甘肃省武威市2015年中考数学试题及答案

合集下载

【初中数学】甘肃省武威市2015届九年级下学期第一次诊断考试数学试卷 人教版

【初中数学】甘肃省武威市2015届九年级下学期第一次诊断考试数学试卷 人教版

第6题图O甘肃省武威市2015届九年级下学期第一次诊断考试数 学 试 卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.327= ( )A. 3B. -3C. -2D. 22.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费的食物若折合成粮食可养活约350 000 000人,把350 000 000用科学记数法可以表示为( ) A .3.5×1010 B .3.5×109 C .3.5×108 D .3.5×1073.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()4. 下列运算中,结果正确的是( ) A .4a -a =3a B .a 10÷a 2=a 5 C .a 2+a 3=a 5 D .a 3·a 4=a 125. 如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( ) A .15° B .20° C .25° D .30°6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是( )A. 10吨B. 9吨C. 8吨D. 7吨7. 一元二次方程x 2+x -2=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定8.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .x (5+x )=6B .x (5-x )=6C .x (10-x )=6D .x (10-2x )=6 9.二次函数y =x 2+bx +c 中,若b +c =0,则它的图象一定过点( ) A .(1,-1) B .(-1,1) C .(-1,-1) D .(1,1)10. 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD =45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列能表示y 与x 函数关系的图象关系的图象大致是( )第10题图OGF EABCD xx x x二、填空题(本大题共8小题,每小题3分,满分24分.) 11.分解因式:2a 2-4a +2= . 12. 不等式2x +9≥3(x +2)的正整数解是______.13. 等腰△ABC 中,AB =AC =10cm, BC =12cm, 则BC边上的高是 cm.14. 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长______米.15.△ABC 中,∠A 、∠B 都是锐角,若sin A =32,1cos 2B =,则∠C= .16已知x 、y 为实数,且y =x 2-9-9-x 2+4,则x-y = .17.在-1,1,2这三个数中,任选2个数分别作为点P 的横坐标和纵坐标,过点P 画双曲线ky x=,则该双曲线位于第一、三象限的概率是 . 18.已知⊙O 1与⊙O 2的半径分别是方程x 2-4x +3=0的两根,且圆心距O 1O 2=t +2,若这两个圆相切..,则t =_______. 三、解答题(一)(本大题共5小题,共26分,解答时,应写出必要的文字说明、证明过程或演算步骤)19.(5分)计算:20112sin 30( 3.14)2o π-⎛⎫--+-+ ⎪⎝⎭20. (5分)先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛+-x xx ,其中x =23-.21. (5分)为了推进农村新型合作医疗改革,准备在某镇新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的距离都相等(A 、B 、C 不在同一直线上,地理位置如图所示),请你用尺规作图的方法确定点P 的位置。

武威中考数学试题及答案

武威中考数学试题及答案

武威中考数学试题及答案第一部分选择题(共50分)1. 在同一个平面内,已知点P(-2,3),若直线L过原点O(0,0),且L上的点Q满足PQ与OP互为正数整数倍,那么直线L的方程为()A. y=2xB. y=-2xC. y=-0.5xD. y=0.5x答案:C2. 已知集合A={x|1≤x≤6},集合B={y|2≤y≤5},则集合A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:C3. 在平面直角坐标系中,点A(x,y)满足条件:x-3≥y且y≤x+3. 那么点A的取值范围为()A. x≤3且y≤6B. x≥3且y≥-3C. x≥3且y≤6D. x≤3且y≥-3答案:D4. 下列运算正确的是()A. 5x2-3y=-25,x=4解得y=-7B. 2(x-3)=2x-6C. 5(x+1)+2=5x-3D. 0.4x+0.3=0.7,解得x=1答案:C5. 判断命题“三角形ABC是等腰三角形”是否正确,其中:AB=AC,∠B=∠CA. 正确B. 错误答案:A第二部分解答题(共50分)1. 若正方体ABCD-A1B1C1D1的棱长为a,则其对角线的长度为多少?解:设正方体的一条棱的长度为a,则对角线的长度为√(a^2+a^2+a^2)=√3a答案:√3a2. 解方程:2x-3+4(x+5)=-2(2-x)解:2x-3+4(x+5)=-2(2-x)2x-3+4x+20=-4+2x6x+17=2x-44x=-21x=-21/4答案:x=-21/43. 若等差数列{an}的首项为2,公差为3,求满足an≥20的正整数n 的最小值。

解:等差数列的通项公式为an=a1+(n-1)d代入a1=2,d=3,得到an=2+3(n-1)=3n-1当3n-1≥20时,即n≥7,满足条件的最小正整数n为7。

答案:74. 如图所示,ABCD是一个矩形,M、N分别是BC、CD的中点。

连接AM、DN交于点P。

若AB的长度为8cm,BC的长度为6cm,求四边形DPMB的面积。

2015年甘肃省武威四中中考数学一模试卷带解析答案

2015年甘肃省武威四中中考数学一模试卷带解析答案

2015 年甘肃省武威四中中考一模数学试卷
参考答案与试题解析
一、选择题: (每题 3 分,共 36 分) 1. (3 分)计算(﹣5a3)2 的结果是( A.﹣10a5 B.10a6 ) C.﹣25a5 D.25a6
14. (3 分)方程方程 x2=x 的解是 x2﹣9= .
15. (3 分)若|b﹣1|+ k 的取值范围是
=0,且一元二次方程 kx2+ax+b=0 有两个实数根,则 .
16. (3 分)如图,将边长为 6 的正方形 ABCD 折叠,使点 D 落在 AB 边的中点 E 处,折痕为 FH,点 C 落在点 Q 处,EQ 与 BC 交于点 G,则△EBG 的周长是 cm.
25. (8 分)如图,点 E 是矩形 ABCD 中 CD 边上一点,△BCE 沿 BE 折叠为△
第 4 页(共 22 页)
BFE,点 F 落在 AD 上. (1)求证:△ABF∽△DFE; (2)若 sin∠DFE= ,求 tan∠EBC 的值.
26. (8 分)在 Rt△ABC 中,∠ACB=90°,D 是 AB 边上的一点,以 BD 为直径 作⊙O 交 AC 于点 E, 连结 DE 并延长, 与 BC 的延长线交于点 F. 且 BD=BF. (1)求证:AC 与⊙O 相切. (2)若 BC=6,AB=12,求⊙O 的面积.
22. (10 分)解下列方程: (1)x2+4x+1=0 (2) = ﹣1.
四、解答题: (40 分) 23. (7 分)某药品经过两次提价,每瓶零售价由 100 元提到 144 元.已知两次 提价的百分率相同,求两次提价的百分率. 24. (8 分)如图,李明同学在东西方向的滨海路 A 处,测得海中灯塔 P 在北偏 东 60°方向上,他向东走 400 米至 B 处,测得灯塔 P 在北偏东 30°方向上, 求灯塔 P 到滨武威四中中考一模数学试卷

甘肃武威2015年中考数学模拟试卷(一)(Word解析版)(1)

甘肃武威2015年中考数学模拟试卷(一)(Word解析版)(1)

2015年甘肃武威中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.已知不等式组⎩⎨≥+01x ,其解集在数轴上表示正确的是 ( )(3.已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )5.一元二次方程2210x x --=的解是 ( ) A .121==x x B.211+=x ,212--=x C.211+=x ,212-=x D.211+-=x ,212--=x37.实数a b ,在数轴上的位置如图所示,以下说法正确的是 ( ) A . 0a b += B.b a < C.0ab > D. b a <.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )8小题,每小题3分,共24分.本题要求把正确结果填在答题纸规定的 9.分解因式:y y x -2= .10.(3分)(2014•呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 11.(3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x ,8. 已知这组数据的平均数是10,那么这组数据的方差是 . 12.(3分)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为 .服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如下图,在四边形ABCD 中,AD BC ∥,AB =CD =2,BC =5,BAD ∠的平分线交BC 于点E ,且AE CD ∥,则四边形ABCD 的面积为 .AB CDE 第15题图A16.如下图,将ABC △放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .17.(6分)计算:|21|45sin 28)43(2---+--o18.(6分) 化简求值:ba ba b a b b a a -+÷+--22)(,其中31-=a ,31+=b19.(7分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数 ;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).20.(7分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在'B 处,A 'B ‘和CD 相交于点O .求证:OA =OC .三、解答题(共72分)21.(8分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22.(8分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?23(8分)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算AECE.24.(10分)在平面直角坐标系中,已知反比例函数kyx的图象经过点A(1,3).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.25.(12分)如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.m m+2AB(x+1,aa﹣x+1,∴,﹣,﹣x+2m m+2y=AB×(﹣﹣xx(x+1,xaa x+1。

2015甘肃中考数学真题试卷.docx

2015甘肃中考数学真题试卷.docx

2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=()A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是()9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF 的面积是()A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD 中,AB ∥CD,AB ≠CD,BD=AC. (1)求证:AD=BC;(2)若E,F,G,H 分别是AB,CD,AC,BD 的中点.求证:线段EF 与线段GH 互相垂直平分.26.(本小题满分10分)如图,A (-4,12),B(-1,2)是一次函数y 1=ax+b 与反比例函数y 2=mx 图象的两个交点,AC ⊥x 轴于点C,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y 1-y 2>0? (2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连结PC,PD,若△PCA 和△PDB 面积相等,求点P 的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C根据二次函数的定义:形如y=ax2+bx+c(a、b、c为常数,且a≠0)的函数叫做二次函数,结合各选项知,选C.2.B左视图为,主视图为,俯视图为,故选B.评析本题主要考查物体的三视图,属容易题.3.A根据二次函数y=a(x-h)2+k(a≠0)的图象的对称轴为直线x=h,知只有A选项符合题意.4.D设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB2+BC2=√5k,∴cos A=ABAC =√5k=√55,故选D.5.B设点A的坐标为(x,y),由位似图形的性质知,x1=y2=52,得x=2.5,y=5,则点A的坐标为(2.5,5).故选B.6.C变形得x2-8x=1,x2-8x+16=1+16,(x-4)2=17,故选C.7.D对角线相等的平行四边形是矩形,故D错误,选D.8.A分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A.9.B根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B连结AC,在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵AE⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF为等边三角形,∴S△AEF=√34×(2√3)2=3√3.故选B.11.B设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=10,故选B.12.D由题意,得xy=k,因为k是定值,所以当x1=-x2时,y1=-y2,故选D.13.A由题意得点C的坐标为(0,c),∵OA=OC,∴点A的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac2-bc+c=0,∵c≠0,∴ac-b+1=0,即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO =S矩形BONQ .同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.。

2015年武威市中考数学试卷

2015年武威市中考数学试卷

2015年武威市中考模拟数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个.是符合题意的.1.2的相反数是()A. 2 B.﹣2 C.﹣D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106 B 3×105 C.3×106 D.30×1043.据调查,2013年5月兰州市的房价均价为7600元/m2,2015年同期将达到8200元/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.8200%)1(76002=+x B.8200%)1(76002=-xC.8200)1(76002=+x D.8200)1(76002=-x4.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B .C .D.5. 如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是()A.56°B.48° C.46° D.40°6.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30° B.45°C.60°D.70°7.已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切8如图,由几个小正方体组成的立体图形的左视图是( )9.函数y1=x和y2=的图象如图所示,则y1>y2的x取值范围是()A.x<﹣1或x>1 B. x<﹣1或0<x<1 C.﹣1<x<0或x>1 D.﹣1<x<0或0<x<110.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为二、填空题(共8小题,每小题3分,共24分,请将答案填在答题卡上)11.分解因式:5x2-20=________12. 若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解______13. 分式方程021=-x的解是__________14.二次函数y=﹣2(x﹣5)2+3的顶点坐标是.15.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为_________ .(结果保留π)16.如图,点E、F分别是正方形纸片ABCD的边BC、CD上一点,将正方形纸片ABCD分别沿AE、AF折叠,使得点B、D恰好都落在点G处,且EG=2,FG=3,则正方形纸片ABCD的边长为.17.将半径为4cm的半圆围成一个圆锥,这个圆锥的高为 cm.18. 若实数x、y满足|4|0x-=,则以x、y的值为边长的等腰三角形的周长为。

2015年甘肃中考数学真题卷含答案解析

2015年甘肃中考数学真题卷含答案解析

2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。

2015年甘肃省武威四中中考一模数学试卷(解析版)

2015年甘肃省武威四中中考一模数学试卷(解析版)

2015年甘肃省武威四中中考数学一模试卷一、选择题:(每题3分,共36分)1.(3分)计算(﹣5a3)2的结果是()A.﹣10a5B.10a6C.﹣25a5D.25a62.(3分)下列计算正确的是()A.•=B.+=C.=3D.÷=2 3.(3分)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k =()A.3B.﹣1.5C.﹣3D.﹣64.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.2a﹣b=0D.当x>0时,y随x的增大而减小5.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:46.(3分)已知x=﹣1是方程x2+mx+1=0的一个实数根,则m的值是()A.0B.1C.2D.﹣27.(3分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.8.(3分)已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()A.10πB.12πC.15πD.20π9.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sin B的值是()A.B.C.D.10.(3分)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2B.1:3C.2:3D.11:20 11.(3分)如图所示是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.21612.(3分)近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A.(1+x)2=2000B.2000(1+x)2=3600C.(3600﹣2000)(1+x)=3600D.(3600﹣2000)(1+x)2=3600二、填空题:(每题3分,共24分)13.(3分)使在实数范围内有意义的x应满足的条件是.14.(3分)方程方程x2=x的解是;2﹣的倒数是;分解因式:x2﹣9=.15.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.17.(3分)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.19.(3分)如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.20.(3分)已知⊙O1和⊙O2的半径分别为3cm和5cm,两圆的圆心距d是方程x2﹣12x+36=0的根,则两圆的位置关系是.三、计算题:(20分)21.(10分)求下列各式的值:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°(2)﹣•+2sin45°.22.(10分)解下列方程:(1)x2+4x+1=0(2)=﹣1.四、解答题:(40分)23.(7分)某药品经过两次提价,每瓶零售价由100元提到144元.已知两次提价的百分率相同,求两次提价的百分率.24.(8分)如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)25.(8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.26.(8分)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.27.(9分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.2015年甘肃省武威四中中考数学一模试卷参考答案与试题解析一、选择题:(每题3分,共36分)1.(3分)计算(﹣5a3)2的结果是()A.﹣10a5B.10a6C.﹣25a5D.25a6【解答】解:(﹣5a3)2=25a6.故选:D.2.(3分)下列计算正确的是()A.•=B.+=C.=3D.÷=2【解答】解:A、•=,故选项正确;B、不是同类二次根式,不能合并,故选项错误;C、=2,故选项错误;D、÷≠2,应该等于,故选项错误.故选:A.3.(3分)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k =()A.3B.﹣1.5C.﹣3D.﹣6【解答】解:依题意,有|k|=3,∴k=±3,又∵图象位于第二象限,∴k<0,∴k=﹣3.故选:C.4.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.2a﹣b=0D.当x>0时,y随x的增大而减小【解答】解:A、∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故A错误;B、∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(﹣1,0),即方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故B正确;C、∵抛物线对称轴为x=﹣=1,∴b=﹣2a,∴2a+b=0,故C错误;D、∵抛物线对称轴为x=1,开口向下,∴当x>1时,y随x的增大而减小,故D错误.故选:B.5.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:4【解答】解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC :S△ABC=()2=.故选:D.6.(3分)已知x=﹣1是方程x2+mx+1=0的一个实数根,则m的值是()A.0B.1C.2D.﹣2【解答】解:把x=﹣1代入方程x2+mx+1=0得:1﹣m+1=0,解得:m=2,故选:C.7.(3分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【解答】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.8.(3分)已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()A.10πB.12πC.15πD.20π【解答】解:∵圆锥的底面半径为3,高为4,∴圆锥母线长度为:5,圆锥的底面周长是:2×3π=6π.∴圆锥的侧面面积=×6π×5=15π.故选:C.9.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sin B的值是()A.B.C.D.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sin B=sin D==.故选:A.10.(3分)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2B.1:3C.2:3D.11:20【解答】解:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴DO:BO=AD:BC=3:9,∴DO=BD,BO=BD,∵G是BD的中点,∴BG=GD=BD,∴GO=DG﹣OD=BD﹣BD=BD,∴GO:BG=1:2.故选:A.11.(3分)如图所示是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.216【解答】解:观察三视图知:该几何体为六棱柱,底面正六边形的变成为6,高为2,故其体积为:(6+12)×3×2=108,故选:C.12.(3分)近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A.(1+x)2=2000B.2000(1+x)2=3600C.(3600﹣2000)(1+x)=3600D.(3600﹣2000)(1+x)2=3600【解答】解:依题意得(3600﹣2000)(1+x)(1+x)=3600,即(3600﹣2000)(1+x)2=3600.故选:D.二、填空题:(每题3分,共24分)13.(3分)使在实数范围内有意义的x应满足的条件是x≥1.【解答】解:∵有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.14.(3分)方程方程x2=x的解是x1=0,x2=1;2﹣的倒数是2+;分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.2﹣的倒数是:==2+.x2﹣9=(x+3)(x﹣3).故答案为:x1=0,x2=1;2+;(x+3)(x﹣3).15.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.16.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是12cm.【解答】解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为:12.17.(3分)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.【解答】解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.19.(3分)如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.【解答】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴OA=2.20.(3分)已知⊙O1和⊙O2的半径分别为3cm和5cm,两圆的圆心距d是方程x2﹣12x+36=0的根,则两圆的位置关系是相交.【解答】解:∵x2﹣12x+36=0,∴(x﹣6)2=0,解得:x1=x2=6,∵两圆的圆心距d是方程x2﹣12x+36=0的根,∴两圆的圆心距d=6,∵⊙O1和⊙O2的半径分别为3cm和5cm,∴半径和为8cm,半径差为2cm,∴两圆的位置关系是相交.故答案为:相交.三、计算题:(20分)21.(10分)求下列各式的值:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°(2)﹣•+2sin45°.【解答】解:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°=2﹣+1+3+3×=2﹣+1+3+=6;(2)﹣•+2sin45°=2﹣3+2×=2﹣3+=0.22.(10分)解下列方程:(1)x2+4x+1=0(2)=﹣1.【解答】解:(1)x2+4x+4=3,(x+2)2=3,x=﹣2±,x1=﹣2+,x2=﹣2﹣;(2)方程两边同时乘(x﹣2)(x+3),6(x+3)=x(x﹣2)﹣(x﹣2)(x+3)x=﹣,当x=﹣时,(x﹣2)(x+3)≠0,∴原方程的解为:x=﹣.四、解答题:(40分)23.(7分)某药品经过两次提价,每瓶零售价由100元提到144元.已知两次提价的百分率相同,求两次提价的百分率.【解答】解:设该药品平均每次提价的百分率为x,根据题意得:100(1+x)2=144,解得:x1=0.2,x2=﹣2.2,经检验x2=﹣2.2不符合题意,∴x=0.2=20%,答:两次提价的百分率20%.24.(8分)如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)【解答】解:过点P作PC⊥AB,垂足为C.(1分)由题意,得∠P AB=30°,∠PBC=60°.∵∠PBC是△APB的一个外角,∴∠APB=∠PBC﹣∠P AB=30°.(3分)∴∠P AB=∠APB,(4分)故AB=PB=400.(6分)在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB•sin60°=400×=米.(10分)25.(8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.【解答】(1)证明:∵四边形ABCD是矩形∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE,(2)解:在Rt△DEF中,sin∠DFE==,∴设DE=a,EF=3a,DF==2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,又由(1)△ABF∽△DFE,∴===,∴tan∠EBF==,tan∠EBC=tan∠EBF=.26.(8分)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.【解答】证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.27.(9分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,=AC×BD=×8×3=12.∴△ABC的面积S△ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省武威市2015年中考数学试题及答案
武威市2015年初中毕业、高中招生考试
数学试题参考答案及评分标准
一、选择题:本大题共10小题,每小题3分,共30分.
二、填空题:本大题共8小题,每小题3分,共24分.
11.2(1)xy x - 12.x =2 13.x ≥-1且0x ≠ 14.x >-1 15.75° 16.k ≥6- 17.π 18.45,63 (第1空1分,第2空2分)
三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演
算步骤.
19.(4分) 解:原式=12133+--⨯ 3分
=231-=- 4分
20.(4分) 解:原式=2(1)13()(1)(1)11
x x x x x x -+-+-++÷ =2(1)1(1)(1)2
x x x x x -+⋅+-- 2分 =12x x -- 3分 当10,.2
x ==时原式 4分 21.(6分)
解:(1)如图所示,则⊙P 为所求作的圆.
(注:作图2分,答语1分) 3分
(2)∵ ∠B =60°,BP 平分∠ABC ,
∴ ∠ABP =30°, 4分
∵ tan ∠ABP =AP AB , ∴ AP =3, 5分 ∴ S ⊙P =3π. 6分
22.(6分)
解:(1)∵ ∠CGD =42°,∠C =90°,
∴ ∠CDG =90°- 42°=48°,
∵ DG ∥EF ,
∴ CEF CDG ∠=∠=48°; 3分 题号
1 2 3 4 5 6 7 8 9 10 答案 A B B C A D B D D C
A B A B (2)∵ 点H ,B 的读数分别为4,13.4,
∴ 13.449.4HB =-=, 4分 ∴ cos429.40.74 6.96(m)BC HB ︒=≈⨯≈ 5分
答:BC 的长为6.96m . 6分
23.(6分)
解:(1)画树状图:
列表: 第一次
第二次
x 2+1 - x 2-2 3 x 2+1
2221x x --+ 231x + - x 2-2
2212x x +-- 232x -- 3
213x + 223
x -- 4分
(2)代数式A B 所有可能的结果共有6种,其中代数式A B 是分式的有4种:2212
x x +--,2221
x x --+,231x +,232x --, 所以P ( 是分式) 4263==. 6分 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演
算步骤.(注:解法合理、答案正确均可得分)
24.(7分)
解:(1) 5 2分
(2)10%, 40 (每空1分) 4分
(3)设参加训练之前的人均进球数为x 个,
则x (1+25%)=5,解得 x =4, 6分 即参加训练之前的人均进球数是4个. 7分
25.(7分)
(1)证明:∵ 四边形ABCD 是平行四边形,
∴ CF ∥ED ,
∴ ∠FCG =∠EDG ,
∵ G 是CD 的中点,
∴ CG =DG ,
在△FCG 和△EDG 中, 开 始 2212x x +-- 213x + 2221x x --+ 223x -- 231x + 232x -- x 2+1 - x 2-2 3 - x 2-2 3 x 2+1 3 x 2+1 - x 2-2 第一次
第二次 A B
FCG EDG CG DG
CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴ △FCG ≌△EDG (ASA ) 2分 ∴ FG =EG ,
∵ CG =DG ,
∴ 四边形CEDF 是平行四边形; 3分
(2)① 解:当AE =3.5cm 时,四边形CEDF 是矩形. 5分 ② 当AE =2cm 时,四边形CEDF 是菱形. 7分
26.(8分)
解:(1)过点D 作x 轴的垂线,垂足为F ,
∵ 点D 的坐标为(4,3), ∴ OF =4,DF =3,
∴ OD =5, ∴ AD =5, 2分 ∴ 点A 坐标为(4,8), 3分 ∴ k =xy =4×8=32,
∴ k =32; 4分
(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x
=
(x >0)的图象D '点处,过点D '做x 轴的垂线,垂足为F '.
∵ DF =3, ∴ 3,D F ''=
∴ 点D '的纵坐标为3, 5分 ∵ 点D '在32y x
=
的图象上 ∴ 3 =32x ,解得x =323
, 6分 即323220,4,333
F OF F '=∴'=-= ∴ 菱形ABCD 平移的距离为203. 8分 27.(8分)
解:(1)∠BAE =90° 2分 ∠CAE =∠B 4分
(2)EF 是⊙O 的切线. 5分 证明:作直径AM ,连接CM ,
则 ∠ACM =90°,∠M =∠B , 6分
∴ ∠M +∠CAM =∠B +∠CAM =90°, ∵ ∠CAE =∠B ,
∴ ∠CAM +∠CAE =90°, 7分 ∴ AE ⊥AM ,
∵ AM 为直径,
∴ EF 是⊙O 的切线. 8分
28.(10分)
解:(1)根据已知条件可设抛物线的解析式为(1)(5)y a x x =--, E C A F O M B
把点A (0,4)代入上式,解得 45
a =
, 1分 ∴ 224424416(1)(5)4(3)55555y x x x x x =--=-+=-- 2分 ∴ 抛物线的对称轴是 3x =; 3分
(2)存在;P 点坐标为(3,85
). 如图,连接AC 交对称轴于点P ,连接BP,AB ,
∵ 点B 与点C 关于对称轴对称,∴PB =PC ,
∴ AB +AP +PB =AB +AP +PC =AB +AC ,
∴ 此时△PAB 的周长最小. 5分
设直线AC 的解析式为 y kx b =+,
把A (0,4),C (5,0)代入y kx b =+,
得 450b k b =⎧⎨+=⎩, 解得 454
k b ⎧=-⎪⎨⎪=⎩,
∴ 445
y x =-+, ∵ 点P 的横坐标为3, ∴ 483455y =-
⨯+=, ∴ P (3,85
). 6分 (3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.
如图,设N 点的横坐标为t ,
此时点N (2424455
t t t -+,)(0<t <5), 7分 过点N 作y 轴的平行线,分别交x 轴、AC 于点
F 、
G ,过点A 作 AD ⊥NG ,垂足为D ,
由(2)可知直线AC 的解析式为 445
y x =-+, 把x t =代入445y x =-+得 445
y t =-+, 则G (t ,445
t -+), 此时,NG =22442444(4)45555
t t t t t -+--+=-+ 8分 ∵ AD +CF =OC =5,
∴ S △NAC =S △ANG +S △CGN =12NG ﹒AD +12NG ﹒CF =12
NG ﹒OC =22214525(4)52102()2522
t t t t t ⨯-+⨯=-+=--+ ∴ 当52
t =时,△NAC 面积的最大值为252, 9分

5
2
t=,得2
424
43
55
y t t
=-+=-,
∴N(5
2
,3
-) 10分。

相关文档
最新文档