看出,满足这样条件的(m,n )数对有14个。