高中数学必修一 函数单调性教案(知识点+例题+练习)
必修一:1.3.1函数的单调性-教案

函数的单调性【教学目标】知识与技能:1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。
2.学会应用函数的图象理解和研究函数的单调性及其几何意义。
过程与方法:1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。
2.通过探究与活动,使学生明白考虑问题要细致,说理要明情感态度与价值观:1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。
2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
【重点难点】教学重点:函数单调性概念的理解及应用。
教学难点:函数单调性的判定及证明。
【教法分析】为了实现本节课的教学目标,在教法上我采取了:1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
【教学过程】(一)问题情境教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。
如何用学过的函数图象来描绘这些成语?设计意图:创设成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。
(二)温故知新1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。
观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。
2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的?例如:初中研究2=时,我们知道,当x<0时,函数值y随x的增大而减小,当y xx>0时,函数值y随x的增大而增大。
高中数学必修1《函数的单调性》教案 (2)

课题:函数的单调性(教案)教材:人教版普通高中课程标准实验教科书必修1第一章【教学目标】1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的升降,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数的定义,掌握用定义证明函数单调性的基本方法与步骤。
(2)函数单调性的研究经历了从直观到抽象,从图型语言到数学语言,理解增函数、减函数区间概念的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
2、过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3、情态与价值:渗透从直观到抽象,从特殊到一般的数学思想,激发学生学习兴趣,培养学生不断发现、探索新知的精神,让学生感受数学思想方法的魅力。
【教学重点】形成增(减)函数的形式化定义【教学难点】用定义证明函数的单调性【教学方法与手段】1、教法与学法:主要采取的教学方法是教师启发引导,学生探究学习的教学方法。
从观察具体函数图象引入,直观认识增减函数,利用定义证明函数单调性。
通过练习、交流反馈,巩固从而完成本节课的教学目标。
2、教学用具:多媒体投影、几何画板.【教学过程】一、创设情境,引入课题由于天气的原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,下图是北京市2008年8月8日一天24小时内气温随时间变化的曲线图.提问:我们可以通过图象来捕捉到一些什么信息?分析:学生可能会发现以下信息,当天的最高温度与最低温度以及达到的时刻,在某个时刻的温度,某些时段温度升高,某些时段温度降低,等等。
二、探索归纳,形成概念 1、借助图象,直观感知问题1:下面分别是函数2,y x y x ==的图象,观察函数图象的升降趋势。
分析:学生会观察到一次函数y x =的图象从左到右都是上升的,而二次函数2y x =的图象在y 轴的左侧从左到右是下降的,在y 轴的右侧从左到右是上升的。
函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
3.1.2 高中必修一数学教案《函数的单调性》

高中必修一数学教案《函数的单调性》教材分析函数的单调性与最值指的是在初中基础上对函数的单调性的再认识,是利用集合与对应的思想理解函数的定理,从而加深对抽象函数单调性的定义理解,根据定义,证明函数的单调性,理解单调区间以及理解函数最大(小)值的定义并掌握其求法。
因为函数的单调性是初等数学与高等代数学衔接的枢纽,是函数的第一个也是最基本的性质,为研究指数函数、对数函数、幂函数、三角函数以及导函数的内容,对函数定性分析、求极值最值、比较大小、解不等式、判定零点都有重要的作用,所以具有重要的地位。
学情分析本节课的教学对象是高一理科的学生,他们的参与意识强,思维活跃,对于真实情境以及现实生活中的数学问题具有极大的学习兴趣,不过由于年龄和思维原因,看问题容易片面。
在之前的学习中,学生已经掌握了函数的三要素,并且学生初中学过y随x的增大而增大(或减小),这些都有利于学生的理解。
但是本节课的单调性的定义更抽象,对学生而言是一个较大的考验。
教学目标1、理解增函数、减函数、单调区间、单调性等概念;2、掌握增(减)函数的证明和判别,学会运用函数图象理解和研究函数的性质,能利用函数图象划分函数的单调区间。
教学重点形成增减函数的定义。
教学难点在形成增减函数概念的过程中,从函数升降的直观认识,过渡到增减函数的数学符号语言表述;用定义证明函数的单调性。
教学方法讲授法,演示法,讨论法,练习法教学过程一、情境导学我们知道,“记忆”在我们的学习过程中扮演着非常重要的角色,因此有关记忆的规律一直都是人们研究的课题。
德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似图3-1-7所示的记忆规律。
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图3-1-7中,y是x的函数,记这个函数为y = f(x)这个函数反映出记忆具有什么规律?你能从中得到什么启发?二、教学过程1、单调性的定义与证明情境中的函数y = f(x)反映出记忆的如下规律:随着时间间隔x的增大,记忆保持量y将减小。
高中 必修一 函数单调性 知识点+例题 全面

学科教师辅导教案―函数单调性教学内容1、概念: 单调增函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) < f(x 2),那么就说y=f(x)在区间I 上是单调增函数,I 称为y=f(x)的单调增区间.单调减函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) > f(x 2),那么就说y=f(x)在区间I 上是单调减函数,I 称为y=f(x)的单调减区间.2、函数单调性的几何意义:函数的单调性在图像上的反映是:若f(x)在区间I 上是单调增函数,则它的图像在I 上的部分从左到右是上升的;若f(x)在区间I 上是单调减函数,则它的图像在I 上的部分从左到右是下降的;3、单调区间:如果函数y=f(x)在区间I 上是单调增函数或者单调减函数,那么就说函数y=f(x)在区间I 上具有单调性.单调增区间 和单调减区间统称为单调区间.【注意点】1、在函数的单调性定义中,x 1,x 2有三个特征:一是任意:即区间内任意取两个值x 1,x 2;二是有大小:一般设x 1< x 2;三是同属于一个单调区间:任意x 1,x 2∈I.2、理解函数单调区间应注意的问题:①函数的单调区间是函数定义域的子集,求函数的单调区间必须先求函数的定义域;②单调区间可以是开区间,也可以是闭区间.但对于某些点无意义时,单调区间就不包括这些点,要用开区间;③一个函数出现两个或两个以上单调区间时,不能用“∪”,而应用“,”或“和”连接;如xy 1=在(-∞,0)和(0,+∞)上为减函数,而不能说在(-∞,0)∪(0,+∞)上是减函数; ④函数的单调性是一个局部性质,介绍函数单调性时,一定要指出在哪一个区间上,而不能笼统说函数是单调的;⑤单调性与单调函数的区别:单调性是指在函数定义域的子区间上具有单调性,但在整个定义域上不一定具有单调性,如xy 1=在(-∞,0)和(0,+∞)上分别具有单调性,但是它不是单调函数;函数y=3x+1在整个定义域上是单调递增的,具有单调性,是单调函数.域上是单调递增的,具有单调性,是单调函数.知识模块1函数单调性的概念y 2y 1 x y =x 2 x 2 0 x 2 x 1 x y y =x 2 0 y 1 x y y 2x 1[例1]根据下图说出函数在每个单调区间上是增函数还是减函数?[巩固1]下图是定义在(-5,5)上的函数y=f(x)的图像,根据图像说出函数y=f(x)的单调区间以及在每一个区间上y=f(x)是单调增函数还是单调减函数.[例2] 说出下列函数的单调区间及在各个单调区间上的单调性.(1)xy1=(2)11-=xy(3)32+=xy(4)322-+=xxy[巩固2]下列说法不正确的是____________①若x1,x2∈I,当x1<x2时,f(x1) < f(x2),则y=f(x)在I上是单调增函数②函数y=x2在R上是单调增函数③函数xy1-=在定义域上是单调增函数④函数xy1=的单调减区间是(-∞,0)∪(0,+∞)思考:一次函数、二次函数、反比例函数的单调性是怎样的?1、定义法:(1)取值:在区间内任取x1,x2,且x1< x2;(2)比较大小:比较f(x1) 和f(x2)的大小(作差或作商),并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;(3)根据定义,得出结论.当符号不确定时,可以进行分类讨论,在确定差的符号.[例1] 证明函数322-+=xxy在(-1,+∞)上的单调性.知识模块2函数单调性的判定与证明精典例题透析。
单调性的应用教案高中数学

单调性的应用教案高中数学
年级:高中
教材:数学
目标:学生能够理解单调性的概念,并能够应用单调性解决问题。
教学步骤:
1. 引入单调性的概念:解释单调性是指函数在某个区间上严格单调递增或严格单调递减的性质。
让学生通过举例子理解单调性的概念。
2. 单调性的判断:讲解如何通过求导来判断函数的单调性。
解释在导数大于0的区间上函数是递增的,在导数小于0的区间上函数是递减的。
让学生通过练习来掌握如何判断函数的单调性。
3. 单调性的应用:讲解单调性在求解最值和方程不等式中的应用。
通过具体的例题让学生掌握如何利用单调性解决问题。
4. 练习与作业:布置几道练习题,让学生在课后巩固所学内容。
要求学生思考如何利用单调性解决问题,并写出详细的解题过程。
评估方法:
1. 教师观察学生在课堂上的回答和解题过程,评价他们是否理解了单调性的概念以及如何应用单调性解题。
2. 布置的作业可以作为评估学生对单调性的掌握程度的依据。
教师可以根据学生的作业情况来评价他们的学习效果。
3. 可以设计一些小测验或考试题目来测试学生对单调性的理解程度和应用能力。
3.1.2函数的单调性-人教B版高中数学必修第一册(2019版)教案

3.1.2 函数的单调性-人教B版高中数学必修第一册(2019版)教案知识点概述函数的单调性是指函数在定义域内的增减性质。
如果在定义域内,随着自变量的增大,函数值也增大,那么该函数就是单调递增的。
反之,如果随着自变量的增大,函数值反而减小,那么该函数就是单调递减的。
本节课程将介绍函数单调性的判断方法,通过一些例题帮助学生掌握这一知识点。
教学目标1.掌握函数单调性的定义;2.熟悉函数单调性的判断方法;3.通过例题训练,提高学生应用函数单调性的能力。
教学重点函数单调性的判断方法教学难点如何应用单调性判断函数的增减性教学过程1. 导入新知识通过一个实例来引导学生理解函数单调性的概念。
给学生出示一个数轴图像,用手指在数轴上滑动,问学生,随着手指从左到右的滑动,哪些方向的箭头所指方向与手指滑动方向相同?引导学生发现箭头向右的部分,与手指从左到右滑动的方向一致,这表明该数轴部分是单调递增的。
而箭头指向左的部分,则相反,是单调递减的。
然后,将此概念应用到函数中,强调函数的单调性是指函数值的递增或递减的性质,通常用单调递增和单调递减两个概念来描述。
2. 函数单调性的判断方法为了帮助学生更好地理解函数单调性,本节课程将介绍两种判断函数单调性的方法。
方法一:一阶导数法对于可导函数f(x),如果在定义域上f′(x)>0,那么f(x)单调递增;如果在定义域上f′(x)<0,那么f(x)单调递减。
这是一种常见的判断函数单调性的方法,但是需要前提是函数f(x)在定义域上可导。
同时,需要注意的是,f′(x)=0的点可能是转折点,此时函数从单调递增变为单调递减,或者从单调递减变为单调递增。
方法二:二阶导数法对于二次可导函数f(x),如果在x=a处f″(a)>0,那么f(x)在x=a处有一个局部最小值,同时f(x)在x<a和x>a上单调递增;如果在x=a处f″(a)<0,则f(x)在x=a处有一个局部最大值,同时f(x)在x<a和x>a上单调递减。
高一数学函数的单调性教案人教版必修一

高一数学必修1 函数的单调性
教学目标
知识与技能
(1)通过对初中已学习过的函数(特别是二次函数)图象的观察,分析,逐步理解函数的单调性及其几何意义。
(2)能根据图像的升降特征,划分函数的区间;理解增(减)函数的定义,会证明函数在指定区间上的单调性。
过程与方法
从观察具体函数的图像特征入手,结合相应问题,引导学生一步步转化到用数学语言形式化的建立增(减)函数的概念。
情感态度与价值观
(1)理解运用由特殊到一般,由具体到抽象,由自然语言到符号语言,
提升学生的数学思维能力,使学生学会科学地思考问题,科学地
解决问题。
(2)加强判断能力,推理能力和化归转化能力。
重点难点
重点
借助图像,表格和自然语言,数学符号语言,形成增(减)函数的形式化定义,并能用定义解决简单的问题。
难点
形成增(减)函数的形式化定义的过程中,如何从图像升降的直观认识过渡到函数增减的数学符号语言表达;用定义证明函数的单调性。
教法学法:探讨研究
教学用具:多媒体
教学过程
板书设计
教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学员姓名年级辅导科目数学课程类型1对1任课老师班组课题函数的单调性课型□预习课□同步课□复习课□习题课课次授课日期及时段教学目标1.掌握函数单调性的定义和求单调性的方法2.掌握复合函数单调性判断的方法3.掌握分段函数的单调性判断方法重难点重点:难点:教学及学习方法教学方法:学习方法:教学内容【基础知识网络总结与巩固】本节考点:考点回顾考点一考点二考点三【上节知识回顾】【本节知识要点】知识点一函数单调性定义:单调区间的定义:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间.知识点二一、复合函数的定义设y=f(u)的定义域为A,u=g(x)的值域为B,若A B,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数单调性相关定理引理1 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
即我们所说的“同增异减”规律。
【重难点例题启发与方法总结】题型一求函数单调性区间2.函数f(x)=|x-2|x的单调减区间是()【解析】 由已知得,当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 【答案】 C7.函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.【解析】 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.【答案】 38.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.【解析】 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,函数的图象如图所示,其递减区间为[0,1).【答案】 [0,1)9.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.【解析】 f (x )=|2x +a |=⎩⎨⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.∵函数的单调递增区间为⎣⎡⎭⎫-a2,+∞, ∴-a2=3,∴a =-6.【答案】 -610.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.【解析】 二次函数y 1=x 2-4x +3的对称轴是x =2,四、外函数与内函数都有两种单调性的复合型:例3 (89·全国·理)已知函数f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x) ( ) (A).在区间(-1,0)上是减函数; (B).在区间(0, 1)上是减函数; (C).在区间(-2,0)上是增函数; (D).在区间(0, 2)上是增函数.解:令g(x)=f(u)=-(u -1) 2+9,u=2-x 2,则(1) g(x) =-(u -1) 2+9在u ∈(-∞,1]上是增函数,与u=2-x 2具有相同的增减性, 由2-x 2≤1得 x ≤-1或x ≥1,而u 在x ∈(-∞,-1]上是增函数, u 在x ∈[1,+∞)上是减函数,∴g(x)在区间(-∞,-1]上是增函数, 在区间[1,+∞)上是减函数.(2) g(x) =-(u -1) 2+9在u ∈[1,+∞)上是减函数,与u=2-x 2具有相反的增减性, 由2-x 2≥1得 -1≤x ≤1,而u=2-x 2在x ∈ [-1,0] 上是增函数, 在x ∈(0, 1)上是减函数,∴g(x) =-(u -1) 2+9在区间[-1,0]上是减函数, 在区间(0,1)上是增函数. 故选(A).题型四 分段函数分段函数的单调性问题,一定要保证各段上同增(减)和上、下段间端点值间的大小关系.例:(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是_______. 【分析】因为()f x 是R 上的单调递增函数,所以1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪⎛⎫-+≤ ⎪⎪⎝⎭⎩,解得48a ≤<,所以实数a 的取值范围是[)4,8.【易错点】忽视在定义域两段区间分界点上的函数值的大小而致误. 【练一练】1.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是(-∞,+∞)上的减函数,那么a 的取值范围是________.【答案】 (0,2]【解析】 由题意得⎩⎪⎨⎪⎧a -3<0,a >0,a -3+5≥2a ,解得0<a ≤2.2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为____________. 【答案】⎝⎛⎦⎥⎤-∞,138【课堂随练】【1-3】讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.【答案】f(x)在(-1,1)上为减函数 【解析】设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1.∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f(x)在(-1,1)上为减函数【1-4】函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. 求证:f (x )在R 上是增函数; 【答案】详见解析【解析】证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.【思想方法】判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;(3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性. (4)导数法:利用导函数的正负判断函数单调性.【温馨提醒】在研究函数的单调性时,应注意以下两方面的问题:一是必须在定义域的范围内研究单调性,超出了定义域范围的单调区间是没有意义的,二是单调区间的表述要正确.如函数f (x )=1x的单调减区间为(-∞,0)和(0,+∞)[或(-∞,0),(0,+∞)],而不能表述为(-∞,0)∪(0,+∞). 【课堂强化巩固练习与方法总结】一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分).1. 【泰州中学2016-2017年度第一学期第一次质量检测】函数2()2(1)2f x x a x =--+在区间[]1,4-上为单调函数,则a 的取值范围是 .[来源:学科网] 【答案】(,0][5,)-∞+∞ 【解析】试题分析:由题意得141150a a a a -≥-≤-⇒≥≤或或2 【泰州中学2016-2017年度第一学期第一次质量检测】设函数22,0,(),0,x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .[来源:学科网]【答案】2a ≤【解析】试题分析:结合图像知(())2()22f f a f a a ≤⇒≥-⇒≤3. 【江苏省南通中学2017届高三上学期期中考试】已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数且函数f (x )在区间[-1,a -2]上单调递增,则实数a 的取值范围为 ▲ . 【答案】(1,3] 【解析】试题分析:当0x <时,22()()[()2()]2f x f x x x x x =--=---+-=+,所以2m =,所以()f x 的单调增区间为[1,1]-,因此[1,2][1,1]12113a a a --⊂-⇒-<-≤⇒<≤4. 【江苏省如东高级中学2017届高三上学期第二次学情调研】已知函数()f x 为定义[]2,3a -在上的偶函数,在[]0,3上单调递减,并且()22225a f m f m m ⎛⎫-->-+- ⎪⎝⎭,则m 的取值范围是_______________. 【答案】1122m -≤< 【解析】试题分析: 由偶函数的定义可得032=+-a ,则5=a ,因为01)1(22,01222>+-=+->+m m m m ,且)22()22(),1()1(2222+-=-+-+=--m m f m m f m f m f ,所以322122≤+-<+m m m ,解之得1122m -≤<.故应填答案1122m -≤<. 5. 【江苏省如东高级中学2017届高三上学期第二次学情调研】设函数()xf x e x a =+-,(,a R e ∈为自然对数的底数).若曲线sin y x =上存在一点()00,x y ,使得()()0ff y y =,则a 的取值范围是______________.【答案】[]1,e 【解析】6.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是_________.【答案】[0,1).【解析】g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).7.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.【答案】⎝ ⎛⎦⎥⎤12,23 【解析】由于f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有0<a <3a -1≤1,解得12<a ≤23.[来源:学科网ZXXK]8.已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22.其中正确命题的序号是____________. 【答案】①③④9.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x,f x ≤K ,K ,f x >K ,取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为 ________.【答案】(-∞,-1).10. 设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln 2)的值等于________. 【答案】3.[来源:学#科#网Z#X#X#K]【解析】由f (x )的单调性知存在唯一的实数k 使f (k )=e +1,即f (x )=e x +k ,令x =k 得f (k )=e k+k =e +1,所以k =1,从而f (x )=e x+1,则f (ln 2)=eln 2+1=3.二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。