化工原理课程设计换热器

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。

下面将为您介绍步骤和注意事项。

一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。

2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。

3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。

4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。

5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。

6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。

二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。

2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。

3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。

4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。

5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。

同时,必须符合国家有关规定。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器换热器是化工生产中常用的一种设备,其作用是将热量从一个介质传递到另一个介质,以实现物料加热或冷却的目的。

在化工原理课程设计中,学生需要深入了解换热器的工作原理、设计计算方法以及实际应用,以便将理论知识与实际工程实践相结合。

首先,换热器的工作原理是基于热量传递的原理。

当两种介质温度不同时,热量会从温度较高的介质传递到温度较低的介质,直至两者达到热平衡。

换热器通过设计合理的传热面积和传热系数,以及确定良好的介质流动方式,来实现高效的换热效果。

其次,设计换热器需要考虑多方面的因素。

首先是确定换热器的类型,包括管壳式换热器、板式换热器、螺旋板式换热器等,根据介质性质、温度压力要求、换热效率等因素进行选择。

其次是确定换热器的传热面积和传热系数,这需要根据介质流动性质、传热过程中的温度差、介质流速等因素进行计算。

最后是确定换热器的实际应用场景,包括换热器的安装位置、管道连接方式、维护保养等方面的考虑。

在化工原理课程设计中,学生需要通过理论学习和实际案例分析,掌握换热器的设计计算方法。

这包括传热面积的计算、传热系数的确定、换热器的选型和性能评价等内容。

通过实际案例的分析,学生可以更好地理解换热器设计的关键技术和实际应用中的问题,提高自己的工程设计能力。

除了理论知识的学习,化工原理课程设计还需要学生进行实际操作和实验。

通过实验,学生可以了解不同类型换热器的工作原理,观察不同工况下的换热效果,掌握换热器的实际操作技能。

这对于学生将来从事化工工程实践具有重要的指导意义。

总的来说,化工原理课程设计中的换热器设计是一个重要的环节,它涉及到理论知识与实际工程实践的结合,需要学生具备扎实的理论基础和实际操作能力。

通过深入学习换热器的工作原理、设计计算方法以及实际应用,学生可以更好地理解化工原理课程的重要性,提高自己的专业能力,为将来的工程实践打下坚实的基础。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。

换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。

因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。

换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。

常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。

在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。

接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。

在化工原理课程设计中,换热器的设计重点之一是热力学计算。

为了实现对流体的热量传递,需要考虑流体的传热系数。

传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。

通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。

另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。

尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。

材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。

结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。

总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。

只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。

同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。

化工原理课程设计——换热器

化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。

其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。

在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。

间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。

因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。

前3种应用比较普遍。

固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。

换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。

设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。

化工原理课程设计换热器资料课件

化工原理课程设计换热器资料课件

加工成型
采用冲压、焊接、铸造等工 艺将材料加工成换热器的主 体结构。
表面处理
对加工成型的换热器进行清 洗、除锈、喷漆等表面处理 ,以提高其耐腐蚀性和美观 度。
组装与调试
将各部件按照设计要求进行 组装,并进行严格的调试和 检测,确保换热器的性能和 质量符合要求。
05
换热器运行维护与故障处 理
换热器的运行操作要点
03
换热器设计计算
设计计算的基本步骤
计算传热面积
选择合适的换热器类型
根据工艺要求、操作条件、经济 性和可靠性等因素,选择合适的 换热器类型。
根据传热方程和给定的工艺条件 ,计算所需的传热面积。
设计换热器结构
根据传热面积和工艺要求,设计 换热器的结构参数,如管径、管 长、管数、折流板间距等。
确定设计任务和设计条件
本次课程设计的任务是设计一个满足特定工艺要求的换热器,要求掌握换热器 的基本原理、设计方法和优化措施。
实例分析过程展示
换热器类型的选择
设计参数的确定
热力计算与校核
结构设计与优化
根据工艺条件和设计要求,选 择合适的换热器类型,如管壳 式换热器、板式换热器等。
确定换热器的设计参数,包括 流体的进出口温度、流量、压 力降等。
振动与噪音
振动和噪音可能是由于设备不平衡、紧固件松动等原因引起的,需及 时检查并调整;若问题严重,需停机检修并更换损坏部件。
06
课程设计实例分析与讨论
实例背景介绍
换热器在化工生产中的应用
换热器是化工生产中常见的设备,用于实现两种不同温度流体之间的热量交换 ,以达到加热或冷却的目的。
课程设计任务与要求
换热器设计的优化与创新
总结本次课程设计的经验教训,探讨换热器设计的优化与 创新方向,如提高传热效率、降低压力降、实现紧凑化设 计等。

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

化工原理课程设计 换热器

化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。

本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。

2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

化工原理课程设计(换热器)

化工原理课程设计(换热器)

一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。

2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于1×105Pa。

4、每年按330天计,每天24小时连续运行。

三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸设计。

3、设计结果概要或设计结果一览表。

4、设备简图(要求按比例画出主要结构及尺寸)。

5、对本设计的评述及有关问题的讨论。

第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。

由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。

1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

所以传热是最常见的重要单元操作之一。

无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。

②削弱传热过程,如设备和管道的保温,以减少热损失。

1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。

在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计
换热器
1
设计题目: 换热器的设计
学院化学化工学院
班级化工**
姓名张子健
学号
指导教师: ***
日期: .9.12
2
列管式换热器设计任务书
一设计题目: 煤油冷却器的设计(3组: 21- )
二设计任务及操作条件
1.处理能力: 18万吨/年煤油
2.设备形式: 列管式换热器
3.操作条件
(1)煤油: 入口温度110℃, 出口温度35℃
(2)冷却介质: 自来水, 入口温度25℃, 出口温度40℃
(3)允许压强降: 不大于100kPa
(4)煤油定性温度下的物性数据: 密度825kg/m3, 黏度7.15×10-4Pa.s, 比热容2.22kJ/(kg.℃), 导热系数0.14W/(m.℃)(5)每年按330天计, 每天24小时连续运行
三选择适宜的列管式换热器并进行核算
3.1 传热计算
3.2 管、壳程流体阻力计算
3.3管板厚度计算
3.4 U形膨胀节计算
3.5 管束振动
3
3.6 管壳式换热器零部件结构
目录
1.概述 ........................................................................... 错误!未定义书签。

2.设计标准 ................................................................... 错误!未定义书签。

3.方案设计和拟订 ....................................................... 错误!未定义书签。

4.设计计算 (9)
4.1确定设计方案 .................................................... 错误!未定义书签。

4.1.1 选择换热器的类型................................ 错误!未定义书签。

4.1.2 流动空间及流速的测定........................ 错误!未定义书签。

4.2确定物性数据.................................................. 错误!未定义书签。

4
4.3计算总传热系数.............................................. 错误!未定义书签。

4.3.1 热流量 .................................................... 错误!未定义书签。

4.3.2 平均传热温差........................................ 错误!未定义书签。

4.3.3 冷却水用量............................................ 错误!未定义书签。

4.3.4 总传热系数 K ........................................ 错误!未定义书签。

4.4计算传热面积.................................................. 错误!未定义书签。

4.5工艺结构尺寸.................................................. 错误!未定义书签。

4.5.1 管径和管内流速.................................... 错误!未定义书签。

4.5.2 管程数和传热管数................................ 错误!未定义书签。

4.5.3平均传热温差校正及壳程数................ 错误!未定义书签。

4.5.4 传热管排列和分程方法........................ 错误!未定义书签。

4.5.5 壳体内径................................................ 错误!未定义书签。

4.5.6 折流板 .................................................... 错误!未定义书签。

4.5.7 接管 ........................................................ 错误!未定义书签。

4.6换热器核算......................................................... 错误!未定义书签。

4.6.1 热量核算................................................ 错误!未定义书签。

4.6.1.1 壳程对流传热系数 ...................... 错误!未定义书签。

4.6.1.2 管程对流传热系数 ...................... 错误!未定义书签。

4.6.1.3 传热系数 K .................................. 错误!未定义书签。

4.6.1.4 传热面积 S ................................... 错误!未定义书签。

4.6.2 换热器内流体的流动阻力.................... 错误!未定义书签。

5。

相关文档
最新文档