钻井液体系和配方
第二章 钻井液体系

第二章钻井液体系目前,国内常用的钻井液体系分为水基、油基和含气钻井液三大系列。
水基钻井液因使用方便、配制简单、价格低廉、对环境污染较小而应用广泛;油基钻井液由于其良好的抗泥页岩水化膨胀缩径性能而主要应用于泥页岩水化缩径严重的区块和对油气层保护要求较高的井;含气钻井液主要用于钻易漏的低压底层。
上世纪90年代又成功发展出合成基钻井液、超低渗透钻井液和不渗透钻井液并在大量井现场应用中取得良好的效果。
合成基钻井液对环境污染更小,并具有部分油基钻井液的特性,能很好的保持井壁稳定;超低渗透钻井液和不渗透钻井液在防止地层损害和提高油气井产量上有较突出的效果而得到较广泛的应用;各种钻井液体系是人们在钻井液技术发展过程中不断实践创造和完善的,不要死记硬背,生搬硬套,而应该对其熟练掌握、灵活应用,并在解决所遇到的各种钻井液问题中不断总结,积累并不断的加以完善。
一、膨润土浆(坂土浆)1、膨润土浆是常用的水基钻井液的基础结构,用于代替清水开钻,形成泥饼以加固上部地层井壁防止冲坏基础和防止井漏;也用于储备钻井液,在钻井过程中各种事故复杂处理后钻井液量不足时用于做配制钻井液的基浆。
2、常规膨润土浆配方:(1)钠膨润土:水+ 0.1-0.2%烧碱+ 0.2-0.3 纯碱+ 6-10% 钠膨润土(2)钙膨润土:水+ 0.3-0.5%烧碱+ 8-12% 钙膨润土+ 纯碱(钙膨润土的6%)配置好水化24小时以后可加入0.1-0.3%的CMC-LV护胶降失水。
土是膨润土浆的基础结构,烧碱用于除去水中镁离子和调节膨润土浆PH值并促进膨润土水化,纯碱用于除去水中钙离子和促进膨润土水化;实际应用中,烧碱和纯碱的加量可根据配浆水中的钙镁离子含量来适当增减调节。
3、配置步骤(1)清淘干净一个配浆罐,用清水清洗干净后装入配浆水(配浆水要求总矿化度小于1000mg/L)。
(2)软化配浆水:检测配浆水中钙镁离子含量,根据钙镁离子含量加入纯碱、烧碱除去配浆水中钙镁离子,软化水质,以提高膨润土的造浆率,使配制出的膨润土浆有较理想的粘度。
钻井液配方大全

钻井液配方大全1、常见膨润土浆配方材料和处理剂功用用量(kg/m3)膨润土增稠25-50烧碱控制PH值0.7-1.5 CMC(选用)降滤失 1.0-3.02.0-3.0纯碱促进膨润土水化和控制Ca2+含量﹤150mg/l2、FCLS(铁铬木质素磺酸盐)钻井液配方材料和处理剂功用用量(kg/m3)FCLS 降粘剂 5.0-15.0CMC 降失水剂 2.0-4.0PAC①降失水剂 2.0-4.0淀粉类衍生物①降失水剂10.0-15.0 SPNH②高温降失水剂 5.0-20.0SMP②高温降失水剂 5.0-20.0RH-3 润滑剂10.0-30.0烧碱PH调节 1.0-3.5 备注:①可代替和协同CMC使用;②用于3500m或更深的深井。
3、钙基钻井液配方材料和处理剂功用用量(kg/m3)备注石灰提供Ca2+10-20 用于石灰钻井液石膏提供Ca2+11-18 用于石膏钻井液FCLS 降粘剂3-12供选择SMT 降粘剂,降失水剂6-14SMC 降粘剂,降失水剂6-14KHm 降粘剂,降失水剂6-14CMC 降失水剂3-8供选择PAC 降失水剂3-8淀粉类衍生物降失水剂6-14SPNH 高温降失水剂5-15 用于>3500m的井SMP 高温降失水剂5-15RH-3 润滑剂10-30烧碱PH调节3-84、含盐量为8%-12%的盐水钻井液配方材料和处理剂功 用 用量(kg/m 3) 备 注NaCl 提供NACL 按实际需求FCLS 降粘剂 4-8供选择 SMT 降粘剂,降失水剂 8-15 SMC 降粘剂,降失水剂8-15 SMK 降失水剂 10-20 CMC 降失水剂 8-12 PAC 降失水剂 4-8 淀粉类衍生物降失水剂 10-15 SPNH 高温降失水剂 10-20 用于>3500m SMP-2 高温降失水剂10-20 RH-3 润滑剂 15-30 烧碱 PH 调节 5-12 FT-1 井壁稳定 5-20 Defoam 消泡剂 0.1-0.3 QS-2桥堵剂40-605、KCl聚合物钻井液的配方材料和处理剂功用用量(kg/m3)备注KCl 提供K+ 70-110KOH 调节PH,提供K+ 8-15包被增稠剂PHPA,M.W.=3×106按实际需求供选择PHPA,M.W.=(0.包被增稠剂8~1.2) ×107KPAM 包被增稠剂10-20NH4-HPAN 降粘剂,降失水剂3-6PAC 降失水剂3-6CMC 降失水剂3-6供选择SPNH 高温降失水剂5-20 用于>3500m MMH 胶凝剂3-5 供选择XC 胶凝剂3-5RH-3 润滑剂15-30FT-1 井壁稳定5-206、聚合物—磺酸盐—MMH钻井液的配方材料和处理剂功用用量(kg/m3)备注K-PAM 包被增稠剂6-10PAC-141 包被增稠剂6-10 供选择FA-367 包被增稠剂6-10NH4-HPAN 降粘剂,降失水剂3-8PAC 降失水剂3-6CMC 降失水剂3-7 供选择SPNH 高温降失水剂5-15用于>3500m SMP 高温降失水剂5-15SMT 高温降粘剂5-15XY-27 降粘剂3-8MMH 胶凝剂3-6烧碱调节PH 3-5 调节PH=9~10.5 RH-3 润滑剂15-20FT-1 井壁稳定15-207、聚合物—MMH钻井液的配方材料和处理剂功用用量(kg/m3)备注K-PAM 包被增稠剂6-10PHPA 包被增稠剂6-10FA-367 包被增稠剂6-10 供选择HPAN 降粘剂,降失水剂3-6PAC 降失水剂3-6 供选择CMC 降失水剂3-6XY-27 降粘剂3-8MMH 胶凝剂3-5烧碱调节PH 3-5RH-3 润滑剂15-20FT-1 井壁稳定5-208、聚合醇钻井液配方型号材料和处理剂功用用量(kg/m3)备注I型PAC-141 包被增稠剂 1.5-3.52200~3500m时使用NH4-HPAN 降粘剂,降失水剂 5.0-8.0PAC 降失水剂 2.5-4.0聚合醇井壁稳定和润滑剂 3.0-5.0II型FA-367 包被增稠剂 1.5-3.03500m或更深的井使用PAC 降失水剂 2.5-4.0SMP 高温降失水剂15.0-25.0SMT 降粘剂15.0-30.0聚合醇井壁稳定和润滑剂 3.0-5.09、硅基钻井液配方材料和处理剂功用用量(kg/m3)备注KPAM 包被增稠剂4-6硅酸盐页岩抑制剂40-80FCLS 降粘剂3-8 供选择NH4-HPAN 降粘剂,降失水剂3-8PAC 降失水剂4-6 供选择CMC 降失水剂4-6MMH 胶凝剂3-5XY-27 降粘剂3-8 供选择FT-1 井壁稳定5-20 供选择10、甲酸盐钻井液配方材料和处理剂功用用量(kg/m3)备注KPAM 包被增稠剂10-15 供选择PAC-141 包被增稠剂10-15MMH 胶凝剂3-5XC 胶凝剂20-30PAC 降失水剂4-6 供选择CMC 降失水剂4-6SMP 高温降失水剂20-40 用于深井磷酸三丁酯消泡剂2-5加重材料加重剂根据需要10、解卡剂配方材料名称配方A 配方B规格用量规格用量柴油0#或10# 100m3 0#或70# 100 m3氧化沥青软化点150℃80目粉状12t 软化点150℃80目粉状20t有机土80-100目 1.6t 胶体率90% 3t油酸酸价190-205碘价60-100 1.8t 酸价190-205碘价60-1002t快T 渗透力为标准的100±5%1.6t 1.6 石灰120目 3.0 120目40t 烷基苯/ /2.0t SPAN-80 / / 0.5t 水 5.0m3 1/50重铬酸钠溶液 5.0 m3重晶石200目密度≥4.20g/cm3 加至需要的密度200目密度≥4.20g/cm3加至需要的密度11 / 11。
常见的钻井液体系王宝田

•
高聚物产生絮凝作用,必须具备以下几个条件
(1)高聚物必须是可溶性的。 (2)高聚物分子必须能和悬浮体颗粒发生吸附,因此要求大
分子上有能产生吸附的基团,如羧基、胺基、羟基、醚胺基 等。 (3)高聚物必须是线型的,并有一个适合于分子伸展的条件 。 (4)高聚物必须有一定的长度,使其能将一部分吸附于颗粒 上,而另一部分则伸进溶液中,以便吸附另外的颗粒,产生 桥联。 (5)悬浮颗粒表面必须有空缺位置,以供高聚物架桥时吸附 。
•
三、不分散低固相钻井液
• 使用情况 • 无机絮凝剂与有机絮凝剂的比较 • 聚丙烯酰胺的絮凝机理
•
• 最常用的处理剂有三大类: (1)聚丙烯酰胺及其衍生物:此种处理剂产品较 多,分子量与水解度也是变化多端,且可形成不同 无机盐类,如钠、钾、钙等,亦可进行磺化形成磺 化产品,从功用上来看,有的是全絮凝剂,有的作 选择性絮凝剂,还有的作为降滤失剂及流变性调节 剂。我国主要采用以这类剂为主的不分散聚衔镒昃
•
3.铁铬木质素磺酸盐的作用
• 铁铬盐的性质如下:
(1)铁铬盐基本不电离,它能溶于碱性、中性和酸性的水溶液 当中,有较高的抗污染能力。
(2)铁铬盐的水溶性取决于磺化度,磺化度愈高水溶性愈大, 牡丹江化工厂铁铬木质素磺酸盐木质素磺化度为5%~6%, 也有的磺化度为9%。磺化度低于某一极限值,铁铬盐就不 能溶于水。
散转变。表现在钻井液的性能上是粘度、切力上升很快,
含盐3%时达到最大值。NaC1量继续增加时,挤压双电层
现象更严重,电动势进一步降低,水化膜变得极薄。到7%
以后粘土颗粒发生聚集沉降,在这种情况下,粘度切力降
至很低。滤失量一直上升。钻井液稳定性丧失。如果在粘
土颗粒发生聚集下沉以前的粗分散状态时,加化学试剂把
有机硅钻井液体系介绍

有机硅钻井液体系介绍有机硅钻井液体系又称有机硅钻井泥浆,是一种由有机硅聚合物为主要成分的钻井液体系。
有机硅钻井液由有机硅润滑剂、胶体成分和控制性能助剂等组成,具有高温稳定性、高胶体性能和低毒性等优点,在深水和高温井中广泛应用。
本文将对有机硅钻井液体系的组成、性能以及应用领域进行详细介绍。
一、有机硅钻井液体系的组成:1.有机硅润滑剂:有机硅润滑剂是有机硅钻井液的主要成分,它具有很高的稳定性和润滑性能。
有机硅润滑剂可分为硅烷类和聚硅氧烷类两种,硅烷类有机硅润滑剂具有一定的溶胀性,可以改善润滑效果,聚硅氧烷类有机硅润滑剂具有较高的温度稳定性,能够适应高温井环境的要求。
2.胶体成分:胶体成分是有机硅钻井液体系的重要组成部分,它可以形成胶体颗粒和胶体胶束,增加润滑性能和稳定性。
常用的胶体成分有胶体硅胶、云母和矿泉粉等。
3.控制性能助剂:控制性能助剂主要通过调整粘度、密度和滤失等性能指标来满足钻井作业的要求。
控制性能助剂包括凝胶剂、增压剂、分散剂和抗静电剂等。
二、有机硅钻井液体系的性能:1.高温稳定性:有机硅钻井液具有较高的热稳定性,能够适应高温井环境。
有机硅钻井液在高温下不会发生分解,并且能够保持较好的润滑性能和稳定性。
2.高胶体性能:有机硅钻井液具有良好的胶体性能,能够形成稳定的胶体颗粒和胶体胶束。
这些胶体颗粒和胶体胶束能够有效降低钻井液的摩擦阻力,改善钻井液的润滑性能。
3.低毒性:有机硅钻井液相对于传统钻井液来说,具有较低的毒性。
有机硅钻井液中的有机硅润滑剂和胶体成分对环境的影响较小,在深水和高温井中使用时更加安全。
三、有机硅钻井液体系的应用领域:有机硅钻井液体系在深水和高温井中具有广泛的应用。
由于其高温稳定性和高胶体性能,有机硅钻井液能够适应深水和高温井环境的要求,减少钻井事故的风险。
同时,有机硅钻井液具有低毒性的特点,可以在环保限制较严格的地区使用。
总之,有机硅钻井液体系是一种由有机硅聚合物为主要成分的钻井液体系,具有高温稳定性、高胶体性能和低毒性等优点。
钻井液的组成和分类

钻井液的组成和分类钻井液的组成钻井液是由分散介质(连续相)、分散相和化学处理剂组成的分散体。
例如,以水为连续相的水基钻井液是由水(淡水或盐水)膨润土、各种处理剂、加重材料以及钻屑所组成的多相分散体系。
以油为连续相的油包水钻井液是由油(柴油或矿物油)、水滴(淡水或盐水)、乳化剂、润湿剂、亲油固体等处理剂所形成的乳状液分散体系。
分散体系的分类分散体系是指一种或多种物质分散在另一种物质中所形成的体系。
被分散的物质称为分散相(不连续相)另一种物质称为分散介质连续相)。
热力学上把体系中物理性质和化学性质完全相同的均匀部分称为相。
相与相之间有明显的相界面。
例如,膨润土颗粒分散在水中,膨润土颗粒为分散相,水为分散介质,黏土颗粒和水之间有明显的分界面;水滴分散在油中,水是分散相,油是分散介质,水滴和油之间有明显的分界面。
分散体系按分散相颗粒的大小分为以下几类:1.分子分散体系。
分子分散体系是指溶质以小分子、原子或离子状态分散在溶剂中形成的体系,没有界面,是均匀的单相,其粒子直径在Inrn以下。
通常把这种体系称为真溶液。
2.胶体分散体系。
胶体分散体系是指分散相颗粒的直径小于IOOnm的分散体系。
其目测是均匀的,但实际是相不均匀体系(也有将分散相颗粒的直径为I-IOOOnm的颗粒归入胶体范畴),如AgI溶胶等。
3.粗分散体系。
粗分散体系是指当分散相颗粒的直径大于100nm时,目测是混浊不均匀体系,放置后会沉淀或分层,如浑浊的河水等。
钻井液中的分散相颗粒一般介于胶体分散体系与粗分散体系之间,其稳定性规律可以通过研究胶体体系稳定性规律来获得。
钻井液的分类钻井液按密度可分为非加重钻井液和加重钻井液;按其与黏土水化作用可分为非抑制性钻井液和抑制性钻井液力安其固相含量来分)各固相含量较低的称为低固相钻井液,基本不含固相的称为无固相钻井液;根据分散(流体)介质不同,分为水基钻井液、油基钻井液、气体型钻井流体和合成基钻井液4种类型。
石油钻井液配方规范

石油钻井液配方规范随着石油行业的快速发展,石油钻井液在勘探和生产活动中扮演着重要的角色。
为了确保钻井作业的安全和高效进行,制定和遵守石油钻井液配方规范至关重要。
本文将从石油钻井液的基本原理、配方材料和常见规范三个方面探讨石油钻井液配方规范。
一、石油钻井液的基本原理石油钻井液是一种复杂的体系,由基础液体、添加剂和固相颗粒组成。
其主要功能包括润滑和冷却钻头、控制地层压力、传递钻井液在井内的孔隙中以稳定井壁等。
合理的钻井液配方能够有效提高石油钻井作业的效率和安全性。
二、配方材料1. 基础液体:基础液体的选择通常基于井的地质条件、温度等因素。
常见的基础液体包括水基液体和油基液体。
在选择基础液体时需要考虑其可得性、价格、环境影响等因素。
2. 添加剂:添加剂用于改变钻井液的性质和性能,常见的添加剂包括增稠剂、分散剂、乳化剂、酸碱调节剂等。
不同类型的添加剂在配方中所起的作用不同,根据实际需要合理选择。
3. 固相颗粒:固相颗粒用于增加石油钻井液的密度、改变其流动性等。
根据井深、井底温度等因素选择合适的固相颗粒,并注意其尺寸分布、形状等。
三、常见规范1. 配方比例:石油钻井液的配方比例是指各配方材料在钻井液中的比例。
根据不同的井况、地质条件和钻井作业需求,制定合理的配方比例,以保证钻井液的性能满足要求。
2. 流变性能:钻井液的流变性能对于钻井作业至关重要。
规范中应指定钻井液的粘度、流动性和悬浮性等要求,并设计相应的测试方法和标准,以确保钻井液能够顺利地在井中循环。
3. 密度控制:密度是石油钻井液的另一个重要参数。
根据井深、地层压力、井壁稳定性等因素,规范应明确石油钻井液的密度要求,并控制在合适的范围内。
4. 环保要求:石油钻井液的配方应符合环保要求,减少对环境的不良影响。
规范中应明确有关废液处理、固体废弃物处置等方面的要求,推动绿色钻井液的开发和应用。
总结:石油钻井液配方规范对于石油行业的发展至关重要。
制定合理的石油钻井液配方规范能够提高钻井作业的效率和安全性,同时也能减少对环境的不良影响。
第二章 钻井液体系

第二章钻井液体系目前,国内常用的钻井液体系分为水基、油基和含气钻井液三大系列。
水基钻井液因使用方便、配制简单、价格低廉、对环境污染较小而应用广泛;油基钻井液由于其良好的抗泥页岩水化膨胀缩径性能而主要应用于泥页岩水化缩径严重的区块和对油气层保护要求较高的井;含气钻井液主要用于钻易漏的低压底层。
上世纪90年代又成功发展出合成基钻井液、超低渗透钻井液和不渗透钻井液并在大量井现场应用中取得良好的效果。
合成基钻井液对环境污染更小,并具有部分油基钻井液的特性,能很好的保持井壁稳定;超低渗透钻井液和不渗透钻井液在防止地层损害和提高油气井产量上有较突出的效果而得到较广泛的应用;各种钻井液体系是人们在钻井液技术发展过程中不断实践创造和完善的,不要死记硬背,生搬硬套,而应该对其熟练掌握、灵活应用,并在解决所遇到的各种钻井液问题中不断总结,积累并不断的加以完善。
一、膨润土浆(坂土浆)1、膨润土浆是常用的水基钻井液的基础结构,用于代替清水开钻,形成泥饼以加固上部地层井壁防止冲坏基础和防止井漏;也用于储备钻井液,在钻井过程中各种事故复杂处理后钻井液量不足时用于做配制钻井液的基浆。
2、常规膨润土浆配方:(1)钠膨润土:水+ 0.1-0.2%烧碱+ 0.2-0.3 纯碱+ 6-10% 钠膨润土(2)钙膨润土:水+ 0.3-0.5%烧碱+ 8-12% 钙膨润土+ 纯碱(钙膨润土的6%)配置好水化24小时以后可加入0.1-0.3%的CMC-LV护胶降失水。
土是膨润土浆的基础结构,烧碱用于除去水中镁离子和调节膨润土浆PH值并促进膨润土水化,纯碱用于除去水中钙离子和促进膨润土水化;实际应用中,烧碱和纯碱的加量可根据配浆水中的钙镁离子含量来适当增减调节。
3、配置步骤(1)清淘干净一个配浆罐,用清水清洗干净后装入配浆水(配浆水要求总矿化度小于1000mg/L)。
(2)软化配浆水:检测配浆水中钙镁离子含量,根据钙镁离子含量加入纯碱、烧碱除去配浆水中钙镁离子,软化水质,以提高膨润土的造浆率,使配制出的膨润土浆有较理想的粘度。
常用钻井液配方

3、化学溶液钻井液是无粘土钻井液的主体类 型,它是由无机盐和不同种类的聚 合物组合而成,化学溶液具有一定的流变特性和 降滤失特性。 无机盐起的作用是: 与有机聚合物进行适度交联,以提高溶液的 粘度,降低溶液的滤失量; 调节溶液的矿化度,以平衡地层的化学活度, 抑制地层的膨胀分散或破碎坍塌; 调节溶液的pH值。
应用领域
在无水、缺水、干旱、沙漠、永冻地 区钻井; 在低压地层中钻进; 向井底输送气体,实现井底气动冲击 碎岩。
谢谢!
(4)该体系以其良好的稀释特性是的钻头水 眼粘度小,环空粘度打,有利于喷射钻井、优化 钻井钻头水马力的充分发挥,从而提高机械钻速。 (5)低密度、低固相、有利于实现近平衡压 力钻井 (6)抑制性强,且粘土微粒含量较低,滤液 对底层所含粘土矿物有抑 制膨胀作用,故可减轻对油气层的损害。
2)使用磺化沥青类页岩抑制剂稳定硬 脆性泥岩、少量高分子聚合物稳定伊/ 蒙混 层粘土矿物的机理来防止井壁坍塌。故具 有一定防塌能力。 3)在进入产层前通过使用磺化沥青及 超细碳酸钙运用屏蔽暂堵保护油层技 术进 行改造后,具有良好的保护诸层功能。
4)可容纳较多的固相,适合配置高密 度的钻井液密度可高达2.0克/厘米3 。 5)含有大量的分散剂,故亚微米固相 颗粒含量可达70%以上,对机械钻速有 一 定的影响。 6)可形成较致密的高质量滤饼,护壁 能力强。
4.推荐性能
5.使用环境
(1)主要用于水敏性强的易塌页岩层。 (2)适应温度:不分散型150℃;分散型 可达到180℃左右。故前者 用于钻3500~ 4000米深井用,而后者可用于钻6000米深 井。 (3)不分散型较适用于正常压力地层; 分散型可配较高的密度而用 于异常压力地 区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻井液体系和配方
不分散聚合物体系
不分散聚合物钻井液体系指的是经过具有絮凝及包被作用的有机高分子集合物处理的水基钻井液。
常用的不分散集合物钻井液类型大体有三种:及多元素聚合物体系、复合粒子性聚合物体系、阳离子聚合物体系。
1. 不分散聚合物体系特点
(1)具有很强的抑制性。
通过使用足量额高分子聚合物作为絮凝包被剂,实现强包被“被包”钻屑,在钻屑表面形成一层光滑的保护膜,抑制钻屑分散,使钻出的钻屑基本保持原状而不分散,以立于地面机械清除,从而实现低密度、低固相,提高钻速。
(2)具有较强的悬砂、携砂功能。
通过控制适当的般土,使聚合物钻井液形成较强的网架结构,确保其悬砂、携砂功能,满足井眼净化需求。
(3)通过使用磺化沥青、超细碳酸钙等降低泥饼渗透率,能偶获得良好的泥饼质量。
(4)该体系以其良好的稀释特性是的钻头水眼粘度小,环空粘度打, 有利于喷射钻井、优化钻井钻头水马力的充分发挥,从而提高机械钻速。
(5)低密度、低固相、有利于实现近平衡压力钻井
(6)抑制性强,且粘土微粒含量较低,滤液对底层所含粘土矿物有抑制膨胀作用,故可减轻对油气层的损害。
2. 配方
3. 技术关键1.加大包被剂用量(17人〃井眼平均约3.5千克/米,127 4〃井眼约3.0
千克/米),并采用2种以上包被剂复配以达互补增效功能,突然强包被, 抑制钻屑钻分散,防止钻屑粘聚包被剂以胶液形式钻进时细水长流式补充到井浆中。
2. 控制适当的般土含量以获得良好的流变性集携砂、悬砂功能(MBT最佳范
围为30〜45克/升)。
般土含量的控制以淡水预化般土浆形式需要时直接均匀补充道井浆中。
3. 使用磺化沥青(2%和超细碳酸钙(2%改善和提供聚合物钻井液的泥饼质量。
4. 使用足量的润滑剂RH-3(0.5%〜0.8%)及防泥包剂RH-4(0.3%〜0.5%),降
低磨阻,防止钻头泥包。
5. 使用适量的HPAN双聚铵盐等中小分子聚合物与高分子聚合物匹配(大/ 小分子
聚合物的最佳比例2.5〜3:1 ),降低滤失,有利于形成优质泥饼。
6. 不使用稀释剂。
4. 推荐性能
5. 使用环境
主要用于解决遇巨厚地址年代较晚的第三系强胶性泥岩地层(粘土矿物以伊
利石为主,其次为绿泥石和高岭石及少量伊利石、蒙脱石混层2000以上的地层)时所遇到的井眼缩小导致起下钻阻卡严重等复杂问题。
分散型聚合物体系——聚合物磺化体系
聚合物磺化钻井液指的是以磺化处理剂及少量聚合物作为主要处理剂配制成而成的水基钻井液。
1.体系特点
1)具有良好的高温稳定性,抗温可高达180C以上,适用于深井段、超深井段钻井。
2)使用磺化沥青类页岩抑制剂稳定硬脆性泥岩、少量高分子聚合物稳定伊/ 蒙混层粘土矿物的机理来防止井壁坍塌。
故具有一定防塌能力。
3)在进入产层前通过使用磺化沥青及超细碳酸钙运用屏蔽暂堵保护油层技术进行改造后,具有良好的保护诸层功能。
3 4)可容纳较多的固相,适合配置高密度的钻井液密度可高达 2.0克/厘米
5)含有大量的分散剂,故亚微米固相颗粒含量可达70鸠上,对机械钻速有一定的影响。
6)可形成较致密的高质量泥饼,护壁能力强。
3. 技术关键
1)使用少量高分子聚合物KPAM或PMNK80A51、SP-2、FA-367等)作为抑制剂,增强体系的抑制性,抑制泥页岩层层理裂缝水化分散。
2)使用磺化沥青FT-1填充、封堵、涂敷层理面及微裂缝,巩固井壁,抑制泥页岩水化分散。
3)使用SPNH SMP抗高温降滤失,同时以获得良好的高温稳定性。
4)使用SMT或者FCLS S制流变性。
5)使用超细碳酸钙与磺化沥青中大量的可变形粒子一起遵循三分之一架桥原理降低泥饼渗透率,提高泥饼质量,减少滤液侵入地层,从而起到在泥岩井段防塌,在砂岩井段防止压差卡钻和保护油气层的作用。
6)控制pH值10〜11,以利于分散剂充分发挥其效能。
7)控制适当的般土含量,以保证获得良好的流型和造壁型。
4. 推荐性能
5. 使用环境
1. )可用于超过4000米的深井;井底温度达160〜200C;
2. )适用于各种密度的加重钻井液(最高密度达 2.00克/里面3)
3. )异常压力地层
4. )不宜用于钻纯膏岩层
三.钾基(抑制性)钻井液体系
该体系是以聚合物的钾、铵盐及氧化钾为主处理机配制而成的防塌钻井液它主要是用来对付含有水敏性粘土矿物的易坍塌地层。
1. 体系特点
(1)对水敏性泥岩、页岩具有较好的防塌效果;
(2)抑制泥页岩造浆能力比较强
(3)对储层中的粘土矿物具有稳定作用;
(4)分散型钾基钻井液有较高的固相容限度
2. 配方
3. 技术关键
(1)滤液中K浓度应不低于500毫克/升,才能发挥应有的防塌作用;
(2)使用高分子聚合物KPAM?制泥页岩分散
(3)使用的降滤失剂最好也是各种小分子亮的聚合物钾、铵盐,如K-HPAN NH4-HPAN KHAM这样既可达到降滤失量及降粘切的目的,而
且可增强防塌能力。
(4)由于过多的OH可以分散剥落页岩,影响防塌效果,故应维持pH 值在8〜10之间。
(5)应控制较低的API滤失量(<5毫升),尤其HTHP滤失量不能超过15毫升。
(6)应控制好交流性,降低激动压力,增加携岩能力,以便维持较低的反速,避免冲刷地层过剧而引起易塌地层剥落。
4. 推荐性能
5. 使用环境
(1) 主要用于水敏性强的易塌页岩层
(2) 适应温度:不分散型150C;分散型可达到180C左右。
故前者
用于钻3500〜4000米深井用,而后者可用于钻6000米深井。
(3) 不分散型较适用于正常压力地层;分散型可配较高的密度而用于
异常压力地区。
(4) 对硬脆性微裂缝页岩的防坍塌效果不够理想,应辅助沥青类处理
剂才能取得满意效果。
(5) 可使用语造浆较强的粘土及软泥岩层地层,能获得较低的固相含
量,较小的钻井液密度,有利于提供钻速。
(6) 该体系主要用于钻那些不允许使用沥青类防塌剂的易坍塌泥页岩地层。
钻井液性能
1,剪切稀释性表观粘度随剪切速率增大而降低的特性。
原因是,环形空间:丫低,n a大,有利于携带钻屑,钻头水眼:丫大,
n a小,有利于水力破岩
2,清水应用领域:
在稳定性很好且不漏失的岩石中钻进,不用泥浆而用清水作为钻井液;
在一些漏失严重地层中,当地表水源非常丰富时,用清水顶漏钻进,这对用其他钻井液来说是不可能的;
在一些富含粘土的地层中钻井,清水水化井壁地层而形成自然造浆,若井深不大,钻井期间不会明显垮孔,则用清水自然造浆是最为经济有效的措施。
3,化学溶液钻井液是无粘土钻井液的主体类型,它是由无机盐和不同种类的聚合物组合而成,化学溶液具有一定的流变特性和降失水特性。
无机盐起的作用是:
与有机聚合物进行适度交联,以提高溶液的粘度,降低溶液的失水量;调节溶液的矿化度,以平衡地层的化学活度,抑制地层的膨胀分散或破碎坍塌;调节溶液的pH 值。
聚合物起的作用是:
增粘或增稠。
聚合物的分子量愈大,则溶液的粘度愈高。
降失水。
聚合物通过与无机盐的适度交联可降低溶液的滤失量。
为降失水常加入中小分子的聚合物,如CMC, HPAN等。
絮凝作用。
聚合物如聚丙烯酰胺等对混进溶液的岩屑有较好的絮凝作用,使溶液
在使用过程中能维持无固相或尽量低的固相含量。
防塌作用。
聚合物与无机盐一起,通过多点吸附架桥,化学活度平衡等在孔壁上成膜而对孔壁起抑制防塌作用。
润滑作用。
聚合物如LG植物胶都有一定的润滑及减阻作用,为提高溶液的润滑性,可辅助加入适量的表面活性剂。
4,基本特征低密度可压缩
分类
干气体用干空气或天然气体作为钻井循环介质。
工艺相对简单,但是由于气
体悬携岩屑能力差,因此需要很大的环空流速,即需要较大的送气量。
雾状体系气体是连续介质,液体是分散相的分散体系。
在井内水量较多的情况下,原
用的空气循环钻井转变为这种循环体系。
钻井泡沫分散相是大量气体、连续相是少量液体构成的分散体系。
它在悬携岩屑能力等诸多方面比空气钻井优越。
充气泥浆在泥浆中加入发泡剂、稳泡剂,经剧烈混合后形成大量微小泡沫高度分散在泥浆中的低比重泥浆体系。
应用领域
在无水、缺水、干旱、沙漠、永冻地区钻井;
在低压地层中钻进;
向井底输送气体,实现井底气动冲击碎岩。