排水采气技术
排水采气常见的工艺有哪些

排水采气常见的工艺有哪些
排水采气是一种将废水中的可燃气体回收利用的工艺,常见的排水采气工艺有:
1. VSEP技术(薄膜分离技术):通过超滤膜对废水进行处理,分离出可燃气体并将其回收利用。
2. ADSorption技术(吸附技术):通过吸附剂吸附排水中的可燃气体,再通过脱附获得纯净的可燃气体。
3. MVR技术(机械蒸发再生技术):通过蒸发装置蒸发废水中的水分,生成水蒸气,并将其中的可燃气体回收利用。
4. CWS技术(压缩水气提取技术):通过压力吸附剂和温度降低,使废水中的可燃气体溶于水中,再通过压力释放将其分离出来。
5. 生物处理技术:利用微生物菌群降解废水中的有机物,产生可燃气体。
6. 催化燃烧技术:将废水中的可燃气体与氧气在催化剂的作用下进行燃烧,产生热能和二氧化碳。
以上是常见的排水采气工艺,每种工艺都有其优点和适用范围,具体选择哪种工艺应根据废水特点和处理要求来决定。
排水采气工艺技术

排水采气工艺技术故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。
该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。
泡排的投入采出比在1:30以上,经济效益十分显著。
3 柱塞气举排水采气技术柱塞气举是一种用于气井见水初期的排水采气工艺。
它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。
柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。
如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。
该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。
另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。
该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。
柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。
4 气举排水采气技术气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。
煤层气井排水采气技术

第一章:煤层气井生产特征
1.1 煤层气的概念
煤层气又称煤层甲烷气,煤炭工业称之为煤层瓦斯,是在成 煤过程中形成并赋存于煤层中的一种非常规的天然气。这种天然 气大部分(70%-90%)以吸附状态赋存在煤岩基质中,少量成游离 状态存在于煤的割理和其它孔隙、裂隙中,还有少许溶解在煤层 水中。
煤的吸附性导致煤层气成藏机制和开发技术与常井的生产过程
1.3.2 煤层气井生产阶段
中期稳定生产阶段:随着排 水的继续,产气量逐渐上升并趋 于稳定,出现高峰产气,产水量 则逐渐下降。该阶段持续时间的 长短取决于煤层气资源丰度(主 要由煤层厚度和含气量控制), 以及储层的渗透性。
第一章:煤层气井生产特征
1.3 煤层气井的生产过程
1.3.1 煤层气的产出过程
第二阶段:非饱和的单相 流阶段。当煤储层压力进一步 下降,有一定数量的煤层气从 煤基质块微孔隙表面解吸,开 始形成气泡,阻碍水的流动, 水的相对渗透率下降,但气体 不能流动。
第一章:煤层气井生产特征
1.3 煤层气井的生产过程
1.3.1 煤层气的产出过程
第一章:煤层气井生产特征
1.3 煤层气井的生产过程
1.3.1 煤层气的产出过程
根据煤层气储层流体的地下 流动,可将煤层气的产出过程分 为三个阶段:
第一阶段:单相流阶段。随 着井筒附近地层压力降低,首先 只有水产出,因为压力降低较小, 煤层气尚未开始解吸,井筒附近 只有单相流动。
第一章:煤层气井生产特征
当煤储层的出水量和煤层气井井口产水量相平衡时,形成稳定的压力 降落漏斗,降落漏斗不再继续延伸和扩大,煤储层各点压力也就不能 进一步降低,解吸停止,煤层气井采气也就终止。
随着排采的进行,围岩中压力梯度逐渐大于煤层中的压力梯 度,压力传递轨迹从煤层过渡到围岩中,压力将仅在围岩中 传递,开始排采围岩中的水,此时,煤层中压力几乎不再发 生变化。
采气工程 本科8-第8章-排水采气

40.3mm 0.56 0.79 0.97 1.13 1.26 1.39 1.50 1.60
50.3mm 0.87 1.23 1.52 1.75 1.97 2.16 2.33 2.50
62mm 1.32 1.87 2.30 2.66 2.99 3.28 3.55 3.80
75.9mm 1.98 2.81 3.45 3.99 4.48 4.91 5.32 5.69
例8-3 已知气井产能方程qsc=0.184(8.02-pwf2)0.8。井口压力 ptf=3.21MPa;井口温度Ttf=295K;气体相对密度γg=0.6, 井深=3000m; 井底温度=380K。产气量=2×104m3/d。 试确定气井连续携液的油管尺寸。 解:思路:1)求流入动态量与2×104m3/d,求管径 1) 2)为方便起见,按井底条件计算临界流量。根据已知条件计算气井沿井深 的参数,见表 临界流量(×10 m /d) 井底压力 产气量
例8-1 求某产水气井携液临界流速和临界流量,已知参数为:井口压力 ptf=3.21MPa;井口温度Ttf=295K;油管内径dti=62mm;气体相对密度 γg=0.6。 解:1)气体携液临界流速。 ①气体偏差系数Z=0.93; ②气体密度为
g 3.4844 10
3
g p
ZT
③气井携液临界流速为
第八章
排水采气
第八章
第一节 第二节 第三节 第四节 第五节 第六节 第七节
排水采气
气田产水动态特征 气井携液临界流量及排水采气方法 优化管柱排水采气 泡沫排水采气 连续气举排水采气 柱塞气举排水采气 其他排水采气工艺
第一节 气田产水动态特征 一、气井积液来源: 1、地层中的游离水、边水、底水 2、烃类凝析液与气体一起渗流进入井筒; 3、地层中含有水汽的天然气流入井筒,由于热损失 使温度沿井筒逐渐下降,出现凝析水。 4、工作液漏失。
石油工程技术 井下作业 排水采气工艺--主要技术类型

排水采气工艺--主要技术类型泡沫排水采气(简称泡排)的基本原理,是从井口向井底注入某种能够遇水起泡的表面活性剂(起泡剂)。
井底积水与起泡剂接触以后,借助天然气流的搅动,生成大量低密度含水泡沫,随气流从井底携带到地面,从而达到排出井筒积液的目的。
排水采气是解决“气井积液”的有效方法,也是水驱气田生产中常见的釆气工艺。
目前现场应用的常规排水采气工艺可分为:机械法和物理化学法。
机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺等,物理化学法即泡沫排水采气法及化学堵水等方法。
1排水采气·优选管柱小油管排水采气工艺技术适用于有水气藏的中、后期。
此时井已不能建立“三稳定”的排水采气制度,转入间歇生产,有的气井已濒临水淹停产的危险。
对这样的气井及时调整管柱,改换成较小管径的油管生产,任可以恢复稳定的连续自喷。
1.1优点:1.1.1属自力式气举,能充分利用其藏自身能量,不需人为施加外部能源助喷。
1.1.2变工艺井由间歇生产为较长时期的连续生产,经济效益显著。
1.1.3设计成熟、工艺可靠,成功率高。
1.1.4设备配套简单,施工管理方便,易于推广。
1.2缺点:1.2.1工艺井必须有一定的生产能力,无自喷能力的井必须辅以其他诱喷措施复产或采用不压井修井工艺作业。
1.2.2工艺的排液能力较小,一般在120m3/d左右。
1.2.3对11/2in小油管常受井深影响。
一般在2600m左右。
优选管柱排水采气工艺是在有水气井开采的中后期,重新调整自喷管柱的大小,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式气举排水采气方法。
对排液能力比较好、流速比较高,产水量比较大的天然气井,可适当的放大管径生产,达到提高井口压力,减少阻力损失,增加产气量的目的。
该工艺理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,其存在的工艺局限性是:气井排液量不宜过大,下入油管深度受油管强度的限制,因压井后复产启动困难,起下管柱时要求能实现不压井起下作业。
试论排水采气工艺研究现状及发展趋势

试论排水采气工艺研究现状及发展趋势一、前言排水采气工艺是煤矿开采中的重要环节,它是指在煤层开采过程中,通过排水来降低煤层水压,提高采煤效率,并同时采集煤层气,实现资源的有效利用。
本文旨在探讨排水采气工艺的现状及发展趋势。
二、排水采气工艺的发展历程1.传统排水采气工艺传统的排水采气工艺主要是通过井下钻孔进行排水和抽取煤层气。
这种方法具有操作简单、成本低等优点,但由于其局限性较大,如无法满足高产高效的需求等,因此逐渐被淘汰。
2.现代化排水采气技术随着科技的不断进步,现代化排水采气技术得到了广泛应用。
其中比较典型的技术包括:井下注浆预充法、井下爆破预充法、井下液压压裂法等。
这些技术不仅可以提高开采效率和安全性,还能够减少对环境的影响。
三、排水采气工艺的现状1.技术成熟度高目前,排水采气技术已经相对成熟,可以满足大多数煤矿的需求。
同时,随着新技术的不断涌现,排水采气工艺也在不断完善和升级。
2.应用范围广泛排水采气工艺已经被广泛应用于各类煤矿开采中,包括地下开采、露天开采等。
同时,在一些特殊的环境下,如深部、高压等条件下,排水采气技术也能够发挥出其优势。
3.存在一些问题尽管排水采气工艺已经相对成熟,但在实际应用中仍然存在一些问题。
比如:井下施工难度大、环境污染等。
这些问题需要在技术上得到解决。
四、排水采气工艺的发展趋势1.智能化发展随着人工智能技术和物联网技术的不断进步,未来排水采气工艺将会更加智能化。
比如:通过传感器监测煤层水压、气体浓度等数据,实现智能化的控制和管理。
2.绿色环保绿色环保已经成为当前社会的重要发展方向,排水采气工艺也不例外。
未来排水采气技术将更加注重环境保护,减少对环境的影响,并探索新的绿色技术。
3.多元化发展未来排水采气工艺将会呈现出多元化的发展趋势。
比如:在传统技术基础上,结合新材料、新工艺等方面进行创新和改进,以满足更加复杂多样的开采需求。
五、结论综上所述,排水采气工艺是煤矿开采中不可或缺的一部分。
气举阀连续气举排水采气工艺技术

气举排水采气:利用高压天然气(高压气井或压缩天然气)的能量,向 产水气井的井筒注入高压天然气,借助井下气举阀的作用,来排除井内积 液,恢复水淹气井的生产能力的一种采气工艺方法。
按其排水装置原理的不同分类: • 气举阀排水采气 (常用方法) • 柱塞间隙排水采气(试验阶段)
(二)半闭式气举装置 • 使用: 1. 单封隔器完井结构中; 2. 既适用于连续气举也适用于间歇气举。
(二)半闭式气举装置 • 优点: 1. 能阻止气从油管底部进入油管; 2. 气井一旦卸载,气体就无法回到油、套管环形空间; 3. 封隔器能防止油管下部封隔器及固定球阀完井结构。
连续气举装置主要有: • 开式气举装置 • 半闭式气举装置 • 闭式气举装置
开式气举装置
(一)开式气举装置 • 缺点: 1. 需要很高的启动压力; 2. 注气点以下的气举阀经受流体的严重冲 蚀,
甚至损坏; 3. 每次关井时,都必须卸载,并等待稳定。
(一)开式气举装置 • 使用:除采用套管生产的裸眼井、严重砂堵 的井及井身质量有缺陷的井外一般不采用。
(二)QJF-1气举阀工作原理
一、气举阀排水采气原理
气举阀排水采气的原理是利用从套管注入的高压气,逐级启动安装在油管柱上的 若干个气举阀,逐段降低油管柱的液面,从而使水淹气井恢复生产。
气举阀主要用途: 1. 卸去井筒液体载荷,让气体从油管柱的最
佳部位注入; 2. 控制卸载和正常举升的注气量。
二、连续气举装置
我国四川、辽河、中原等油气田都普遍 采用连续气举的方式来排除井底积液。
三、QJF-1型气举阀
• 气举阀有套管压力操作阀和油管压力操作阀等,国内气田气举排水普遍使用的是 非平衡式波纹管套管压力操作阀,现场叫套压阀。 • 这里介绍的QJF-1型气举阀就属于这一类,凡有高压气源的地方都可以使用。
【最新精选】排水采气工艺技术

排水采气工艺技术排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。
自五十年代美国首次将抽油机用于中小水量气井排水以来,到目前国外已发展了优选管柱、机抽、泡排、气举、柱塞举升、电潜泵、射流泵、气体射流泵和螺杆泵等多套成熟的单井排水采气工艺技术。
近年来,在这些应用已较为成熟的工艺技术方面的发展主要是新装备的配套研制。
国外还研究应用一些新的排水采气技术,如同心毛细管技术、天然气连续循环技术、井下气液分离同井回注技术、井下排水采气工艺、带压缩机的排水采气技术。
我国排水采气工艺以四川、西南油气田分公司为代表完善配套了泡排、气举、机抽、优选管柱、电潜泵、射流泵等六套排水采气工艺技术,并在此基础上研究应用了气举/泡排、机抽/喷射复合排水采气工艺。
1.泡沫排水采气工艺技术药剂由单一品种的起泡剂发展到了适合一般气井的8001—8003、含硫气井的84—S,凝析气井800(b)发泡剂,以及泡棒、酸棒和滑棒等固体发泡剂。
该工艺排液能力达100m3/d,井深可达3500m左右。
在泡沫排水采气工艺中国外还应用了同心毛细管加药工艺,它是针对低压气井积液、油气井防蜡等实际生产问题而研制出的一种新型工具,通常用316型不锈钢不锈钢制成,盘绕在一个同心毛细管滚筒上。
整套装置包括一个同心毛细管滚筒、一台吊车和一套不压井装置。
在同心毛细管底部装一套井下注入/单向阀组件。
化学发泡剂通过同心毛细管注入后经过单向阀被注入到井底。
这种同心毛细管柱可以在同一口井中重复多次使用,也可以起出用于别的气井,具有经济、安全和高效的特点,其最大下入深度可达7315m。
2.优选管柱排水采气工艺技术开发了多相垂直管流动的数学模型、求解软件和诺模图,建立了气井井眼连续排液合理管柱,从而优化了设计和生产方式。
适用于井深小于3000m,产水量小于100m3/d,有一定自喷能力的气井。
3.气举排水采气工艺技术在气举排水采气工艺技术方面,主要是在气举优化设计软件和气举井下工具等方面发展最快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液滴模型。。。
Turner 模型:
vcrit - T
= 1.593????s
(r
L-
r
2 G
r G ) ?1/ 4
?
8000
scf/D
6000
M
量, 4000 流
测
实
2000
上浮20%
不积液 积液
无法用来描述积液现象
液滴
环流 Annular
? 液滴模型(Entrained Liquid Droplet Model )
液滴模型
Drag Force: 1/2CDρGA(vG-vL)2 Buoyant Force: gρGV
Gravitational Force: gρLV
快速运动的气体悬浮起其中的液滴:
Coleman's 模型
Coleman et al. (1990) 用数据比较了 Turner基本模 型和Turner模型认为:
井口压力小于 500 psi的气井直接用基本模型,而不用上浮 20%。
vcrit - C = vcrit - T
至今国际上接受及应用最广泛是:
?Turner 模型 (基本模型上浮20%) ?Coleman 模型 (直接用基本模型,不上浮)
多液滴下情况 ?
新积液理论。。。
1. 在分解前先碰上 其它液滴
2. 分解后碰上其它液 滴
尽管有这过程,但少量 的液滴终归会被带出
积液? 或许, 取决于 油管长度
新形成的大液 滴会下降
大量液滴下,液滴间 发生一连串碰、下降、 分解造成积液
气体携液临界流量新模型
用持液率描述液滴浓度:
US Gas Well Locations
年均日产气量与井数
气井井深
气井性能
Turner临界流速
积水(Liquid Loading )井
排水采气研究
1. 研究没有停止过,约从 2000年起每年在美 国denver 由美国人工举升技术委员会等联 合举行一次技术交流会;
2. 从07年开始,每年在美国 Fortworth 举行一 次低压气井开采技术交流会( workshop);
Superficial ( 速 流 体
) Velocity
液 观 表
Liquid
Taitel et al. (1980)
Barnea (1987)
Turner et al. (1969)
泡流
段塞 Slug
环流 Annular
vcrit - T
?s
= 1.593? ??
(r
L
r
-r
2 G
G)
?1 ?
/
。。。 ???
积液理论公式
1. Zhou, D. and Yuan, H. 2010. A New Model for Predicting Gas-Well Liquid Loading. SPE Prod & Oper 25 (2): 172181;
2. Zhou, D., and Yuan, H.: “New Model for Gas Well Loading Prediction,” 2009 SPE Production and Operations Symposium, SPE 120580, April 2009, Oklahoma City, Oklahoma, USA
重力 = 拽力 + 浮力
vc =
4g(r L - r G )d 3r GCD
Vc = 气体携液临界流速
液滴模型。。。
?液滴越小,向上运动越快;液 滴越大,需越快的气流速度。
?气液的相对速度会产生压力 (velocity pressure) 。该压力 的作用是撕碎 (shatter) 液滴, 而液滴表面张力的作用是维持 (hold )该液滴。
第二部分:气井积液
现场积液判断
积液造成的问题 井底积液较难判断,积液井仍可生产,而 且可维持较长时间。积液识别越早越好, 可提高产量。
常用方法: ? 生产曲线 (decline curve) 突然降低 ? 井口出现液体块( liquid slug ) ? 油导压差增加(无封隔器可测) ? 井内压力梯度变化(可测)
气井积液
液体 液体 = 凝析油 + 水
气体
油管
液体在井底沉积
液体在井底沉积叫井底积液
(liquid loading)
井底积液导致: ?增加井底压力,减产; ?增加井壁水饱和度,减产; ?停产。
多相流态(Flow Pattern )
液
气
Bubble
Slug
气体速度增加
Churn
Annular
流态图(Flow-pattern Map )
排水采气技术
第一部分:生产气井简介
美国气井 (IHS, Dec. 2006)
气井数:
334,938, excludes PA (448,641)
平均产气量: 110 MCFD/WELL
油管尺寸: Size Usage
1 ?” 4%
2 3/8”79%
2 7/8”12%
Other 5%
气体携液最小临界流速(Turner): 300 MCFD ( 2 3/8” 油管与井口100psia下)
90口井中有24口不 符合该模型
0
0
2000
4000
6000
8000
Turner 临界流量 , Mscf/D
液滴模型。。。
上浮20%后 vcrit - T 20% = (1 + 20%)vcrit - T
90口井中只有十三口不符合
Turner et al. (1969) 建议: ?使用20%上浮;(这就是现所谓的Turner模型) ?在井口处使用; ?在水与凝析油同时存在时用比重大的液体。
4
??
Taitel et al. (1980)
表观气体流速(Superficial Gas Velocity )
vsg
= 3.1????gs
(r L -
r
2 G
r
G)
?1/ ?
4
??
Turner et al. (1969) Model
气芯
Gas
Core
? 液膜模型(Liquid Film
液膜Biblioteka Movement Model )
积液小结
?液滴模型 广泛应用, 较有效描述气井积液问题。认为 当气体产量大于该井气体临界流量就没有积 液问题。该理论认为与气井中液体多少无关。
?液膜模型 不能用于气井积液。
第三种理论 ???
层流(Laminar Flow)
紊流 (Turbulent Flow )
新积液理论
气体向上 不规则运 动
Turner的液滴 理论基于一个 液滴上的力平 衡