18届高考物理一轮复习专题光电效应波粒二象性导学案2
2018年高考物理一轮复习专题13.1光电效应波粒二象性精讲深剖201711023119

专题13.1 光电效应 波粒二象性1.(2017新课标Ⅲ 19)19.在光电效应试验中,分别用频率为a v ,b v 的单色光a 、b 照射到同种金属上,测得相应的遏止电压分别为a U 和b U 、光电子的最大初动能分别为ka E 和kb E 。
h 为普朗克常量。
下列说法正确的是 A .若a b v v >,则一定有a b U U < B .若a b v v >,则一定有ka kb E E > C .若a b U U <,则一定有ka kb E E <D .若a b v v >,则一定有a ka b kb hvE hv E ->- 【答案】BC【考点定位】光电效应【名师点睛】本题主要考查光电效应。
发生光电效应的条件是入射光的频率大于金属的极限频率,光的强弱只影响单位时间内发出光电子的数目;准备判断光电效应中的最大初动能、频率和遏止电压之间的关系,逸出功由金属本身决定,与光的频率无关。
2.(2017海南,7)(多选)三束单色光1、2和3的波长分别为λ1、λ2和λ3(λ1>λ2>λ3)。
分别用着三束光照射同一种金属。
已知用光束2照射时,恰能产生光电子。
下列说法正确的是A .用光束1照射时,不能产生光电子B .用光束3照射时,不能产生光电子C .用光束2照射时,光越强,单位时间内产生的光电子数目越多D .用光束2照射时,光越强,产生的光电子的最大初动能越大 【答案】AC【解析】依据波长与频率的关系:,因λ1>λ2>λ3,那么γ1<γ2<γ3;由于用光束2照射时,恰能产生光电子,因此用光束1照射时,不能产生光电子,而光束3照射时,一定能产生光电子,故A 正确,B 错误;用光束2照射时,光越强,单位时间内产生的光电子数目越多,而由光电效应方程:E km =h γ﹣W ,可知,光电子的最大初动能与光的强弱无关,故C 正确,D 错误。
3.(2017海南,7)(多选)三束单色光1、2和3的波长分别为λ1、λ2和λ3(λ1>λ2>λ3)。
第17章波粒二象性第2节光的粒子性导学案

第17章 波粒二象性第2节光的粒子性 导学案一、光电效应及其实验规律1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象. 2.光电子:光电效应中发射出来的电子.3.光电效应的实验规律(1)存在着饱和电流:在光的颜色不变的情况下,入射光越强,饱和电流越大.(2)存在着遏止电压和截止频率:入射光的频率低于截止频率时不能(填“能”或“不能”)发生光电效应.(3)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9s.4.逸出功:使电子脱离某种金属所做功的最小值,用W 0表示,不同金属的逸出功不同.二、光子说及爱因斯坦的光电效应方程1.光子说:在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν.其中h =6.63×10-34 J·s ,称为普朗克常量. 2.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.3.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c .(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.4.光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能.三、康普顿效应1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.2.康普顿效应美国物理学家康普顿在研究石墨对X 射线的散射时,发现在散射的X 射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.4.光子的动量(1)表达式:p =h λ. (2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.班级: 姓名:知识点一光电效应现象及其实验规律规律探究:如图甲是研究光电效应现象的装置图,图乙是研究光电效应的电路图,请结合装置图及产生的现象回答下列问题:(1)在甲图中发现,利用紫外线照射锌板无论光的强度如何变化,验电器都有张角,而用红光照射锌板,无论光的强度如何变化,验电器总无张角,这说明了什么?(2)在乙图中光电管两端加正向电压,用一定强度的光照射时,若增加电压,电流表示数不变,而光强增加时,同样电压,电流表示数会增大,这说明了什么?(3)在乙图中若加反向电压,当光强增大时,遏止电压不变,而入射光的频率增加时,遏止电压却增加,这一现象说明了什么?(4)光电效应实验表明,发射电子的能量与入射光的强度无关,而与光的频率有关,试用光子说分析原因.例1. (多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生练习1. (多选)如图所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是( )A .入射光太弱B .入射光波长太长C .光照时间太短D .电源正、负极接反【小结】: 1.光电效应的实质:光现象――――――――――――――→转化为电现象.2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的光电子,其本质还是电子.4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关.5.保持入射光频率不变,入射光越强,单位时间内发射的光电子数越多.6.光的强度与饱和光电流:饱和光电流与光强有关,与所加的正向电压大小无关.且饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的.对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间不是简单的正比关系.知识点二 光电效应方程的理解和应用规律探究: 用如图所示的装置研究光电效应现象.用光子能量为2.75 eV 的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑动触头,发现当电压表的示数大于或等于1.7 V 时,电流表示数为0.(1)光电子的最大初动能是多少?遏止电压为多少?(2)光电管阴极的逸出功又是多少?(3)当滑动触头向a 端滑动时,光电流变大还是变小?(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢?例2. (多选)在光电效应实验中,分别用频率为νa 、νb 的单色光a 、b 照射到同种金属上,测得相应的遏止电压分别为U a 和U b ,光电子的最大初动能分别为E k a 和E k b .h 为普朗克常量.下列说法正确的是( )A .若νa >νb ,则一定有U a <U bB .若νa >νb ,则一定有E k a >E k bC .若U a <U b ,则一定有E k a <E k bD .若νa >νb ,则一定有hνa -E k a >hνb -E k b练习2. 如图所示,当开关K 断开时,用光子能量为2.5 eV 的一束光照射阴极P ,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V 时,电流表读数仍不为零.当电压表读数大于或等于0.6 V 时,电流表读数为零.由此可知阴极材料的逸出功为( )A .1.9 eVB .0.6 eVC .2.5 eVD .3.1 eV【小结】:1.光电效应方程E k =hν-W 0的四点理解(1)式中的E k 是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能大小可以是0~E k 范围内的任何数值.(2)光电效应方程实质上是能量守恒方程.①能量为ε=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.②如要克服吸引力做功最少为W 0,则电子离开金属表面时动能最大为E k ,根据能量守恒定律可知:E k =hν-W 0.(3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即E k =hν-W 0>0,亦即hν>W 0,ν>W 0h=νc ,而 νc =W 0h恰好是光电效应的截止频率. 2.光电效应规律中的两条线索、两个关系:(1)两条线索:(2)两个关系:光照强度大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→产生光电子的最大初动能大.知识点三 光电效应方程图像问题例3. 在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示,则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光的频率大于丙光的频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能练习3. 在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图所示.若该直线的斜率和纵截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【小结】:光电效应图线的理解和应用1.E k-ν图线:如图甲所示是光电子最大初动能E k随入射光频率ν的变化图线.这里,横轴上的截距是阴极金属的极限频率;纵轴上的截距是阴极金属的逸出功的负值;斜率为普朗克常量(E k=hν-W0,E k是ν的一次函数,不是正比例函数).2.I-U曲线:如图乙所示是光电流I随光电管两极板间电压U的变化曲线,图中I m为饱和光电流,U c为遏止电压.说明:(1)由E k=eU c和E k=hν-W0知,同一色光,遏止电压相同,与入射光强度无关;频率越大,遏止电压越大;(2)在入射光频率一定时,饱和光电流随入射光强度的增大而增大.【课堂巩固练习】1.(多选)如图所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是()A.用紫外线照射锌板,验电器指针会发生偏转B.用红光照射锌板,验电器指针一定会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷2.利用光电管研究光电效应实验如图所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则()A.用紫外线照射,电流表不一定有电流通过B.用红光照射,电流表一定无电流通过C.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,电流表示数可能不变3.如图所示是光电效应中光电子的最大初动能E k与入射光频率ν的关系图象.从图中可知()A.E k与ν成正比B.入射光频率必须小于极限频率νc时,才能产生光电效应C.对同一种金属而言,E k仅与ν有关D.E k与入射光强度成正比4.在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为______.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______.已知电子电荷量的绝对值、真空中的光速和普朗克常量分别为e、c和h.第17章波粒二象性第2节光的粒子性课后练习班级:姓名:1.关于光电效应,下列说法正确的是()A.当入射光的频率低于截止频率时,不能发生光电效应B.只要光照射的时间足够长,任何金属都能发生光电效应C.光电效应现象中存在极限频率,导致含有光电管的电路存在饱和电流D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多2.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么( )A .从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B .逸出的光电子的最大初动能将减小C .单位时间内从金属表面逸出的光电子数目将减少D .有可能不发生光电效应3.关于光电效应现象,下列说法中正确的是( )A .只有入射光的波长大于该金属的极限波长,光电效应才能发生B .光电子的最大初动能跟入射光的强度成正比C .发生光电效应的时间一般都大于10-7 sD .保持入射光频率不变,发生光电效应时,单位时间内从金属内逸出的光电子数与入射光的强度成正比4.如图,用一定频率的单色光照射光电管时,电流表指针会发生偏转,则( )A .电源右端应为正极B .流过电流表G 的电流大小取决于入射光的频率C .流过电流表G 的电流方向是a 流向bD .普朗克解释了光电效应并提出光子能量ε=hν5.(多选)已知能使某金属产生光电效应的极限频率为νc ,则( )A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνcC .当入射光的频率ν大于νc 时,若ν增大,则逸出功增大D .当入射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍6.分别用波长为λ和23λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1∶2,以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为( )A.hc 2λB.3hc 2λC.3hc 4λ D .2hλc7.(多选)如图所示,两平行金属板A 、B 间电压恒为U ,一束波长为λ的入射光射到金属板B 上,使B 板发生了光电效应,已知该金属板的逸出功为W 0,电子的质量为m ,电荷量的绝对值为e ,普朗克常量为h ,真空中光速为c ,下列说法中正确的是( )A .入射光子的能量为h c λB .到达A 板的光电子的最大动能为h c λ-W 0+eU C .若增大两板间电压,B 板没有光电子逸出D .若减小入射光的波长一定会有光电子逸出8.(多选)在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示,若该直线的斜率和纵截距分别为k 和-b ,电子电荷量的绝对值为e ,则( )A .普朗克常量可表示为k eB .若更换材料再实验,得到的图线的k 不改变,b 改变C .所用材料的逸出功可表示为ebD .b 由入射光决定,与所用材料无关9.研究光电效应的电路如图所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流.下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( )10.(多选)美国物理学家密立根利用图5甲所示的电路研究金属的遏止电压U c 与入射光频率ν的关系,描绘出图乙中的图象,由此算出普朗克常量h ,电子电荷量的绝对值用e 表示,下列说法正确的是( )A.入射光的频率增大,测遏止电压时,应使滑动变阻器的滑片P向M端移动B.增大入射光的强度,光电子的最大初动能也增大C.由U c-ν图象可知,这种金属截止频率为νcD.由U c-ν图象可得普朗克常量的表达式为h=U1eν1-νc11.小明用阴极为金属铷的光电管观测光电效应现象,实验装置示意图如图甲所示.已知普朗克常量h=6.63×10-34 J·s.(1)图甲中电极A为光电管的____________(选填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U c与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=________Hz,逸出功W0=________J;(3)如果实验中入射光的频率ν=7.00×1014 Hz,则产生的光电子的最大初动能E k=________J.第17章波粒二象性第2节光的粒子性导学案答案知识点一光电效应现象及其实验规律规律探究:(1)金属能否发生光电效应,决定于入射光的频率,与入射光的强度无关.(2)保持入射光频率不变,发生光电效应时,飞出的光电子个数只与光的强度有关.(3)光电子的能量与入射光频率有关,与光的强度无关.(4)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量,而且这个传递能量的过程只能是一个光子对应一个电子的行为.如果光的频率低于极限频率,则光子提供给电子的能量不足以克服原来的束缚,就不能发生光电效应.而当光的频率高于极限频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在.例1.答案AC解析保持入射光的频率不变,入射光的光强变大,单位时间内光电子变多,饱和光电流变大,A对;据爱因斯坦光电效应方程E k=hν-W0可知,入射光的频率变高,光电子的最大初动能变大,饱和光电流不变,B错,C对;当hν<W0时没有光电流产生,D错.故选A、C.练习1.答案BD解析 金属存在截止频率,超过截止频率的光照射金属时才会有光电子射出.射出的光电子的动能随频率的增大而增大,动能小时不能克服反向电压,也不会有光电流.入射光的频率低于截止频率,不能产生光电效应,与光照强弱无关,选项B 正确,A 错误;电路中电源正、负极接反,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,D 正确;光电效应的产生与光照时间无关,C 错误. 知识点二 光电效应方程的理解和应用规律探究:(1)1.7 eV 1.7 V(2)W 0=hν-E k =2.75 eV -1.7 eV =1.05 eV(3)变大 (4)变大 变大例2. 答案 BC解析 由爱因斯坦光电效应方程得,E k =hν-W 0,由动能定理得,E k =eU ,若用a 、b 单色光照射同种金属时,逸出功W 0相同.当νa >νb 时,一定有E k a >E k b ,U a >U b ,故选项A 错误,B 正确;若U a <U b ,则一定有E k a <E k b ,故选项C 正确;因逸出功相同,有W 0= hνa - E k a = hνb - E k b ,故选项D 错误. 练习2. 答案 A解析 由题意知光电子的最大初动能为E k =eU c =0.6 eV所以根据光电效应方程E k =hν-W 0可得W 0=hν-E k =(2.5-0.6) eV =1.9 eV .例3. 答案 B解析 当光电管两端加上遏止电压光电流为零时,有12m v m 2=eU c ,对同一光电管(逸出功W 0相同)使用不同频率的光照射,有hν-W 0=12m v m 2,两式联立可得hν-W 0=eU c ,丙光的遏止电压最大,则丙光的频率最大,甲光的频率等于乙光的频率,A 、C 错误;由λ=c ν可见λ丙<λ乙,B 正确;又由hν-W 0=12m v m 2或由12m v m 2-0=eU c 可知丙光对应的最大初动能最大,D 错误.练习3. 答案 ek -eb解析 光电效应中,入射光子能量hν,克服逸出功W 0后多余的能量转换为电子的动能,由eU c =hν-W 0,整理得U c =h e ν-W 0e ,斜率即h e=k ,所以普朗克常量h =ek ,纵截距为b ,即eb =-W 0,所以逸出功W 0=-eb .【课堂巩固练习】1. 答案 AD2. 答案 D解析 因紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,选项A 错误.因不知阴极K 的截止频率,所以用红光照射时,不一定发生光电效应,所以选项B 错误.即使U AK =0,电流表中也可能有电流通过,所以选项C 错误.当滑动触头向B 端滑动时,U AK 增大,阳极A 吸收光电子的能力增强,光电流会增大,直至达到饱和电流.若在滑动前,电流已经达到饱和电流,那么即使增大U AK ,光电流也不会增大,所以选项D 正确.3. 答案 C解析 由E k =hν-W 0知C 正确,A 、B 、D 错误.4. 答案 hc λ0 hc (λ0-λ)eλ0λ解析 由光电效应方程知,光电子的最大初动能E k =hν-W 0,其中金属的逸出功W 0=hνc ,又由c =λν知W 0=hc λ0,用波长为λ的单色光照射时,其E k =hc λ-hc λ0=hc λ0-λλ0λ.又因为eU c =E k ,所以遏止电压U c =E k e=hc (λ0-λ)eλ0λ. 第2节光的粒子性 课后练习1. 答案 A2. 答案 C解析 发生光电效应几乎是瞬时的,选项A 错误.入射光的强度减弱,说明单位时间内的入射光子数目减少;频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B 错误.入射光子的数目减少,逸出的光电子数目也就减少,故选项C 正确.入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的极限频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D 错误.3. 答案 D解析 由ε=hν=h c λ知,当入射光波长大于极限波长时,不能发生光电效应,A 错;由E k =hν-W 0知,最大初动能与入射光频率有关,与入射光的强度无关,B 错;发生光电效应的时间一般不超过10-9 s ,C 错.4. 答案 C解析 发生光电效应时,电子从光电管右端运动到左端,电流的方向与电子定向移动的方向相反,所以流过电流表G 的电流方向是a 流向b ;光电管两端可能是正向电压也可能是反向电压,所以电源右端可能为正极,也可能为负极;流过电流表G 的电流大小取决于入射光的强度,与入射光的频率无关;爱因斯坦解释了光电效应并提出光子能量ε=hν.5. 答案 AB解析 因入射光的频率大于或等于极限频率时会产生光电效应,所以A 正确;因为金属的极限频率为νc ,所以逸出功W 0=hνc ,再由E k =hν-W 0得,E k =2hνc -hνc =hνc ,B 正确;因为逸出功是光电子恰好逸出时需要做的功,对于同种金属是恒定的,故C 错误;由E k =hν-W 0=hν-hνc =h (ν-νc )可得,当ν增大一倍时:E k ′E k =2ν-νc ν-νc≠2,故D 错误. 6. 答案 A解析 根据光电效应方程得E k1=h c λ-W 0① E k2=h c 23λ-W 0② 又E k2=2E k1③联立①②③得W 0=hc 2λ,A 正确. 7. 答案 ABD解析 根据ε=hν,而ν=c λ,则光子的能量为h c λ,故A 正确;光电子逸出的最大初动能E km =h c λ-W 0,根据动能定理,E km ′-E km =eU ,则到达A 板的光电子的最大动能为E km ′=h c λ-W 0+eU ,故B 正确;若增大两板间电压,不会影响光电效应现象,仍有光电子逸出,故C 错误;若减小入射光的波长,那么频率增大,一定会有光电子逸出,故D 正确.8. 答案 BC解析 根据光电效应方程E k =hν-W 0,以及E k =eU c 得:U c =hνe -W 0e ,图线的斜率k =h e,解得普朗克常量h =ke ,故A 错误;纵轴截距的绝对值b =W 0e,解得逸出功W 0=eb ,故C 正确;b 等于逸出功与电子电荷量绝对值的比值,而逸出功与材料有关,则b 与材料有关,故D 错误;更换材料再实验,由于逸出功变化,可知图线的斜率不变,纵轴截距改变,故B 正确.故选B 、C.9. 答案 C解析 用频率相同的光照射同一金属时,发射出的光电子的最大初动能相同,所以遏止电压相同;饱和光电流与光的强度有关,光的强度越大,饱和光电流越大,故选项C 正确.10. 答案 CD解析 入射光的频率增大,光电子的最大初动能增大,则遏止电压增大,测遏止电压时,应使滑动变阻器的滑片P 向N 端移动,故A 错误;根据光电效应方程E k =hν-W 0知,光电子的最大初动能与入射光的强度无关,故B 错误;根据E k =hν-W 0=eU c ,解得U c =hνe -hνc e ,图线的斜率k =h e =U 1ν1-νc ,则h =U 1e ν1-νc,当遏止电压为零时,ν=νc ,故C 、D 正确.11. 答案 (1)阳极(2)5.15×1014 3.41×10-19 (3)1.23×10-19解析 (1)在光电效应中,电子向A 极运动,故电极A 为光电管的阳极.(2)由题图乙可知,铷的截止频率νc 为5.15×1014 Hz ,逸出功W 0=hνc =6.63×10-34×5.15×1014 J ≈3.41×10-19 J.(3)当入射光的频率为ν=7.00×1014 Hz 时,由E k =hν-hνc 得,光电子的最大初动能为E k =6.63×10-34×(7.00-5.15)×1014 J ≈1.23×10-19 J.。
高考物理一轮复习 14.2 光电效应 波粒二象性 教学案

图1【重点知识梳理】 一、黑体辐射与能量子 [基础导引]判断下列说法的正误:(1)一般物体辐射电磁波的情况与温度无关,只与材料的种类及表面情况有关 ( ) (2)黑体能完全吸收入射的各种波长的电磁波,不反射 ( ) (3)带电微粒辐射和吸收的能量,只能是某一最小能量值的整数倍 ( ) (4)普朗克最先提出了能量子的概念 ( ) [知识梳理] 1.黑体与黑体辐射(1)黑体:是指能够完全吸收入射的各种波长的电磁波而不发生反射的物体. (2)黑体辐射的实验规律①一般材料的物体,辐射的电磁波除与温度有关外,还与 材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,如图1所示.a .随着温度的升高,各种波长的辐射强度都增加.b .随着温度的升高,辐射强度的极大值向波长较短的方向移动. 2.能量子(1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子的大小:ε=hν,其中ν是电磁波的频率,h 称为普朗克常量.h =6.626×10-34J·s(一般取h =6.63×10-34J·s).特别提醒 在微观世界中能量是量子化的,或者说微观粒子的能量是分立的. 二、光电效应 [基础导引]已知能使某金属产生光电效应的极限频率为νc ,则 ( )A.当用频率为2νc的单色光照射该金属时,一定能产生光电子B.当用频率为2νc的单色光照射该金属时,所产生的光电子的最大初动能为hνcC.当照射光的频率ν大于νc时,若ν增大,则逸出功增大D.当照射光的频率ν大于νc时,若ν增大一倍,则光电子的最大初动能也增大一倍[知识梳理]1.光电效应现象光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做____________.2.光电效应规律(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=________,其中h是普朗克常量,其值为6.63×10-34 J·s.(2)光电效应方程:____________其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功.4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c.(2)截止频率:能使某种金属发生光电效应的________频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的__________,叫做该金属的逸出功.三、光的波粒二象性、物质波[基础导引]判断下列说法的正误:(1)光电效应反映了光的粒子性()(2)大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性()(3)光的干涉、衍射、偏振现象证明了光具有波动性()(4)只有运动着的小物体才有一种波和它相对应,大的物体运动是没有波和它对应的()][知识梳理(2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=________,p为运动物体的动量,h为普朗克常量.【考点突破】考点一对光电效应规律的理解考点解读1.爱因斯坦光电效应方程:E k=hν-W0.hν:光子的能量.W0:逸出功.E k:光电子的最大初动能.2.对光电效应规律的解释图2特别提醒 光电效应方程研究的对象是从金属表面逸出的光电子,其列式依据为能量守恒定律.3.由E k —ν图象可以得到的物理量(如图2所示) (1)极限频率:图线与ν轴交点的横坐标νc . (2)逸出功:图线与E k 轴交点的纵坐标的值W 0=E . (3)普朗克常量:图线的斜率k =h . 典例剖析例1 入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么( )1.粒子的波动性:实物粒子也具有波动性,满足如下关系:ν=εh 和λ=hp ,这种波称为德布罗意波,也叫物质波.2.光的波粒二象性图5光既有波动性,又有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为: (1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性. (2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,贯穿本领越强.(3)光在传播过程中往往表现出波动性;在与物质发生作用时,往往表现为粒子性. 典例剖析例2 关于物质的波粒二象性,下列说法中不正确的是 ( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D .实物的运动有特定的轨道,所以实物不具有波粒二象性 考点三 光电效应方程的应用 典例剖析例3 如图5所示,当开关S 断开时,用光子能量为2.5 eV 的一束光照 射阴极P ,发现电流表读数不为零.合上开关,调节滑动变阻器,发 现当电压表读数小于0.60 V 时,电流表读数仍不为零;当电压表读数 大于或等于0.60 V 时,电流表读数为零.(1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 思维导图例4研究光电效应的电路如图6所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发 射出的光电子被阳极A 吸收,在电路中形成光电流.下列光电流I 与 A 、K 之间的电压U AK 的关系图象中,正确的是________. 建模感悟1.常见电路(如图所示)2.两条线索(1)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.(2)通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 3.概念辨析⎩⎨⎧照射光⎩⎪⎨⎪⎧ 强度——决定着每秒钟光源发射的光子数频率——决定着每个光子的能量E =hν光电子⎩⎪⎨⎪⎧ 每秒钟逸出的光电子数——决定着光电流的强度光电子逸出后的最大初动能课堂探究例1 C 跟踪训练1 D 例2 D 跟踪训练2 C例3 (1)0.6 eV (2)1.9 eV 跟踪训练3 B 例4 C 跟踪训练4 C【高频考点突破】考点1:光的电磁说【例1】光的电磁说认为()A.光波和机械波相同,在真空中传播时速度最大B.光波也能产生干涉、衍射等现象C.光是一种电磁波D.在真空中光速和电磁波传播速度相同【解析】光波是电磁波,不同于机械波,光波在真空中传播速度最大,而机械波不能在真空中传播;但是光波和机械波都能产生干涉、衍射等波特有的现象.答案:BCD点评:了解光的电磁说,知道光波和机械波的异同,就能作出正确的判断.考点2:光电效应【例2】关于光电效应,下列几种叙述正确的是()A.金属电子的逸出功与入射光的频率成正比B.光电流的强度与入射光的强度无关C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应【解析】金属的逸出功由该金属决定,与入射光源频率无关,光电流的强度与入射光强度成正比,选项A、B错误.不可见光包括能量大的紫外线、X射线、γ射线,也包括能量比可见光小的红外线、无线电波,选项C错误.答案:D点评:光电效应是金属中的自由电子吸收了光子的能量后,其动能大到足以克服金属离子的引力而逃逸出金属表面,成为光电子;对一定的金属来说,逸出功是一定的,照射光的频率越大,光子的能量越大,从金属中逸出的光电子的初动能就越大;如果入射光子的频率较低,它的能量小于金属的逸出功,就不能产生光电效应,这就是存在极限频率的原因.考点3:波粒二象性【例3】如图下列实验中,深入地揭示了光的粒子性一面的有()【解析】A为康普顿散射,B为光电效应,康普顿散射和光电效应都深入揭示了光的粒子性;C为α粒子散射,不是光子,揭示了原子的核式结构模型;D为光谱分析,揭示了氢原子能级的不连续.选AB.答案:AB点评:本题是一个识记的内容,熟悉光的波动性和粒子性以及原子物理的有关知识即可得出答案【题型解读】题型一:光电效应规律【例4】对爱因斯坦光电效应方程E k=hν-W,下面的理解正确的有()A.只要是用同种频率的光照射同一种金属,那么从金属中逸出的所有光电子都会具有同样的初动能E kB.式中的W表示每个光电子从金属中飞出过程中克服金属中正电荷引力所做的功C.逸出功W和极限频率ν0之间应满足关系式W=hν0D.光电子的最大初动能和入射光的频率成正比【解析】爱因斯坦光电效应方程E k=hν-W中的W表示从金属表面直接逸出的光电子克服金属中正电荷引力做的功,因此是所有逸出的光电子中克服引力做功的最小值,对应的光电子的初动能是所有光电子中最大的,其他光电子的初动能都小于这个值.若入射光的频率恰好是极限频率,即刚好能有光电子逸出,可理解为逸出的光电子的最大初动能是0,因此有W=hν0.由E k=hν-W可知E k和ν之间是一次函数关系,但不是成正比.答案:C题型二:光电效应的综合应用【例5】(2010•江苏卷) (1)研究光电效应的电路如图所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I与A、K之间的电压UAK的关系图象的,正确的是()(2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子,光电子从金属表面逸出的过程中,其动量的大小__________(选填“增大”、“减小”或“不变”),原因是_______________________.(3)已知氢原子处在第一、第二激发态的能级分别为-3.4eV和-1.51eV, 金属钠的截止频率为5.53×1014Hz, 普朗克常量h=6.63×10-34J•s.请通过计算判断,氢原子从第二激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应.【解析】(1)对于一定频率的光,无论光的强弱如何变化,遏止电压都是一样的,只有光的频率改变,遏止电压才会改变;但发生了光电效应后,入射光越强,饱和光电流越强.C正确.(2)光电子从金属表面逸出的过程中,受到金属表面层中力的阻碍作用(或需要克服逸出功),动能要减少,速度要减小,所以动量也要减小.(3)氢原子放出的光子能量E=E3-E2,代入数据得:E =1.89eV,金属钠的逸出功W0=hν0,代入数据得W0=2.3eV,因为E<W0,所以不能发生光电效应.答案:(1)C(2)减小光电子受到金属表面层中力的阻碍作用(或需要克服逸出功)(3)见解析题型三:波粒二象性【例6】在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只能出现一些无规则的亮点;如果曝光时间足够长,底片上就会出现规则的干涉条纹.下列与这个实验结果相关的分析中,正确的是()表现的波动性为一种概率波,故选项B、C、D正确.答案:BCD点评:粒子和波动对宏观物体是两个对立的事物,但是对于微观粒子,波动性和粒子性是统一的.【高考真题解析】【2012高考】(2012•重庆)以下是物理学史上3个著名的核反应方程:x+37Li―→2y,y+714N―→x +817O,y+49Be―→z+612C.x、y和z是3种不同的粒子,其中z是()A.α粒子B.质子C.中子D.电子【答案】C【解析】将上述三个方程相加,整理后得37Li+714N+49Be―→ 817O+612C+z,根据电荷数守恒和质量数守恒,z 的质量数为1,电荷数为0,为中子,C 正确.【考点定位】原子物理(2011·上海)1.在光电效应实验中,用单色光照时某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的 ( )(A )频率 (B )强度 (C )照射时间 (D )光子数目【答案】A【解析】根据爱因斯坦的光电效应方程:212h W mv ν-=,光电子的最大初动能只与入射光的频率在关,与其它无关,选项A 正确。
2018版高考物理一轮总复习第12章波粒二象性课件

2.[2016· 阳光模拟](多选)在如图所示的实验中,发现 用一定频率的 A 单色光照射光电管时,电流表指针会发生 偏转,而用另一频率的 B 单色光照射时不发生光电效应, 那么( )
A.A 光的频率一定等于光电管金属材料的极限频率 B.B 光的频率小于 A 光的频率 C.用 A 光照射光电管时流过电流表 G 的电流方向是 由a向b D.用 A 光照射光电管时流过电流表 G 的电流方向是 由b向a
解析
金属的逸出功与入射光的频率 ν 无关, 只与极限
频率 ν0 有关,选项 A 错误;光电子的最大初动能与入射光 强度无关,与入射光的频率和金属的逸出功有关,选项 B 错误;当入射光的频率小于极限频率,不能发生光电效应 现象,选项 C 错误;据光电效应方程 Ek=hν-W0 可知,图 象的斜率即为普朗克常量,选项 D 正确。
率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的 强度 无关,只随 入射光频率的增大而 增大 。 (3)光电效应的发生 几乎是瞬时
-9
的, 一般不超过 10
s。
(4)当入射光的频率大于极限频率时,饱和光电流的强 度与入射光的强度成 正比 。
知识点 2 1.光子说
爱因斯坦光电效应方程
Ⅰ
在空间传播的光是不连续的,而是一份一份的,每一份 叫做一个光的能量子,简称光子,光子的能量 ε= hν 。 其中 h=6.63×10
出功 W=hν-Ek=5.0 eV-1.5 eV=3.5 eV,由光电效应条 件可知,入射光子的能量必须不小于逸出功,故 C 正确。
4.[对波粒二象性的理解 ](多选)在单缝衍射实验中, 中央亮纹的光强占从单缝射入的整个光强的 95%以上。假 设现在只让一个光子通过单缝,那么该光子( A.一定落在中央亮纹处 B.一定落在亮纹处 C.可能落在暗纹处 D.落在中央亮纹处的可能性最大 )
人教版高考物理一轮复习学案设计 专题:光电效应,波粒二象性

高考物理一轮复习学习讲义
或极限频率),入射光的频率必须大于截止频率才能产生光电效应.低于截止频率时不能发生光电效应.
.甲图中光电管得到的电压为正向电压
时,产生的光电子的最大初动能为E
E 时,产生的光电子的最大初动能为
表明光具有粒子性
表明光具有波动性.用紫外光观察不到类似的图象
,则每秒钟从光电管阴极发射出的光电子数至少是
.图中直线的斜率与普朗克常量有关
求此时光电子的最大初动能的大小.
的光照射时,光电子的最大初动能为
射线被石墨散射后部分波长增大②锌板被紫外线照射时有电子逸出但被可见光照射时没有粒子中有少数运动方向发生较大偏转④氢原子发射的光经三棱镜分光后,
在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应.对于这两个过程,下列四个物理量中,一定不同的是( ACD )
,当电流表示数为零时,电压表示数为遏止电压
向右滑动的过程中,电流表示数将一直增大
.不改变光束颜色和电路,增大入射光束强度,电流表示数会增大
需要预热,光束照射后需要一定的时间才会有光电流
在光电效应实验中,分别用频率为ν、ν的单色光
.
根据爱因斯坦光电效应方程E k=hν-W0及动能定理eU c=E k,可得U。
高考物理一轮复习 第十二章 波粒二象性 第1讲 光电效应学案

第1讲 光电效应板块一 主干梳理·夯实基础 【知识点1】 光电效应 Ⅰ1.定义照射到金属表面的光,能使金属中的电子从表面逸出的现象。
2.光电子光电效应中发射出来的电子。
3.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应。
低于这个频率的光不能产生光电效应。
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s 。
(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。
【知识点2】 爱因斯坦光电效应方程 Ⅰ 1.光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=h ν。
其中h =6.63×10-34J·s(称为普朗克常量)。
2.逸出功W 0使电子脱离某种金属所做功的最小值。
3.最大初动能发生光电效应时,金属表面上的电子吸收光子后克服金属的逸出功后所具有的动能。
4.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。
(2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。
5.对光电效应规律的解释【知识点3】 光的波粒二象性 物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象说明光具有波动性。
(2)光电效应和康普顿效应说明光具有粒子性。
(3)光既具有波动性,又具有粒子性,即光具有波粒二象性。
2.物质波(1)1924年,法国物理学家德布罗意提出:实物粒子也具有波动性,每一个运动着的粒子都有一个波和它对应,这种波叫做物质波,也叫德布罗意波。
(2)物质波的波长:λ=h p =hmv,其中h 是普朗克常量。
物质波也是一种概率波。
板块二 考点细研·悟法培优考点1光电效应规律的理解[深化理解]1.光子与光电子光子是指组成光本身的一个个不可分割的能量子,光子不带电;光电子是指金属表面受到光照射时发射出来的电子。
2018年物理新课标高考总复习第一轮复习课件:第十二章第一节光电效应 波粒二象性 精品

[解析] 根据光电效应规律,保持入射光的频率不变,入射 光的光强变大,则饱和光电流变大,选项 A 正确.由爱因斯 坦光电效应方程知,入射光的频率变高,产生的光电子最大 初动能变大,而饱和光电流与入射光的频率和光强都有关, 选项 B 错误,C 正确.保持入射光的光强不变,不断减小入 射光的频率,当入射光的频率小于极限频率时,就不能发生 光电效应,没有光电流产生,选项 D 错误.
【典题例析】 以往我们认识的光电效应是单 光子光电效应,即一个电子在极短时 间内只能吸收到一个光子而从金属表 面逸出.强激光的出现丰富了人们对于光电效应的认识,用 强激光照射金属,由于其光子密度极大,一个电子在极短时 间内吸收多个光子成为可能,从而形成多光子光电效应,这 已被实验证实.光电效应实验装置示意图如图所示.用频率 为 ν 的普通光源照射阴极 K,没有发生光电效应,换用同样
二、光电效应方程
1.基本物理量 (1)光子的能量 ε=hν,其中 h=6.626×10-34 J·s(称为普朗克 常量). (2)逸出功:使电子脱离某种金属所做功的__最__小__值____. (3)最大初动能:发生光电效应时,金属表面上的电子吸收光 子后克服原子核的引力逸出时所具有动能的__最__大__值____. 2.光电效应方程:Ek=__h_ν_-__W__0__.
6.63×10-34×4.27×1014 1.6×10-19
eV≈1.77 eV,D 错误.
考向 2 对 I-U 图象的理解 2.在光电效应实验中,某同学用同一光电管在不同实验条件 下得到三条光电流与电压之间的关系曲线(甲光、乙光、丙 光),如图所示.则可判断出( B )
A.甲光的频率大于乙光的频率 B.乙光的波长大于丙光的波长 C.乙光对应的截止频率大于丙光的截止频率 D.甲光对应的光电子最大初动能大于丙光的光电子最大初 动能
【推荐精选】2018届高考物理一轮复习 专题 光电效应 波粒二象性导学案2

光电效应波粒二象性知识梳理知识点一、光电效应1.定义照射到金属表面的光,能使金属中的电子从表面逸出的现象。
2.光电子光电效应中发射出来的电子。
3.研究光电效应的电路图(如图1):图1其中A是阳极。
K是阴极。
4.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。
低于这个频率的光不能产生光电效应。
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s。
(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。
知识点二、爱因斯坦光电效应方程1.光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。
其中h=6.63×10-34J·s。
(称为普朗克常量) 2.逸出功W0使电子脱离某种金属所做功的最小值。
3.最大初动能发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。
4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c 。
(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。
不同的金属对应着不同的极限频率。
5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。
(2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。
知识点三、光的波粒二象性与物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性。
(2)光电效应说明光具有粒子性。
(3)光既具有波动性,又具有粒子性,称为光的波粒二象性。
2.物质波 (1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应波粒二象性知识梳理知识点一、光电效应1.定义照射到金属表面的光,能使金属中的电子从表面逸出的现象。
2.光电子光电效应中发射出来的电子。
3.研究光电效应的电路图(如图1):图1其中A是阳极。
K是阴极。
4.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。
低于这个频率的光不能产生光电效应。
(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
(3)光电效应的发生几乎是瞬时的,一般不超过10-9s。
(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。
知识点二、爱因斯坦光电效应方程1.光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。
其中h=6.63×10-34J·s。
(称为普朗克常量) 2.逸出功W0使电子脱离某种金属所做功的最小值。
3.最大初动能发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。
4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c 。
(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。
不同的金属对应着不同的极限频率。
5.爱因斯坦光电效应方程(1)表达式:E k =h ν-W 0。
(2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。
知识点三、光的波粒二象性与物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性。
(2)光电效应说明光具有粒子性。
(3)光既具有波动性,又具有粒子性,称为光的波粒二象性。
2.物质波(1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。
(2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p,p 为运动物体的动量,h 为普朗克常量。
考点精练考点一 光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率。
(2)光电效应中的“光”不是特指可见光,也包括不可见光。
(3)逸出功的大小由金属本身决定,与入射光无关。
(4)光电子不是光子,而是电子。
2.两条对应关系(1)光强大→光子数目多→发射光电子多→光电流大;(2)光子频率高→光子能量大→光电子的最大初动能大。
3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0。
(2)最大初动能与遏止电压的关系:E k=eU c。
(3)逸出功与极限频率的关系:W0=hν0。
4.区分光电效应中的四组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。
(2)光电子的动能与光电子的最大初动能。
(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。
(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。
对应训练1.[光电效应现象](多选)如图2所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( )图2A.有光子从锌板逸出B.有电子从锌板逸出C.验电器指针张开一个角度D.锌板带负电解析用紫外线照射锌板是能够发生光电效应的,锌板上的电子吸收紫外线的能量从锌板表面逸出,称之为光电子,故A错误,B正确;锌板与验电器相连,带有相同电性的电荷,锌板失去电子应该带正电,且失去电子越多,带正电的电荷量越多,验电器指针张角越大,故C正确,D错误。
答案BC2.[光电效应规律]关于光电效应的规律,下列说法中正确的是( )A.只有入射光的波长大于该金属的极限波长,光电效应才能产生B.光电子的最大初动能跟入射光强度成正比C.发生光电效应的反应时间一般都大于10-7sD.发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比解析由ε=hν=h cλ知,当入射光波长小于金属的极限波长时,发生光电效应,故A错;由E k=hν-W0知,最大初动能由入射光频率决定,与入射光强度无关,故B错;发生光电效应的时间一般不超过10-9s,故C错误;发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光的强度是成正比的,D正确。
答案 D3.[光电管](多选)图3为一真空光电管的应用电路,其金属材料的极限频率为4.5×1014 Hz,则以下判断中正确的是( )图3A.发生光电效应时,电路中光电流的饱和值取决于入射光的频率B.发生光电效应时,电路中光电流的饱和值取决于入射光的强度C用λ=0.5 μm的光照射光电管时,电路中有光电流产生D.光照射时间越长,电路中的电流越大解析在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关。
据此可判断A、D错误,B正确;波长λ=0.5 μm的光子的频率ν=cλ=3×1080.5×10-6Hz=6×1014 Hz>4.5×1014Hz,可发生光电效应,所以C正确。
答案BC考点二光电效应的四类图象分析②逸出功:图线与②饱 对应训练1.[E k -ν图象]爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。
某种金属逸出光电子的最大初动能E km 与入射光频率ν的关系如图4所示,其中ν0为极限频率。
从图中可以确定的是( )图4A .逸出功与ν有关B .E km 与入射光强度成正比C .当ν<ν0时,会逸出光电子D .图中直线的斜率与普朗克常量有关解析 由爱因斯坦光电效应方程E k =h ν-W 0和W 0=h ν0(W 0为金属的逸出功)可得,E k=hν-hν0,可见图象的斜率表示普朗克常量,D正确;只有ν≥ν0时才会发生光电效应,C错;金属的逸出功只和金属的极限频率有关,与入射光的频率无关,A错;最大初动能取决于入射光的频率,而与入射光的强度无关,B错。
答案 D2.[I-U图象]研究光电效应的电路如图5所示。
用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流。
下列光电流I与A、K之间的电压U AK的关系图象中,正确的是( )图5解析虽然入射光强度不同,但光的频率相同,所以遏止电压相同;又因当入射光强时,单位时间逸出的光电子多,饱和光电流大,所以选C。
答案 C3.[U c-ν图象]在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图6所示。
若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量和所用材料的逸出功可分别表示为( )图6A .ek ebB .-ek ebC .ek -ebD .-ek -eb 解析 光电效应中,入射光子能量h ν,克服逸出功W 0后多余的能量转换为电子动能,反向遏制电压,有eU =h ν-W 0,整理得U =h e ν-W 0e ,斜率即h e =k ,所以普朗克常量h =ek ,截距为b ,即eb =-W 0,所以逸出功W 0=-eb 。
故选项C 正确。
答案 C考点三 光的波粒二象性、物质波光既具有粒子性,又具有波动性,对波粒二象性的理解足够能量的光在传播时,表现出对应训练 1.[波粒二象性的理解](多选)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图7(a)(b)(c)所示的图象,则( )图7A .图象(a)表明光具有粒子性B.图象(c)表明光具有波动性C.用紫外光观察不到类似的图像D.实验表明光是一种概率波解析图像(a)只有分散的亮点,表明光具有粒子性;图像(c)呈现干涉条纹,表明光具有波动性;用紫外光也可以观察到类似的图象,实验表明光是一种概率波,选项A、B、D正确。
答案ABD2.[光的波粒二象性]下列说法中正确的是( )A.实物的运动有特定的轨道,所以实物不具有波粒二象性B.康普顿效应说明光子既有能量又有动量C.光是高速运动的微观粒子,单个光子不具有波粒二象性D.宏观物体的物质波波长非常小,极易观察到它的波动解析由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但仍具有波粒二象性,A、D错误;康普顿效应说明光子除了具有能量之外还有动量,B正确;波粒二象性是光子的特性,单个光子也具有波粒二象性,C错误。
答案 B随堂检测1.[2016·全国卷Ⅰ,35(1)改编](多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。
下列说法正确的是( )A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,光电子的最大初动能变大C.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生D.遏止电压的大小与入射光的频率有关,与入射光的光强无关2.[2015·江苏单科,12C(1)](多选)波粒二象性是微观世界的基本特征,以下说法正确的有( )A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等3.[2014·江苏,单科,12C(1)]已知钙和钾的截止频率分别为7.73×1014 Hz和5.44×1014 Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )A.波长B.频率C.能量D.动量4.(2017·成都一诊) (多选)如图8所示为光电管的工作电路图,分别用波长为λ0、λ1、λ2的单色光做实验,已知λ1>λ0>λ2。
当开关闭合后,用波长为λ0的单色光照射光电管的阴极K时,电流表有示数。
则下列说法正确的是( )图8A.光电管阴极材料的逸出功与入射光无关B.若用波长为λ1的单色光进行实验,则电流表的示数一定为零C.若仅增大电源的电动势,则电流表的示数一定增大D.若仅将电源的正负极对调,则电流表的示数可能为零参考答案1.解析 在发生光电效应时,饱和光电流大小由光照强度来决定,与频率无关,光照强度越大饱和光电流越大,因此A 正确;根据E km =h ν-W 0可知,对于同一光电管,逸出功W 0不变,当频率变高,最大初动能E km 变大,因此B 正确;由光电效应规律可知,当频率低于截止频率时无论光照强度多大,都不会有光电流产生,因此C 错误;由E km =eU c 和E k m =h ν-W 0,得h ν-W 0=eU c ,遏制电压只与入射光频率有关,与入射光强无关,因此D 正确。