鲁棒化理论线损计算技术研究与系统构建_英文_李文博
控制系统中的鲁棒控制算法研究

控制系统中的鲁棒控制算法研究鲁棒控制是控制系统中一种重要的控制算法,旨在使系统对外界扰动和参数变化具有一定的抵抗能力,从而保持系统的稳定性和性能指标。
鲁棒控制算法研究的主要目标是设计出能够使控制系统具备鲁棒性的控制器,在各种不确定因素影响下依然可以实现良好的控制效果。
鲁棒控制算法的研究诞生于上世纪80年代,是为了解决传统控制算法在面对不确定性时性能下降的问题。
传统的控制算法往往基于系统的精确模型,但现实中往往存在模型不准确、参数变化等问题,从而导致传统控制算法在实际应用中表现不佳。
鲁棒控制算法的出现填补了这一空白,使控制系统具备更好的适应性和鲁棒性。
在鲁棒控制算法的研究中,最具代表性的算法是H∞控制和μ合成控制。
H∞控制是一种基于最优控制理论的鲁棒控制方法,其主要思想是将系统的控制误差和鲁棒性约束综合考虑,通过最小化系统的最坏情况下的性能损失来设计控制器。
H∞控制在控制系统中广泛应用,尤其在航空航天、汽车等工程领域中具有重要意义。
与H∞控制不同,μ合成控制是一种基于频域方法的鲁棒控制算法。
μ合成控制的核心是利用鲁棒稳定性理论和鲁棒性约束函数来构造控制器,通过定义合适的性能指标来优化系统的鲁棒性。
μ合成控制适用于各种不确定性和复杂动态特性的控制系统,可以在设计阶段充分考虑系统的鲁棒性。
除了H∞控制和μ合成控制,还有其他一些鲁棒控制算法如小波分析控制、自适应控制等。
这些算法通过不同的方式实现系统的鲁棒控制,并在不同的应用场景中发挥作用。
例如,小波分析控制基于小波变换理论,将小波分析与控制策略相结合,可以对非线性和时变系统进行鲁棒控制;自适应控制则是利用系统的在线辨识能力,通过不断调整控制器参数来适应系统的变化情况。
在控制系统中,鲁棒控制算法的研究和应用不仅可以提高系统的稳定性和鲁棒性,还可以提高系统的性能和适应性。
鲁棒控制算法已经在许多领域得到应用,如机械控制、电力系统、化工过程控制等。
通过鲁棒控制算法的研究和应用,可以提高控制系统的抗干扰能力、适应性能力和稳定性,从而更好地满足实际工程应用的需求。
不确定条件下应急资源布局的鲁棒双层优化模型

不确定条件下应急资源布局的鲁棒双层优化模型刘波;李波;李砚【摘要】针对非常规突发事件中应急资源布局问题,在受灾点需求不确定和应急救援过程分为多个阶段的情景下,建立了省市两级应急储备仓库定位和物资配置的鲁棒双层规划模型。
运用相对鲁棒优化方法,将上述具有不确定性系数的双层规划模型转化为从者无关联的确定性线性双层规划,提出了一种混合遗传算法进行求解,实现了省市两级应急资源布局的协同优化。
通过实例验证了模型及算法的可行性和有效性。
%In this paper, a robust bilevel programming model is established to determine the two-grade resource location and allocation of the province and cities under the demand uncertainty and multistage rescue process for the unusual emergencies. Based on the relative robust optimization, the original problem is converted to the deterministic linear bilevel programming with no shared variables among followers, and then the hybrid genetic algorithm is proposed to obtain the robust solution. Accordingly, the collaborative optimization of the two-grade resource location and allocation is realized for the province and cities. A case studyis shown to demonstrate the feasibility and effectiveness of the proposed model and its algorithm.【期刊名称】《计算机工程与应用》【年(卷),期】2013(000)016【总页数】5页(P13-17)【关键词】应急资源布局;鲁棒双层规划;混合遗传算法【作者】刘波;李波;李砚【作者单位】天津大学管理与经济学部,天津 300072; 石河子大学信息科学与技术学院,新疆石河子 832000;天津大学管理与经济学部,天津 300072;天津大学管理与经济学部,天津 300072【正文语种】中文【中图分类】TP182近年来,各类非常规突发事件频发,造成大量的人员伤亡和巨额的经济损失,如何对应急管理中的若干问题进行有效的研究成为热点。
主动控制系统的鲁棒性分析与控制算法研究

主动控制系统的鲁棒性分析与控制算法研究摘要:主动控制系统的鲁棒性是指系统对扰动、参数不确定性和外部干扰的抵抗能力。
在现实世界中,许多主动控制系统往往存在各种不确定性,这些不确定性可能来自于外界环境的变化、传感器系统的失效、组件和子系统的非线性等。
因此,在主动控制系统的设计和实施过程中,鲁棒性分析和控制算法的研究变得非常重要。
本文将介绍鲁棒性分析的基本概念、研究方法以及常用的鲁棒性控制算法。
1. 引言主动控制系统在工业、交通、航空航天等领域中具有广泛的应用。
然而,实际应用中,由于外界环境的变化、传感器系统的失效以及组件和子系统的非线性等原因,主动控制系统面临着各种不确定性。
为了提高系统的稳定性和控制性能,鲁棒性分析和控制算法成为了关键的研究方向。
2. 鲁棒性分析方法2.1 线性鲁棒性分析线性鲁棒性分析是通过线性化主动控制系统,利用线性系统理论研究系统的稳定性和鲁棒性。
其中,基于频域方法的鲁棒性分析是较为常见的方法,通过频域描述系统的增益和相位特性,进而设计控制器的鲁棒性指标。
2.2 非线性鲁棒性分析非线性鲁棒性分析是对主动控制系统进行非线性建模和分析。
常用的方法包括差分不等式方法、小增益定理等。
此外,也可以利用李雅普诺夫方法研究系统的稳定性和鲁棒性。
3. 鲁棒性控制算法3.1 H-infinity控制算法H-infinity控制是一种基于鲁棒性的线性控制方法,通过优化性能权重矩阵以及鲁棒性指标,设计稳定的控制器,能够抵抗来自外部环境的干扰和参数不确定性。
3.2 μ-synthesis控制算法μ-synthesis控制算法是一种基于频域方法的鲁棒性控制方法,通过最小化具有鲁棒性指标的复合奇异值函数,设计满足鲁棒性要求的控制器。
3.3 非线性鲁棒控制算法非线性鲁棒控制算法包括基于滑模控制、基于模糊控制和基于自适应控制等方法。
这些算法通过引入非线性补偿器和鲁棒控制方法,提高系统的稳定性和鲁棒性。
4. 实例研究本文以一架飞机的主动控制系统为例,对鲁棒性分析和控制算法进行研究。
现代控制理论鲁棒控制资料课件

鲁棒优化算法的应用
01
02
03
鲁棒优化算法是一种在不确定环 境下优化系统性能的方法。
鲁棒优化算法的主要思想是在不 确定环境下寻找最优解,使得系 统的性能达到最优,同时保证系 统在不确定因素影响下仍能保持 稳定。
鲁棒优化算法的主要应用领域包 括航空航天、机器人、能源系统 、化工过程等。
05
现代控制理论鲁棒控制实 验及案例分析
现代控制理论鲁棒控制的成就与不足
• 广泛应用在工业、航空航天、医疗等领域
现代控制理论鲁棒控制的成就与不足
01
02
不足
控制系统的复杂度较高,难以设 计和优化
对某些不确定性和干扰的鲁棒性 仍需改进
03
实际应用中可能存在实现难度和 成本问题
04
未来研究方向与挑战
研究方向
深化理论研究,提高鲁棒控制器 的设计和优化能力
线性鲁棒控制实验
线性鲁棒控制的基本原理
01
介绍线性鲁棒控制的概念、模型和控制问题。
线性鲁棒控制实验设计
02 说明如何设计线性鲁棒控制实验,包括系统模型的建
立、鲁棒控制器的设计和实验步骤。
线性鲁棒控制实验结果分析
03
对实验结果进行分析,包括稳定性、性能和鲁棒性能
等。
非线性鲁棒控制实验
非线性鲁棒控制的基本原理
03
线性系统的分析与设计:极点配置、最优控制和最优
估计等。
非线性控制系统
1
非线性系统的基本性质:非线性、不稳定性和复 杂性。
2
非线性系统的状态空间表示:非线性状态方程和 输出方程。
3
非线性系统的分析与设计:反馈线性化、滑模控 制和自适应控制等。
离散控制系统
生了现代鲁棒控制。鲁棒控制理论发...

Classified Index: TP273U.D.C: 681.513.3Thesis for the Master Degree in EngineeringRESEARCHES ON ROBUST CONTROL AND APPLICATION OF NON-MINIMUM PHASESYSTEMSWenjun Candidate: Fan Supervisor: Associate Prof. Ma JieAcademic Degree Applied for: Master of EngineeringSpeciality: Control Science and Engineering Affiliation: Control and Simulation CenterDate of Defence: June, 2009Degree Conferring Institution: Harbin Institute of Technology摘 要本文以磁悬浮球和一级倒立摆两个典型的非最小相位系统为研究对象,对只有一个不稳定极点的非最小相位系统采用混合灵敏度设计,对同时具有不稳定零、极点的非最小相位系统采用复合控制,并分别在磁悬浮球系统和一级倒立摆系统中实现。
首先,分别建立磁悬浮球系统和一级倒立摆系统的数学模型,并将非线性模型线性化,分别分析系统的能控性以及系统中包含的不确定性因素。
其次,研究了灵敏度设计中的鲁棒性、加权函数选择原则、优化指标等问题,针对只有不稳定极点的磁悬浮球系统,先运用PV控制将其稳定,测试系统对象特性,得到名义对象和不确定性界后再运用混合灵敏度设计,通过转化成H∞标准问题求解控制器。
然后,针对同时具有不稳定零、极点的非最小相位系统,研究输出反馈鲁棒性设计的极限,并采用复合控制方案,以倒立摆系统为例,先用经典控制稳定摆角回路,再对位置回路进行H∞输出反馈控制设计。
控制系统中的鲁棒性分析与控制策略设计研究

控制系统中的鲁棒性分析与控制策略设计研究控制系统,是指对一个系统的输出或状态进行调节,以实现预期输入值或状态的一种技术手段。
在该技术中,鲁棒性(Robustness)是一个十分重要的概念。
其指的是在各种干扰和不确定性因素的影响下,系统应当保持良好的性能表现。
因此,控制系统中鲁棒性分析与控制策略设计的研究就成为了十分热门的领域之一。
一、控制系统的鲁棒性分析1. 鲁棒性分析的概念在控制系统中,鲁棒性是系统在不确定性的干扰下,维持优良性能的能力。
它用来描述任何控制系统都需具有的普遍属性,如抗扰性和确定性。
在控制系统中,鲁棒性分析是指寻找并描述系统在各种不确定性信息下的反应和表现。
2. 鲁棒性分析的方法控制系统的鲁棒性分析方法包括:稳定性分析、性能分析和设计分析。
稳定性分析通过将控制器的采样间隔和控制系统的模型一起考虑,给出控制器选择的要求。
通过分析控制器的输入-输出关系,稳定性分析能够求得系统的稳定性界。
性能分析是一种基于功率或能源函数的分析方法,包括各种性能指标,如能耗和调节时间等。
通过考虑系统在带有各种干扰的情况下的表现,性能分析还可以提供对系统鲁棒性的关键特性刻画。
设计分析方法是鲁棒性分析中应用得最广泛的方法。
可以从控制器的设计策略以及控制系统的性质之间建立联系,以研究控制器设计对控制系统稳定性、性能和鲁棒性的影响。
二、控制策略设计在控制系统中,控制策略设计是实现优化系统性能的重要工具。
最近的研究表明,对于复杂系统,鲁棒性控制策略的使用相对于传统控制策略而言能够有效提高系统的鲁棒性能,从而实现较高的系统性能。
1. 鲁棒性反馈控制鲁棒性反馈控制指控制器将干扰输入作为重要设计参数,通过相应地调整控制器的输出,以优化系统的性能。
2. 鲁棒性前馈控制鲁棒性前馈控制器是一种可以补偿系统动态误差的控制器,它通过将干扰输入作为重要的控制参量,以补偿系统的动态误差,从而提高控制系统的鲁棒性能。
3. 综合鲁棒控制综合鲁棒控制是控制系统中最复杂的一种控制策略。
动力系统中的鲁棒性控制算法研究

动力系统中的鲁棒性控制算法研究一、引言动力系统是现代工程中的重要组成部分,如控制系统、机械系统、电力系统等。
在实际应用中,由于环境变化、模型不准确和不确定性等因素的存在,动力系统常常面临着鲁棒性控制的挑战。
本文将重点研究动力系统中的鲁棒性控制算法,以提高系统的性能和稳定性。
二、鲁棒性控制的概念与意义鲁棒性控制是指在系统不确定性存在的情况下,能够保持系统性能和稳定性的一种控制方法。
在动力系统中,不确定性包括模型参数的不准确性、外界环境的变化以及系统自身的非线性等因素。
鲁棒性控制旨在解决这些不确定性对系统性能造成的影响,以提高系统的可靠性和稳定性。
三、鲁棒性控制算法研究1. 鲁棒PID控制算法PID控制是一种常见且广泛应用的控制方法。
在鲁棒PID控制算法中,通过引入鲁棒增益调节器和鲁棒积分控制算法,以增强系统的鲁棒性能。
通过合理选择鲁棒增益和积分时间常数,可以提高系统灵敏度和动态性能。
2. 模糊控制算法模糊控制算法是一种基于经验模型和人工智能的控制方法。
在动力系统中,通过模糊规则的设计和模糊推理的过程,实现对系统不确定性的补偿,从而提高系统的鲁棒性能。
3. 自适应控制算法自适应控制算法是一种能够根据系统的变化和不确定性进行调整的控制方法。
在动力系统中,自适应控制算法通过监测系统的状态和性能指标,在实时中改变控制参数和结构,以保持系统的稳定性和性能。
4. 鲁棒控制算法鲁棒控制算法是一种能够抵抗模型不确定性和环境变化的控制方法。
在动力系统中,通过引入鲁棒性函数和鲁棒补偿器,可以对系统的不确定性进行补偿,从而提高系统的稳定性和性能。
五、鲁棒性控制算法的应用实例1. 机械系统中的鲁棒性控制机械系统是动力系统的一种重要应用,如机器人和自动化生产线。
在机械系统中,不确定性常常由摩擦、负载变化和传感器误差等因素引起。
通过应用鲁棒性控制算法,可以提高机械系统的稳定性和精确性。
2. 电力系统中的鲁棒性控制电力系统是动力系统中非常复杂和关键的一部分。
复杂网络鲁棒性的分析、进化优化与应用

鲁棒性是复杂网络的重要属 性
鲁棒性是指网络在面对节点或边的故障、攻击等扰 动时,仍能保持其功能和结构稳定的能力。
研究复杂网络鲁棒性的意 义
通过研究复杂网络的鲁棒性,可以更好地理 解和预测网络的行为,为实际应用提供理论 支持和技术指导。
复杂网络鲁棒性研究现状
鲁棒性分析方法
鲁棒性应用场景
目前常用的鲁棒性分析方法包括结构 鲁棒性分析、功能鲁棒性分析和复合 鲁棒性分析等。
01
02
03
防御策略设计
通过分析网络鲁棒性,可 以设计更为有效的防御策 略,以抵御网络攻击。
攻击路径识别
利用鲁棒性分析,可以识 别出网络攻击的路径,从 而有针对性地进行防御。
网络安全评估
通过对网络进行鲁棒性评 估,可以了解网络的安全 状况,为后续的改进提供 依据。
交通网络中的鲁棒性分析
01
交通拥堵预测
复杂网络鲁棒性的分析、进 化优化与应用
汇报人: 2023-12-13
目录
• 引言 • 复杂网络鲁棒性分析 • 进化优化算法在复杂网络中的
应用 • 复杂网络鲁棒性在现实问题中
的应用 • 结论与展望
01
引言
背景与意义
复杂网络在现实世界中广 泛存在
复杂网络是描述现实世界中各种复杂系统结 构与功能的重要工具,如社交网络、交通网 络、生物网络等。
02
进化优化算法
设计并实现了一系列高效的进化优化 算法,用于解决复杂网络鲁棒性优化 问题,包括基于遗传算法、粒子群算 法和蚁群算法的进化优化算法等。
03
实际应用案例
将所提出的复杂网络鲁棒性分析和进 化优化算法应用于实际网络系统,如 电力网络、交通网络和社交网络等, 取得了显著的效果和效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·专题论述·ResearchonRobustComputingTechniqueandSystemConstructionforTheoreticalLineLossAnalysisLI Wenbo,MA Changhui(State Grid Shandong Electric Power Research Institute,Jinan250002,China)Abstract:The theoretical line loss calculation is related to a huge amount of data for power grid.In traditional line loss analysis system data manipulation and power flow adjustment are mainly depended on human experiences,by which the correctness of data maintenance and the reasonableness of the power flow statement cannot be guaranteed.The problem will be more serious when the power flow cannot converge during the line loss calculation for the huge transmission network,which wastes lots of energy and time of analyst.In allusion to the problems mentioned above,a robust computing system for the theoretical line losses calculation is established based on the computation experience of line losses and the theories of power flow and optimal power flow,which is made up of data preprocessing,localization of the suspicious data,identification of the bad data,zeroing boundary mismatch.The robust system proposed can run through all the computation process and gives the efficiency and reasonable of the line losses analysis a powerful guarantee.Finally examples illustrate the effectiveness of the method for bad redundant data eliminating and suspect data identification when power flow cannot converge.Key words:theoretical line loss;robust computing system;power flow;data justification;data adjustment鲁棒化理论线损计算技术研究与系统构建李文博,麻常辉(国网山东省电力公司电力科学研究院,济南250002)摘要:理论线损计算中涉及电网数据量庞大,传统方法完全依赖人工经验进行数据操作和潮流调整,数据正确性和潮流断面合理性难以保证,尤其在大型输电网理论线损计算中经常遇到的潮流不收敛问题,给线损计算带来极大困难。
针对线损理论计算中出现的上述问题,总结理论线损计算经验,借助潮流理论和优化潮流理论,通过数据预处理、可疑数据分区定位、错误数据辨识及边界失配量归零模块,构建了鲁棒化理论线损计算系统,该系统贯穿理论线损计算全过程,能有力保障理论线损计算的高效性和合理性。
最后,通过算例阐述冗余数据筛选方法以及潮流不收敛情况下可疑数据定位方法的原理并验证其有效性。
关键词:理论线损;鲁棒计算系统;潮流计算;数据辨识;数据调整中图分类号:TM744文献标志码:A文章编号:1007-9904(2015)04-0026-070IntroductionAs an important tool to improve management of line loss,theoretical computation of line losses can authen-ticate the economy of the structure and the operation of the power grid.It also can provide scientific founda-tions for the development and plan of power grid by revealing the reason of high losses and determining ef-fective measures to decrease the losses.So the research of theoretical computation of line losses is always paid close attention to worldwide.Since the30′in the last century,the foreign re-searchers have studied the power loss in transmission process in distribution network by theoretical compu-tation of line loss.After the fast development of com-puter technology,various theoretical line losses calcu-lation method utilizing the computer as accessibility tools are proposed and are increasingly applied to practice projects.Until late20th century,methods of energy losses calculation have become very mature[1-4]and are widely used in field application.In addition,measures to reduce line losses is another research em-26phasis,such as network reconfiguration,reactive power optimization,location of reactive compensation equip-ment[5-7].In our country,number of experts and scholars have applied themselves to investigating the suitable method to analysis line loss for Chinese patients[8-11].For in-stance,several methods were proposed in reference [12]to improve the precision of the result of the transmission network loss.Reference[13]proposed a method for calculating the line losses utilizing the data of state estimation to decrease the artificial errors and improve calculation efficiency.In reference[14-15],a loss calculation method for distribution network based on the information from field terminal units is pro-posed.While,the automation equipment could not ful-fill the requirement of the method in many real cases,so reference[16]proposed a method based on the quasi real-time data to calculate the line loss,which could get more precise result with fewer measurements.In reference[17],state estimation is adopted to find the doubtable data and obtain the missing data for net loss calculation.Reference[18]presents a new data pro cessing method,which can use more accurate data achieved to obtain more accurate and convincing re-sult.In the1990s,the appearance of a variety of ana-lytic systems for theoretical line losses marks the ma-turity of computing technology of theoretical line losses in our country.After years of consistent improvement,a mature analysis system has been formed for theoretical line losses in Shandong province.Not only the tools for computation and analyze but also the analysts have very high standing,which provided a strong technical support to the line-loss management and the develop-ment of power grid.However,basic data with high quality is the precondition of the development of the work mentioned above.With the rapid development of power grid and network interconnection,the precondi-tion has become too tough for analyst,especially dur-ing the line loss analysis of the large-scale transmis-sion network.Firstly,the uncertainty of the measured data,such as the errors of measuring instruments,transmission errors,deficiency of the measuring data,can directly influence the quality of the basic data. Secondly,the basic data include the changes of power network structure and power injection on every node,which is too much for human to handle,so that mistakes will be inevitable.It is very difficult for analysts to find these mistakes out again,especially for the situation that the power flow cannot converge because of them. The analysts have to carry out a carpet-style investi-gation depended on the artificial experience,which is a very aimless and inefficient way.At last,even the pow-er flow converge after modifications,the statement of power flow may not be consistent with the actual situ-ation because of the errors still exist,which also re-duce the significance of the theoretic calculation.In allusion to the problems mentioned above and on the basis of the existing methods for theoretic line lose calculation,we summary the working experience in line loss analysis and proposed a robust computing system for the theoretical line losses calculation,which can assist analyst in modifying bad basic data and ad-justing power flow.With the aid of this system,the an-alyst can accomplish the job with high efficiency and quality.At last,two simple examples are adopted to ex-pound the principle of bad data localization and adjust ment.1Structure of Robust Computing System for Theoretical Line Loss CalculationStructure of robust computing system proposed is shown in Figure 1.The system is constituted of two parts:traditional power flow module and assisted module for robust computation.The former is generally applied in many network loss analysis systems.It can operation well only when the quality of basic data is good enough.The latter can help user to check data,adjust power flow and improve accuracy of the results. That is why the system is called robust.At the beginning,the basic data must be put into the system.The term“basic data”here means the data27needed to execute power flow ,which include the pa -rameters of the electrical network structure and power injection on each node.Then a topology analysis is im plemented to form the network structure.During the pro -cess above ,some data detection programs are carried out at the same time to realize initial processing of the raw data.The term “redundant data ”represents the ac -tual measured data which is not must needed for the power flow program but very helpful for correction of bad basic data and adjustment of power flow ,such as power though lines and the amplitude of bus nodevoltage.Traditional power Assisted module for flow modulerobust computationFig.1Structure of robust computing systemIn general ,the power flow for the whole network cannot converge at first because of bad basic data.Then the “Location of Abnormal Data ”is used to find the restricted space the bad data most lies in and the“Accurate Identification of bad data ”will suggest theuser to modify the data which is most likely to be wrong.After all data is amended and all power flow for each region is correct ,the data in each region will be spliced together again to form the data of the whole network.At last ,to improve the accuracy and the truth of the result ,the “zeroing boundary mismatch ”is implemented to make the boundary parameters equal ,which lie in different computational area.2Function and Principle of Auxiliary Modules2.1Rationality checking of the parameters In this module ,the criterions based on common sense are adopted to check the data which is obvious wrong and is disadvantageous to the converge of the power flow :A min ≤A ≤A max(1)where A is each input parameter ;A min and A max are theparameter ’s up and down limit respectively.Criterion (1)could be established for each input parameter based on the actual situation and the computational requirements.For example ,the per unit value of the generator terminal voltage must between 0.95to 1.15;transmission lines in various voltage classes have different length scales ;power injections on each node are also have a reasonable range.It is also important to note that the length of the transmission line must not be too small ,because it will seriously influence the numerical stability of the power flow.With the criterions ,the correctness of the parameters which is put into the system through artificial waycould be improved effectively.2.2Rationality checking of the topologyThere too many buses and branches in transmission network and the connecting relationship of them are complicated.To avoid obvious mistakes ,criterions such as follows will be checked :For transmission network loss calculation ,there are usually only one standalone network.So if more than one isolated network exists in the computational system ,28the user will be prompted to review the related basic data.Check whether the voltage class of the component connected to each other is the same.If not,an error message will be presented.Check whether the connecting points of the component are all connected to the proper position.If not,an error message will be presented.For high voltage side of the220kV substation,if there is only one line connected,review of related basic data is recommended.For low voltage side of the500kV substation,if there are only a few lines connected,review of related basic data is recommended.2.3Eliminating bad redundant dataOnly good redundant data could be used as the reference to correct bad basic data,while bad measured data always appear because of measurement and transmission errors.Kirchhoff’s first law is applied to check for correctness of the redundant data.Neglecting the transmission loss and measurement errors,the sum of the power flow thought the branches belonging to a cut sets is definitely zero.So if there are no bad redundant data,the follow inequality will holds:G·Z′≤C(2)where G is the cut sets in which the sum of the branch power will be checked;Z′is the measured data of the branch power;C is a threshold value which could distinguish whether there are bad data or not. Specific steps are as follows:1)Initializing minimal cut sets.If two measurements on both end of the line l are available,the line l between points of measurement will be regarded as a node and the two measurements will form a cut sets.If no measurement along the line l is available,l will be shorten out and all measurements along the lines connected to l will form a cut sets.2)A measurement can be considered reliable if two cut sets related to it both fulfill inequality(2).While,it will be called suspect if both of related cut sets cannot fulfill inequality(2)and undetermined if only one cut sets can fulfill inequality(2).3)Two cut sets related to a suspect measurement m ij are merged into a new big cut sets G ij.If G ij fullfills inequality(2),all undetermined measurements related G new will be recognized as available and m ij is an abnormal data which needs to be eliminated.4)For the cut sets related to the rest undetermined and suspect data,shorten out all the lines connect to the cut sets to form new extension cut sets G new respectively.If G new fullfills inequality(2),the data in the original cut sets is bad data and need to be eliminated.3L ocation and Identification of Abnormal Basic DataThe most troublesome problem in line loss calculation is that the power flow cannot converge.In the theory,it mainly resulted from two reasons:1)the boundary condition is unreasonable and the actual power system cannot operate under such conditions. 2)bad numerical stability affects the convergence property.Considering that bad numerical stability could be avoid because small branch cannot be put into the system,and the actual power system indeed have operated in the past,so the problem is mainly caused by bad input basic data undiscovered.In traditional calculation system,no available information is offered if the power flow cannot converge and the analyst have to check the bad data out carrying out a carpet-style investigation which is very aimless and inefficiency.In our robust system,we subdivided the whole power network into many mutually independent sub-network by using the measurements of the tie lines between them.Any sub-network,of which power flow cannot converge or the statement is not reasonable,will be applied a optimal power flow to identify the bad data. Specific steps for location function are as follows:1)Using clustering algorithm and measurements,the whole network is divided into many sub-networks.2)Equivalent models are added to the sub-networks29to simulate the act of the rest network utilizing the measurements along the tie lines.For example,if there are power flow into the sub-network though the cut-ting-off tie line,an PQ generation is added to the re-sponsive node,and if power flows out though the cut-ting-off tie line,a load will be added.3)The biggest active power resource is selected as the slack bus and the magnitude of the voltage also comes from the corresponding measurement.This node maybe a real generation or an equivalent generation.4)Power flow calculation is executed in each sub-network separately.A optimal power flow will be ap-plied to any sub-network to identify the reasons if the power flow cannot converge or the statement is unrea-sonable.The OPF model can be represented abstractly as follows:minΣ(Z cal(x+Δx)-Z′)2+‖Δx‖(3)s.t.f(x+Δx)=0(4)where x are basic data needed to calculate theoretical line loss;Δx are corrections of x,and they are the de-cision variables in this optimal model;Z′is redundant data such as measurements of power flow though lines and the amplitude of voltage;Z cal(x+Δx)is calculated by the new statement of power flow obtained from the corrected basic data.The objective function of the model is that the statement of power flow obtained from the corrected basic data must almost the same as that is presented by the actual measured data with the smallest adjust-mentΔx.The restriction conditions,as shown in equa-tion(4),are the power flow equations with the correct-ed basic data.In practical applications,Δx can be ob-tained respectively.For example,only the corrections of power injected into the nodes are studied to see if it is enough to obtain the reasonable result,if not,then the corrections of branches will be checked again.Due to the number of bad basic data is definite very small in sub-network,most of elements inΔx is very small.Few elements with large value inΔx corresponding to the suspect basic data need to be checked by analyst.That is how the bad basic data to be identified.It’s worth noting that the objection function wound not get to zero because of the errors of the measure-ment.There is also no need to modify all the x accord-ing toΔx,because it will make the theoretical line loss calculation meaningless.4Zeroing Boundary MismatchIn traditional power system,there are so many large centralized power plants accessing to the transmission grid that the transmission grid could act as a strong power source.At the same time,there are almost only loads in distribution network,so,the distribution net-work looks like a pure load.Under this kind of situa-tion,power flow of transmission grid and distribution are calculated respectively.It can fulfill the require-ment of line loss analysis because the mismatch on boundary of the two classes of network is small enough to be neglected.In recent years,with the rapid development of dis-tributed generators,there is an increasing regulation a-bility in distributed network,especially in the respect of the reactive power and voltage.Under such in-stances,the results of the separating calculation will not satisfactory because the boundary mismatch of the reactive power will be too large and it will affects the line loss analysis seriously.So the boundary mismatch must be eliminated to realize the seamless mosaic be-tween the transmission grid and the distribution net-works.The iteration method proposed in reference[19]is adopted to eliminate this boundary mismatch.Itera-tion steps are briefly introduced as follows:1)Each power network adjusts its own power flow properly.2)Given the voltage amplitude of the boundary node,each distribution network builds a linear equiva-lent model by itself and sends it to the transmission network.3)Transmission network executes a power flow pro-gram taking the linear equivalent model of the distri-30bution network into consideration ,and send the voltage amplitude of the boundary node to each related distri -bution network.4)The iterative process will go on until the bound -ary mismatches are eliminated.5Numerical Examples5.1Example of eliminating bad redundant data A simple example is analyzed in this section to illus -trate how to eliminate bad redundant data by Kirch -hoff's first low.The topological structure and the sever -al measurement points are shown in Figure 2.The measured values are displayed in Table 1.The thresh -old valve C in inequality (2)is set to be15.Fig.2The topological structure and measurement points.TABLE 1The measured values of the plow flowReactive power /Mvar MeasurementpointM3e20Active power /MW 98M1s 6032M1e -62-40Active power /MW -60134-132Reactive power /Mvar 37-37-37MeasurementpointM3s M4e Mt2M2s 624360-31M4s M2e 9438Mt19731The initialized minimal cut sets are as follows :L1={M1s ,M1e },L2={M2s ,M2e },S ={M1e ,M2e ,M3e ,M4e ,Mt1,Mt2},L3={M3e ,M3s },L4={M4s ,M4e }.Then calculate the sum of the measurement value for each set.As a result ,all the cut sets fulfill the in -equality (2)except L2and S when the sum of the ac -tive power is calculated.The sum of active power mea -surement in L2is 34and that in S is-35.When L2and S are merged into a new big cut sets LS ,the sum will be -1for LS .So the measurement M2e is identified to be a bad measurement.5.2Identification of abnormal basic data The IEEE39node system is used to test the effect of bad data location and identification of the robust computing system.The structure of the system is shown in Figure 3.The network partition parameters and the nodal injection power (including load and generation power )are all known and 80%of the branch power measurement data are reliable redundant data.The measurement value equals the sum of accurate branch power and a random quantity of 1%in order to simu -late the difference between the measurement value and the true data.Assume that the reactive power of node 8is 10times of its true value and the branch 28-29is missing because of the operational mistake which re -sults in the non-convergence of the power flow.In that case ,we must check the measurementdata.Fig.3The partition result of IEEE 39bus systemsFirst of all ,according to the reliable redundant data and the network partition method ,divide the power system into 4sub-systems as shown in Figure 3.After the equivalence in each sub-system based on the tie-31line power,calculate the power flow of the four sub-systems independently.It is shown that there is a greater difference between the calculation result and the measurement in sub-system I and the power flow can not converge in sub-system IV.Therefore,the bad data can be located in sub-system I and IV.Based on the model described in section3.3and the redundant data known,build and calculate the optimal power flow model of sub-system I and IV.In the calcula-tion of sub-system I,if we use the nodal injection power as the adjustable variables,there will be big adjustments of all the4nodes which indicate some other problems in this region.If we use the structure of the system as the adjustable variables,there will be a big adjustment (0.0139)in the reactance value of branch28-29which indicates that the branch parameters of28-29need to be checked.In the calculation of sub-system IV,if we use the nodal injection power as the adjustable variables,there will be a big adjustment(15.63)of the reactive power in node4which indicates that the reactive pow-er in node4needs to be checked.From the analysis above,we can see that the method proposed in this paper can provide reliable guidance for the bad data identification and power flow regula-tion,therefore,it can effectively improve the fault cor-rection and tolerance of the calculation system.6ConclusionsIn allusion to the common problems in theoretical line loss calculation,a robust computing system based on power flow and optimal power flow is proposed in this paper.The structure and function of each module are de-scribed and the effect of the system is analyzed.Numeri-cal examples show that the robust computing system can improve the accuracy of calculation data and provide guidance for bad data identification and power flow reg-ulation.Application of the system will effectively improve the efficiency and accuracy of line loss calculation.References[1]Yung-Chung Chang,Wei-Tzen Yang and Chun-Chang Liu.ANew Method for Calculation Loss Coefficients.IEEE Transactions on Power Systems,1994,9(3):1665-1671.[2]Suechoey B,Ekburanaway J,Kraisnachinda N,et al.An Analysis and Selection of Distribution Transformer for Losses Reduction.Power Engineering Society Winter Meeting,2000:2290-2293.[3]Metor Poveda.A New Method to Calculate Power Distribution Losses in an Environment of High Unregistered Loads.IEEE Transmission and Distribution Conference,1999.[4]Anguan Wu,Baoshan Ni.Analysis and Calculation on Power Sys-tem Line Loss.China Electric Power Press,2013.[5]Rubin Taleski,Dragoslav Rajicic.Distribution Network Reconfigu-ration For Energy Loss Reduction.IEEE Transaction On Power System,1997,12(1):398-406.[6]G Levitin,A Kakyuzhny and A M Chertkov.Optimal Capacitor Al-location in Distribution Systems Using a Genetic Algorithm and a Fast Energy Loss.IEEE Transaction on Power Delivery,2000,15(2):623-628.[7]Joanicjusz Nazarko,Zbigniew Styezynski,Miroosalw Poplawski.The Fuzzy Approach to Energy Losses Calculations in Low Voltage Distribution Networks,IEEE Power Engineering Society Winter Meeting,2000.[8]LI Wenbo,HAN Xueshan,ZHANG Bo.A Closed Format Power Flow Algorithm Based on Branch Models.Power System Technolo-gy,2012,36(03):113-119.[9]YU Weiguo,XIONG Youjing,ZHOU Xinfeng,et al.Analysis on Technical Line Lossed of Power Grids and Countermeasures to Re-duce Line Losses.Power System Technology,2006,30(18):54-63.[10]TANG Guangyu,ZHOU Buxiang.The Special Application of Re-serve Power Supply Automatic Connection Device.Relay,2002,30(08):50-54.[11]CHEN Dezhi,GUO Zhizhong.Distribution System Theoretical Line Loss Calculation Based on Load Obtaining and Matching Power Flow.Power System Technology,2005,29(01):80-84.[12]FU Hao,ZHOU Bu-xiang,CHEN Shi.Methods to Improve the Precision of Calculation of Power System Line Losses.Relay.2007,35(07):28-36.[13]XU Han-ping,HOU Jin-feng,SHI Liu-zhong,et al.Calculation Method of Power System Line Lossed Based on Data of State Esti-mation.Power System Technology.2003,27(03):59-62.[14]Liu Wei,Li Heng,Zhang Jiang,et al.Topology Analysis Method for Loss Calculation of Distribution Network Based on Feeder Sec-tions and GIS.Relay,2002,30(08):10-13.[15]Zhu Faguo.Loss Calculation Method for Distribution Network with Information from Filed Terminal Using.Power System Technoloyg,2001,25(05):38-40.[16]LI Bin,DU Mengyuan,WEI Wei,et al.Calculation of Theoretical Line Loss Based on Quasi Real-time Data of Smart Distribution Network.Electric Power Automation Equipment.2014,34(11):122-128.(下转第37页)32[17]LU Zhi-gang ,LI Shuang.Theoretical Network Loss Calculation ofWhole Power System under Incomplete Injected Measured Data of Partial Plants and Substations.Power System Technology.2007,31(16):83-87.[18]SONG Yi-bing ,LOU Bei.Theoretical Computation of Network LossBased on New Data Processing Method.2001,21(05):15-17.[19]GUO Zhihong ,HAN Xueshan ,LI Wenbo ,et al.A CoordinationPower Flow Algorithm for Power Transmission -Distribution GridAccommodate Distributed Generations.Shandong Electric Power ,2014.Accepted date :2015-04-10Li Wenbo (1984)received the B.E.and Ph.D.degrees from Shandong University in 2007and 2013,respectively.He is now an engineer in State Grid Shandong Electric Power Research Institute.His research interests include power system operation and control.为-0.221%,标准差为0.730%。